This source file includes following definitions.
- __unhash_process
- __exit_signal
- delayed_put_task_struct
- put_task_struct_rcu_user
- release_task
- rcuwait_wake_up
- will_become_orphaned_pgrp
- is_current_pgrp_orphaned
- has_stopped_jobs
- kill_orphaned_pgrp
- mm_update_next_owner
- exit_mm
- find_alive_thread
- find_child_reaper
- find_new_reaper
- reparent_leader
- forget_original_parent
- exit_notify
- check_stack_usage
- check_stack_usage
- do_exit
- complete_and_exit
- SYSCALL_DEFINE1
- do_group_exit
- SYSCALL_DEFINE1
- eligible_pid
- eligible_child
- wait_task_zombie
- task_stopped_code
- wait_task_stopped
- wait_task_continued
- wait_consider_task
- do_wait_thread
- ptrace_do_wait
- child_wait_callback
- __wake_up_parent
- do_wait
- pidfd_get_pid
- kernel_waitid
- SYSCALL_DEFINE5
- kernel_wait4
- SYSCALL_DEFINE4
- SYSCALL_DEFINE3
- COMPAT_SYSCALL_DEFINE4
- COMPAT_SYSCALL_DEFINE5
- abort
1
2
3
4
5
6
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h>
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89
90
91
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
109
110
111
112
113
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
116 }
117 #endif
118
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
123
124
125
126
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
129
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
132 }
133
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
137
138
139
140
141
142
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
159
160
161
162
163
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
167
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
173 }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
183 }
184
185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187 if (refcount_dec_and_test(&task->rcu_users))
188 call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190
191 void release_task(struct task_struct *p)
192 {
193 struct task_struct *leader;
194 int zap_leader;
195 repeat:
196
197
198 rcu_read_lock();
199 atomic_dec(&__task_cred(p)->user->processes);
200 rcu_read_unlock();
201
202 proc_flush_task(p);
203 cgroup_release(p);
204
205 write_lock_irq(&tasklist_lock);
206 ptrace_release_task(p);
207 __exit_signal(p);
208
209
210
211
212
213
214 zap_leader = 0;
215 leader = p->group_leader;
216 if (leader != p && thread_group_empty(leader)
217 && leader->exit_state == EXIT_ZOMBIE) {
218
219
220
221
222
223 zap_leader = do_notify_parent(leader, leader->exit_signal);
224 if (zap_leader)
225 leader->exit_state = EXIT_DEAD;
226 }
227
228 write_unlock_irq(&tasklist_lock);
229 release_thread(p);
230 put_task_struct_rcu_user(p);
231
232 p = leader;
233 if (unlikely(zap_leader))
234 goto repeat;
235 }
236
237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239 struct task_struct *task;
240
241 rcu_read_lock();
242
243
244
245
246
247
248
249
250
251
252
253
254 smp_mb();
255
256 task = rcu_dereference(w->task);
257 if (task)
258 wake_up_process(task);
259 rcu_read_unlock();
260 }
261
262
263
264
265
266
267
268
269
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
272 {
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
280
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291 int retval;
292
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
296
297 return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309 return false;
310 }
311
312
313
314
315
316
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
324
325
326
327 parent = tsk->real_parent;
328 else
329
330
331
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341 }
342
343 #ifdef CONFIG_MEMCG
344
345
346
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 struct task_struct *c, *g, *p = current;
350
351 retry:
352
353
354
355
356 if (mm->owner != p)
357 return;
358
359
360
361
362
363 if (atomic_read(&mm->mm_users) <= 1) {
364 WRITE_ONCE(mm->owner, NULL);
365 return;
366 }
367
368 read_lock(&tasklist_lock);
369
370
371
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
375 }
376
377
378
379
380 list_for_each_entry(c, &p->real_parent->children, sibling) {
381 if (c->mm == mm)
382 goto assign_new_owner;
383 }
384
385
386
387
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
396 }
397 }
398 read_unlock(&tasklist_lock);
399
400
401
402
403
404 WRITE_ONCE(mm->owner, NULL);
405 return;
406
407 assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
410
411
412
413
414 task_lock(c);
415
416
417
418
419 read_unlock(&tasklist_lock);
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
424 }
425 WRITE_ONCE(mm->owner, c);
426 task_unlock(c);
427 put_task_struct(c);
428 }
429 #endif
430
431
432
433
434
435 static void exit_mm(void)
436 {
437 struct mm_struct *mm = current->mm;
438 struct core_state *core_state;
439
440 exit_mm_release(current, mm);
441 if (!mm)
442 return;
443 sync_mm_rss(mm);
444
445
446
447
448
449
450
451 down_read(&mm->mmap_sem);
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
455
456 up_read(&mm->mmap_sem);
457
458 self.task = current;
459 self.next = xchg(&core_state->dumper.next, &self);
460
461
462
463
464 if (atomic_dec_and_test(&core_state->nr_threads))
465 complete(&core_state->startup);
466
467 for (;;) {
468 set_current_state(TASK_UNINTERRUPTIBLE);
469 if (!self.task)
470 break;
471 freezable_schedule();
472 }
473 __set_current_state(TASK_RUNNING);
474 down_read(&mm->mmap_sem);
475 }
476 mmgrab(mm);
477 BUG_ON(mm != current->active_mm);
478
479 task_lock(current);
480 current->mm = NULL;
481 up_read(&mm->mmap_sem);
482 enter_lazy_tlb(mm, current);
483 task_unlock(current);
484 mm_update_next_owner(mm);
485 mmput(mm);
486 if (test_thread_flag(TIF_MEMDIE))
487 exit_oom_victim();
488 }
489
490 static struct task_struct *find_alive_thread(struct task_struct *p)
491 {
492 struct task_struct *t;
493
494 for_each_thread(p, t) {
495 if (!(t->flags & PF_EXITING))
496 return t;
497 }
498 return NULL;
499 }
500
501 static struct task_struct *find_child_reaper(struct task_struct *father,
502 struct list_head *dead)
503 __releases(&tasklist_lock)
504 __acquires(&tasklist_lock)
505 {
506 struct pid_namespace *pid_ns = task_active_pid_ns(father);
507 struct task_struct *reaper = pid_ns->child_reaper;
508 struct task_struct *p, *n;
509
510 if (likely(reaper != father))
511 return reaper;
512
513 reaper = find_alive_thread(father);
514 if (reaper) {
515 pid_ns->child_reaper = reaper;
516 return reaper;
517 }
518
519 write_unlock_irq(&tasklist_lock);
520
521 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
522 list_del_init(&p->ptrace_entry);
523 release_task(p);
524 }
525
526 zap_pid_ns_processes(pid_ns);
527 write_lock_irq(&tasklist_lock);
528
529 return father;
530 }
531
532
533
534
535
536
537
538
539 static struct task_struct *find_new_reaper(struct task_struct *father,
540 struct task_struct *child_reaper)
541 {
542 struct task_struct *thread, *reaper;
543
544 thread = find_alive_thread(father);
545 if (thread)
546 return thread;
547
548 if (father->signal->has_child_subreaper) {
549 unsigned int ns_level = task_pid(father)->level;
550
551
552
553
554
555
556
557
558 for (reaper = father->real_parent;
559 task_pid(reaper)->level == ns_level;
560 reaper = reaper->real_parent) {
561 if (reaper == &init_task)
562 break;
563 if (!reaper->signal->is_child_subreaper)
564 continue;
565 thread = find_alive_thread(reaper);
566 if (thread)
567 return thread;
568 }
569 }
570
571 return child_reaper;
572 }
573
574
575
576
577 static void reparent_leader(struct task_struct *father, struct task_struct *p,
578 struct list_head *dead)
579 {
580 if (unlikely(p->exit_state == EXIT_DEAD))
581 return;
582
583
584 p->exit_signal = SIGCHLD;
585
586
587 if (!p->ptrace &&
588 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
589 if (do_notify_parent(p, p->exit_signal)) {
590 p->exit_state = EXIT_DEAD;
591 list_add(&p->ptrace_entry, dead);
592 }
593 }
594
595 kill_orphaned_pgrp(p, father);
596 }
597
598
599
600
601
602
603
604
605
606 static void forget_original_parent(struct task_struct *father,
607 struct list_head *dead)
608 {
609 struct task_struct *p, *t, *reaper;
610
611 if (unlikely(!list_empty(&father->ptraced)))
612 exit_ptrace(father, dead);
613
614
615 reaper = find_child_reaper(father, dead);
616 if (list_empty(&father->children))
617 return;
618
619 reaper = find_new_reaper(father, reaper);
620 list_for_each_entry(p, &father->children, sibling) {
621 for_each_thread(p, t) {
622 t->real_parent = reaper;
623 BUG_ON((!t->ptrace) != (t->parent == father));
624 if (likely(!t->ptrace))
625 t->parent = t->real_parent;
626 if (t->pdeath_signal)
627 group_send_sig_info(t->pdeath_signal,
628 SEND_SIG_NOINFO, t,
629 PIDTYPE_TGID);
630 }
631
632
633
634
635 if (!same_thread_group(reaper, father))
636 reparent_leader(father, p, dead);
637 }
638 list_splice_tail_init(&father->children, &reaper->children);
639 }
640
641
642
643
644
645 static void exit_notify(struct task_struct *tsk, int group_dead)
646 {
647 bool autoreap;
648 struct task_struct *p, *n;
649 LIST_HEAD(dead);
650
651 write_lock_irq(&tasklist_lock);
652 forget_original_parent(tsk, &dead);
653
654 if (group_dead)
655 kill_orphaned_pgrp(tsk->group_leader, NULL);
656
657 tsk->exit_state = EXIT_ZOMBIE;
658 if (unlikely(tsk->ptrace)) {
659 int sig = thread_group_leader(tsk) &&
660 thread_group_empty(tsk) &&
661 !ptrace_reparented(tsk) ?
662 tsk->exit_signal : SIGCHLD;
663 autoreap = do_notify_parent(tsk, sig);
664 } else if (thread_group_leader(tsk)) {
665 autoreap = thread_group_empty(tsk) &&
666 do_notify_parent(tsk, tsk->exit_signal);
667 } else {
668 autoreap = true;
669 }
670
671 if (autoreap) {
672 tsk->exit_state = EXIT_DEAD;
673 list_add(&tsk->ptrace_entry, &dead);
674 }
675
676
677 if (unlikely(tsk->signal->notify_count < 0))
678 wake_up_process(tsk->signal->group_exit_task);
679 write_unlock_irq(&tasklist_lock);
680
681 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
682 list_del_init(&p->ptrace_entry);
683 release_task(p);
684 }
685 }
686
687 #ifdef CONFIG_DEBUG_STACK_USAGE
688 static void check_stack_usage(void)
689 {
690 static DEFINE_SPINLOCK(low_water_lock);
691 static int lowest_to_date = THREAD_SIZE;
692 unsigned long free;
693
694 free = stack_not_used(current);
695
696 if (free >= lowest_to_date)
697 return;
698
699 spin_lock(&low_water_lock);
700 if (free < lowest_to_date) {
701 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
702 current->comm, task_pid_nr(current), free);
703 lowest_to_date = free;
704 }
705 spin_unlock(&low_water_lock);
706 }
707 #else
708 static inline void check_stack_usage(void) {}
709 #endif
710
711 void __noreturn do_exit(long code)
712 {
713 struct task_struct *tsk = current;
714 int group_dead;
715
716 profile_task_exit(tsk);
717 kcov_task_exit(tsk);
718
719 WARN_ON(blk_needs_flush_plug(tsk));
720
721 if (unlikely(in_interrupt()))
722 panic("Aiee, killing interrupt handler!");
723 if (unlikely(!tsk->pid))
724 panic("Attempted to kill the idle task!");
725
726
727
728
729
730
731
732
733 set_fs(USER_DS);
734
735 ptrace_event(PTRACE_EVENT_EXIT, code);
736
737 validate_creds_for_do_exit(tsk);
738
739
740
741
742
743 if (unlikely(tsk->flags & PF_EXITING)) {
744 pr_alert("Fixing recursive fault but reboot is needed!\n");
745 futex_exit_recursive(tsk);
746 set_current_state(TASK_UNINTERRUPTIBLE);
747 schedule();
748 }
749
750 exit_signals(tsk);
751
752 if (unlikely(in_atomic())) {
753 pr_info("note: %s[%d] exited with preempt_count %d\n",
754 current->comm, task_pid_nr(current),
755 preempt_count());
756 preempt_count_set(PREEMPT_ENABLED);
757 }
758
759
760 if (tsk->mm)
761 sync_mm_rss(tsk->mm);
762 acct_update_integrals(tsk);
763 group_dead = atomic_dec_and_test(&tsk->signal->live);
764 if (group_dead) {
765
766
767
768
769 if (unlikely(is_global_init(tsk)))
770 panic("Attempted to kill init! exitcode=0x%08x\n",
771 tsk->signal->group_exit_code ?: (int)code);
772
773 #ifdef CONFIG_POSIX_TIMERS
774 hrtimer_cancel(&tsk->signal->real_timer);
775 exit_itimers(tsk->signal);
776 #endif
777 if (tsk->mm)
778 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
779 }
780 acct_collect(code, group_dead);
781 if (group_dead)
782 tty_audit_exit();
783 audit_free(tsk);
784
785 tsk->exit_code = code;
786 taskstats_exit(tsk, group_dead);
787
788 exit_mm();
789
790 if (group_dead)
791 acct_process();
792 trace_sched_process_exit(tsk);
793
794 exit_sem(tsk);
795 exit_shm(tsk);
796 exit_files(tsk);
797 exit_fs(tsk);
798 if (group_dead)
799 disassociate_ctty(1);
800 exit_task_namespaces(tsk);
801 exit_task_work(tsk);
802 exit_thread(tsk);
803 exit_umh(tsk);
804
805
806
807
808
809
810
811 perf_event_exit_task(tsk);
812
813 sched_autogroup_exit_task(tsk);
814 cgroup_exit(tsk);
815
816
817
818
819 flush_ptrace_hw_breakpoint(tsk);
820
821 exit_tasks_rcu_start();
822 exit_notify(tsk, group_dead);
823 proc_exit_connector(tsk);
824 mpol_put_task_policy(tsk);
825 #ifdef CONFIG_FUTEX
826 if (unlikely(current->pi_state_cache))
827 kfree(current->pi_state_cache);
828 #endif
829
830
831
832 debug_check_no_locks_held();
833
834 if (tsk->io_context)
835 exit_io_context(tsk);
836
837 if (tsk->splice_pipe)
838 free_pipe_info(tsk->splice_pipe);
839
840 if (tsk->task_frag.page)
841 put_page(tsk->task_frag.page);
842
843 validate_creds_for_do_exit(tsk);
844
845 check_stack_usage();
846 preempt_disable();
847 if (tsk->nr_dirtied)
848 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
849 exit_rcu();
850 exit_tasks_rcu_finish();
851
852 lockdep_free_task(tsk);
853 do_task_dead();
854 }
855 EXPORT_SYMBOL_GPL(do_exit);
856
857 void complete_and_exit(struct completion *comp, long code)
858 {
859 if (comp)
860 complete(comp);
861
862 do_exit(code);
863 }
864 EXPORT_SYMBOL(complete_and_exit);
865
866 SYSCALL_DEFINE1(exit, int, error_code)
867 {
868 do_exit((error_code&0xff)<<8);
869 }
870
871
872
873
874
875 void
876 do_group_exit(int exit_code)
877 {
878 struct signal_struct *sig = current->signal;
879
880 BUG_ON(exit_code & 0x80);
881
882 if (signal_group_exit(sig))
883 exit_code = sig->group_exit_code;
884 else if (!thread_group_empty(current)) {
885 struct sighand_struct *const sighand = current->sighand;
886
887 spin_lock_irq(&sighand->siglock);
888 if (signal_group_exit(sig))
889
890 exit_code = sig->group_exit_code;
891 else {
892 sig->group_exit_code = exit_code;
893 sig->flags = SIGNAL_GROUP_EXIT;
894 zap_other_threads(current);
895 }
896 spin_unlock_irq(&sighand->siglock);
897 }
898
899 do_exit(exit_code);
900
901 }
902
903
904
905
906
907
908 SYSCALL_DEFINE1(exit_group, int, error_code)
909 {
910 do_group_exit((error_code & 0xff) << 8);
911
912 return 0;
913 }
914
915 struct waitid_info {
916 pid_t pid;
917 uid_t uid;
918 int status;
919 int cause;
920 };
921
922 struct wait_opts {
923 enum pid_type wo_type;
924 int wo_flags;
925 struct pid *wo_pid;
926
927 struct waitid_info *wo_info;
928 int wo_stat;
929 struct rusage *wo_rusage;
930
931 wait_queue_entry_t child_wait;
932 int notask_error;
933 };
934
935 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
936 {
937 return wo->wo_type == PIDTYPE_MAX ||
938 task_pid_type(p, wo->wo_type) == wo->wo_pid;
939 }
940
941 static int
942 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
943 {
944 if (!eligible_pid(wo, p))
945 return 0;
946
947
948
949
950
951 if (ptrace || (wo->wo_flags & __WALL))
952 return 1;
953
954
955
956
957
958
959
960
961
962 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
963 return 0;
964
965 return 1;
966 }
967
968
969
970
971
972
973
974 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
975 {
976 int state, status;
977 pid_t pid = task_pid_vnr(p);
978 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
979 struct waitid_info *infop;
980
981 if (!likely(wo->wo_flags & WEXITED))
982 return 0;
983
984 if (unlikely(wo->wo_flags & WNOWAIT)) {
985 status = p->exit_code;
986 get_task_struct(p);
987 read_unlock(&tasklist_lock);
988 sched_annotate_sleep();
989 if (wo->wo_rusage)
990 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
991 put_task_struct(p);
992 goto out_info;
993 }
994
995
996
997 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
998 EXIT_TRACE : EXIT_DEAD;
999 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1000 return 0;
1001
1002
1003
1004 read_unlock(&tasklist_lock);
1005 sched_annotate_sleep();
1006
1007
1008
1009
1010 if (state == EXIT_DEAD && thread_group_leader(p)) {
1011 struct signal_struct *sig = p->signal;
1012 struct signal_struct *psig = current->signal;
1013 unsigned long maxrss;
1014 u64 tgutime, tgstime;
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1037 spin_lock_irq(¤t->sighand->siglock);
1038 write_seqlock(&psig->stats_lock);
1039 psig->cutime += tgutime + sig->cutime;
1040 psig->cstime += tgstime + sig->cstime;
1041 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1042 psig->cmin_flt +=
1043 p->min_flt + sig->min_flt + sig->cmin_flt;
1044 psig->cmaj_flt +=
1045 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1046 psig->cnvcsw +=
1047 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1048 psig->cnivcsw +=
1049 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1050 psig->cinblock +=
1051 task_io_get_inblock(p) +
1052 sig->inblock + sig->cinblock;
1053 psig->coublock +=
1054 task_io_get_oublock(p) +
1055 sig->oublock + sig->coublock;
1056 maxrss = max(sig->maxrss, sig->cmaxrss);
1057 if (psig->cmaxrss < maxrss)
1058 psig->cmaxrss = maxrss;
1059 task_io_accounting_add(&psig->ioac, &p->ioac);
1060 task_io_accounting_add(&psig->ioac, &sig->ioac);
1061 write_sequnlock(&psig->stats_lock);
1062 spin_unlock_irq(¤t->sighand->siglock);
1063 }
1064
1065 if (wo->wo_rusage)
1066 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1067 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1068 ? p->signal->group_exit_code : p->exit_code;
1069 wo->wo_stat = status;
1070
1071 if (state == EXIT_TRACE) {
1072 write_lock_irq(&tasklist_lock);
1073
1074 ptrace_unlink(p);
1075
1076
1077 state = EXIT_ZOMBIE;
1078 if (do_notify_parent(p, p->exit_signal))
1079 state = EXIT_DEAD;
1080 p->exit_state = state;
1081 write_unlock_irq(&tasklist_lock);
1082 }
1083 if (state == EXIT_DEAD)
1084 release_task(p);
1085
1086 out_info:
1087 infop = wo->wo_info;
1088 if (infop) {
1089 if ((status & 0x7f) == 0) {
1090 infop->cause = CLD_EXITED;
1091 infop->status = status >> 8;
1092 } else {
1093 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1094 infop->status = status & 0x7f;
1095 }
1096 infop->pid = pid;
1097 infop->uid = uid;
1098 }
1099
1100 return pid;
1101 }
1102
1103 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1104 {
1105 if (ptrace) {
1106 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1107 return &p->exit_code;
1108 } else {
1109 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1110 return &p->signal->group_exit_code;
1111 }
1112 return NULL;
1113 }
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133 static int wait_task_stopped(struct wait_opts *wo,
1134 int ptrace, struct task_struct *p)
1135 {
1136 struct waitid_info *infop;
1137 int exit_code, *p_code, why;
1138 uid_t uid = 0;
1139 pid_t pid;
1140
1141
1142
1143
1144 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1145 return 0;
1146
1147 if (!task_stopped_code(p, ptrace))
1148 return 0;
1149
1150 exit_code = 0;
1151 spin_lock_irq(&p->sighand->siglock);
1152
1153 p_code = task_stopped_code(p, ptrace);
1154 if (unlikely(!p_code))
1155 goto unlock_sig;
1156
1157 exit_code = *p_code;
1158 if (!exit_code)
1159 goto unlock_sig;
1160
1161 if (!unlikely(wo->wo_flags & WNOWAIT))
1162 *p_code = 0;
1163
1164 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1165 unlock_sig:
1166 spin_unlock_irq(&p->sighand->siglock);
1167 if (!exit_code)
1168 return 0;
1169
1170
1171
1172
1173
1174
1175
1176
1177 get_task_struct(p);
1178 pid = task_pid_vnr(p);
1179 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1180 read_unlock(&tasklist_lock);
1181 sched_annotate_sleep();
1182 if (wo->wo_rusage)
1183 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1184 put_task_struct(p);
1185
1186 if (likely(!(wo->wo_flags & WNOWAIT)))
1187 wo->wo_stat = (exit_code << 8) | 0x7f;
1188
1189 infop = wo->wo_info;
1190 if (infop) {
1191 infop->cause = why;
1192 infop->status = exit_code;
1193 infop->pid = pid;
1194 infop->uid = uid;
1195 }
1196 return pid;
1197 }
1198
1199
1200
1201
1202
1203
1204
1205 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1206 {
1207 struct waitid_info *infop;
1208 pid_t pid;
1209 uid_t uid;
1210
1211 if (!unlikely(wo->wo_flags & WCONTINUED))
1212 return 0;
1213
1214 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1215 return 0;
1216
1217 spin_lock_irq(&p->sighand->siglock);
1218
1219 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1220 spin_unlock_irq(&p->sighand->siglock);
1221 return 0;
1222 }
1223 if (!unlikely(wo->wo_flags & WNOWAIT))
1224 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1225 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1226 spin_unlock_irq(&p->sighand->siglock);
1227
1228 pid = task_pid_vnr(p);
1229 get_task_struct(p);
1230 read_unlock(&tasklist_lock);
1231 sched_annotate_sleep();
1232 if (wo->wo_rusage)
1233 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1234 put_task_struct(p);
1235
1236 infop = wo->wo_info;
1237 if (!infop) {
1238 wo->wo_stat = 0xffff;
1239 } else {
1240 infop->cause = CLD_CONTINUED;
1241 infop->pid = pid;
1242 infop->uid = uid;
1243 infop->status = SIGCONT;
1244 }
1245 return pid;
1246 }
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1258 struct task_struct *p)
1259 {
1260
1261
1262
1263
1264
1265 int exit_state = READ_ONCE(p->exit_state);
1266 int ret;
1267
1268 if (unlikely(exit_state == EXIT_DEAD))
1269 return 0;
1270
1271 ret = eligible_child(wo, ptrace, p);
1272 if (!ret)
1273 return ret;
1274
1275 if (unlikely(exit_state == EXIT_TRACE)) {
1276
1277
1278
1279
1280 if (likely(!ptrace))
1281 wo->notask_error = 0;
1282 return 0;
1283 }
1284
1285 if (likely(!ptrace) && unlikely(p->ptrace)) {
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297 if (!ptrace_reparented(p))
1298 ptrace = 1;
1299 }
1300
1301
1302 if (exit_state == EXIT_ZOMBIE) {
1303
1304 if (!delay_group_leader(p)) {
1305
1306
1307
1308
1309
1310 if (unlikely(ptrace) || likely(!p->ptrace))
1311 return wait_task_zombie(wo, p);
1312 }
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1335 wo->notask_error = 0;
1336 } else {
1337
1338
1339
1340
1341 wo->notask_error = 0;
1342 }
1343
1344
1345
1346
1347
1348 ret = wait_task_stopped(wo, ptrace, p);
1349 if (ret)
1350 return ret;
1351
1352
1353
1354
1355
1356
1357 return wait_task_continued(wo, p);
1358 }
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1370 {
1371 struct task_struct *p;
1372
1373 list_for_each_entry(p, &tsk->children, sibling) {
1374 int ret = wait_consider_task(wo, 0, p);
1375
1376 if (ret)
1377 return ret;
1378 }
1379
1380 return 0;
1381 }
1382
1383 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1384 {
1385 struct task_struct *p;
1386
1387 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1388 int ret = wait_consider_task(wo, 1, p);
1389
1390 if (ret)
1391 return ret;
1392 }
1393
1394 return 0;
1395 }
1396
1397 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1398 int sync, void *key)
1399 {
1400 struct wait_opts *wo = container_of(wait, struct wait_opts,
1401 child_wait);
1402 struct task_struct *p = key;
1403
1404 if (!eligible_pid(wo, p))
1405 return 0;
1406
1407 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1408 return 0;
1409
1410 return default_wake_function(wait, mode, sync, key);
1411 }
1412
1413 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1414 {
1415 __wake_up_sync_key(&parent->signal->wait_chldexit,
1416 TASK_INTERRUPTIBLE, 1, p);
1417 }
1418
1419 static long do_wait(struct wait_opts *wo)
1420 {
1421 struct task_struct *tsk;
1422 int retval;
1423
1424 trace_sched_process_wait(wo->wo_pid);
1425
1426 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1427 wo->child_wait.private = current;
1428 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1429 repeat:
1430
1431
1432
1433
1434
1435
1436 wo->notask_error = -ECHILD;
1437 if ((wo->wo_type < PIDTYPE_MAX) &&
1438 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1439 goto notask;
1440
1441 set_current_state(TASK_INTERRUPTIBLE);
1442 read_lock(&tasklist_lock);
1443 tsk = current;
1444 do {
1445 retval = do_wait_thread(wo, tsk);
1446 if (retval)
1447 goto end;
1448
1449 retval = ptrace_do_wait(wo, tsk);
1450 if (retval)
1451 goto end;
1452
1453 if (wo->wo_flags & __WNOTHREAD)
1454 break;
1455 } while_each_thread(current, tsk);
1456 read_unlock(&tasklist_lock);
1457
1458 notask:
1459 retval = wo->notask_error;
1460 if (!retval && !(wo->wo_flags & WNOHANG)) {
1461 retval = -ERESTARTSYS;
1462 if (!signal_pending(current)) {
1463 schedule();
1464 goto repeat;
1465 }
1466 }
1467 end:
1468 __set_current_state(TASK_RUNNING);
1469 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1470 return retval;
1471 }
1472
1473 static struct pid *pidfd_get_pid(unsigned int fd)
1474 {
1475 struct fd f;
1476 struct pid *pid;
1477
1478 f = fdget(fd);
1479 if (!f.file)
1480 return ERR_PTR(-EBADF);
1481
1482 pid = pidfd_pid(f.file);
1483 if (!IS_ERR(pid))
1484 get_pid(pid);
1485
1486 fdput(f);
1487 return pid;
1488 }
1489
1490 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1491 int options, struct rusage *ru)
1492 {
1493 struct wait_opts wo;
1494 struct pid *pid = NULL;
1495 enum pid_type type;
1496 long ret;
1497
1498 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1499 __WNOTHREAD|__WCLONE|__WALL))
1500 return -EINVAL;
1501 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1502 return -EINVAL;
1503
1504 switch (which) {
1505 case P_ALL:
1506 type = PIDTYPE_MAX;
1507 break;
1508 case P_PID:
1509 type = PIDTYPE_PID;
1510 if (upid <= 0)
1511 return -EINVAL;
1512
1513 pid = find_get_pid(upid);
1514 break;
1515 case P_PGID:
1516 type = PIDTYPE_PGID;
1517 if (upid < 0)
1518 return -EINVAL;
1519
1520 if (upid)
1521 pid = find_get_pid(upid);
1522 else
1523 pid = get_task_pid(current, PIDTYPE_PGID);
1524 break;
1525 case P_PIDFD:
1526 type = PIDTYPE_PID;
1527 if (upid < 0)
1528 return -EINVAL;
1529
1530 pid = pidfd_get_pid(upid);
1531 if (IS_ERR(pid))
1532 return PTR_ERR(pid);
1533 break;
1534 default:
1535 return -EINVAL;
1536 }
1537
1538 wo.wo_type = type;
1539 wo.wo_pid = pid;
1540 wo.wo_flags = options;
1541 wo.wo_info = infop;
1542 wo.wo_rusage = ru;
1543 ret = do_wait(&wo);
1544
1545 put_pid(pid);
1546 return ret;
1547 }
1548
1549 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1550 infop, int, options, struct rusage __user *, ru)
1551 {
1552 struct rusage r;
1553 struct waitid_info info = {.status = 0};
1554 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1555 int signo = 0;
1556
1557 if (err > 0) {
1558 signo = SIGCHLD;
1559 err = 0;
1560 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1561 return -EFAULT;
1562 }
1563 if (!infop)
1564 return err;
1565
1566 if (!user_access_begin(infop, sizeof(*infop)))
1567 return -EFAULT;
1568
1569 unsafe_put_user(signo, &infop->si_signo, Efault);
1570 unsafe_put_user(0, &infop->si_errno, Efault);
1571 unsafe_put_user(info.cause, &infop->si_code, Efault);
1572 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1573 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1574 unsafe_put_user(info.status, &infop->si_status, Efault);
1575 user_access_end();
1576 return err;
1577 Efault:
1578 user_access_end();
1579 return -EFAULT;
1580 }
1581
1582 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1583 struct rusage *ru)
1584 {
1585 struct wait_opts wo;
1586 struct pid *pid = NULL;
1587 enum pid_type type;
1588 long ret;
1589
1590 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1591 __WNOTHREAD|__WCLONE|__WALL))
1592 return -EINVAL;
1593
1594
1595 if (upid == INT_MIN)
1596 return -ESRCH;
1597
1598 if (upid == -1)
1599 type = PIDTYPE_MAX;
1600 else if (upid < 0) {
1601 type = PIDTYPE_PGID;
1602 pid = find_get_pid(-upid);
1603 } else if (upid == 0) {
1604 type = PIDTYPE_PGID;
1605 pid = get_task_pid(current, PIDTYPE_PGID);
1606 } else {
1607 type = PIDTYPE_PID;
1608 pid = find_get_pid(upid);
1609 }
1610
1611 wo.wo_type = type;
1612 wo.wo_pid = pid;
1613 wo.wo_flags = options | WEXITED;
1614 wo.wo_info = NULL;
1615 wo.wo_stat = 0;
1616 wo.wo_rusage = ru;
1617 ret = do_wait(&wo);
1618 put_pid(pid);
1619 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1620 ret = -EFAULT;
1621
1622 return ret;
1623 }
1624
1625 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1626 int, options, struct rusage __user *, ru)
1627 {
1628 struct rusage r;
1629 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1630
1631 if (err > 0) {
1632 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1633 return -EFAULT;
1634 }
1635 return err;
1636 }
1637
1638 #ifdef __ARCH_WANT_SYS_WAITPID
1639
1640
1641
1642
1643
1644 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1645 {
1646 return kernel_wait4(pid, stat_addr, options, NULL);
1647 }
1648
1649 #endif
1650
1651 #ifdef CONFIG_COMPAT
1652 COMPAT_SYSCALL_DEFINE4(wait4,
1653 compat_pid_t, pid,
1654 compat_uint_t __user *, stat_addr,
1655 int, options,
1656 struct compat_rusage __user *, ru)
1657 {
1658 struct rusage r;
1659 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1660 if (err > 0) {
1661 if (ru && put_compat_rusage(&r, ru))
1662 return -EFAULT;
1663 }
1664 return err;
1665 }
1666
1667 COMPAT_SYSCALL_DEFINE5(waitid,
1668 int, which, compat_pid_t, pid,
1669 struct compat_siginfo __user *, infop, int, options,
1670 struct compat_rusage __user *, uru)
1671 {
1672 struct rusage ru;
1673 struct waitid_info info = {.status = 0};
1674 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1675 int signo = 0;
1676 if (err > 0) {
1677 signo = SIGCHLD;
1678 err = 0;
1679 if (uru) {
1680
1681 if (COMPAT_USE_64BIT_TIME)
1682 err = copy_to_user(uru, &ru, sizeof(ru));
1683 else
1684 err = put_compat_rusage(&ru, uru);
1685 if (err)
1686 return -EFAULT;
1687 }
1688 }
1689
1690 if (!infop)
1691 return err;
1692
1693 if (!user_access_begin(infop, sizeof(*infop)))
1694 return -EFAULT;
1695
1696 unsafe_put_user(signo, &infop->si_signo, Efault);
1697 unsafe_put_user(0, &infop->si_errno, Efault);
1698 unsafe_put_user(info.cause, &infop->si_code, Efault);
1699 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1700 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1701 unsafe_put_user(info.status, &infop->si_status, Efault);
1702 user_access_end();
1703 return err;
1704 Efault:
1705 user_access_end();
1706 return -EFAULT;
1707 }
1708 #endif
1709
1710 __weak void abort(void)
1711 {
1712 BUG();
1713
1714
1715 panic("Oops failed to kill thread");
1716 }
1717 EXPORT_SYMBOL(abort);