root/kernel/debug/kdb/kdb_support.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. kdbgetsymval
  2. kdbnearsym
  3. kdbnearsym_cleanup
  4. kallsyms_symbol_complete
  5. kallsyms_symbol_next
  6. kdb_symbol_print
  7. kdb_strdup
  8. kdb_getarea_size
  9. kdb_putarea_size
  10. kdb_getphys
  11. kdb_getphysword
  12. kdb_getword
  13. kdb_putword
  14. kdb_task_state_string
  15. kdb_task_state_char
  16. kdb_task_state
  17. kdb_print_nameval
  18. get_dap_lock
  19. debug_kmalloc
  20. debug_kfree
  21. debug_kusage
  22. kdb_save_flags
  23. kdb_restore_flags

   1 /*
   2  * Kernel Debugger Architecture Independent Support Functions
   3  *
   4  * This file is subject to the terms and conditions of the GNU General Public
   5  * License.  See the file "COPYING" in the main directory of this archive
   6  * for more details.
   7  *
   8  * Copyright (c) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  10  * 03/02/13    added new 2.5 kallsyms <xavier.bru@bull.net>
  11  */
  12 
  13 #include <stdarg.h>
  14 #include <linux/types.h>
  15 #include <linux/sched.h>
  16 #include <linux/mm.h>
  17 #include <linux/kallsyms.h>
  18 #include <linux/stddef.h>
  19 #include <linux/vmalloc.h>
  20 #include <linux/ptrace.h>
  21 #include <linux/module.h>
  22 #include <linux/highmem.h>
  23 #include <linux/hardirq.h>
  24 #include <linux/delay.h>
  25 #include <linux/uaccess.h>
  26 #include <linux/kdb.h>
  27 #include <linux/slab.h>
  28 #include "kdb_private.h"
  29 
  30 /*
  31  * kdbgetsymval - Return the address of the given symbol.
  32  *
  33  * Parameters:
  34  *      symname Character string containing symbol name
  35  *      symtab  Structure to receive results
  36  * Returns:
  37  *      0       Symbol not found, symtab zero filled
  38  *      1       Symbol mapped to module/symbol/section, data in symtab
  39  */
  40 int kdbgetsymval(const char *symname, kdb_symtab_t *symtab)
  41 {
  42         if (KDB_DEBUG(AR))
  43                 kdb_printf("kdbgetsymval: symname=%s, symtab=%px\n", symname,
  44                            symtab);
  45         memset(symtab, 0, sizeof(*symtab));
  46         symtab->sym_start = kallsyms_lookup_name(symname);
  47         if (symtab->sym_start) {
  48                 if (KDB_DEBUG(AR))
  49                         kdb_printf("kdbgetsymval: returns 1, "
  50                                    "symtab->sym_start=0x%lx\n",
  51                                    symtab->sym_start);
  52                 return 1;
  53         }
  54         if (KDB_DEBUG(AR))
  55                 kdb_printf("kdbgetsymval: returns 0\n");
  56         return 0;
  57 }
  58 EXPORT_SYMBOL(kdbgetsymval);
  59 
  60 static char *kdb_name_table[100];       /* arbitrary size */
  61 
  62 /*
  63  * kdbnearsym - Return the name of the symbol with the nearest address
  64  *      less than 'addr'.
  65  *
  66  * Parameters:
  67  *      addr    Address to check for symbol near
  68  *      symtab  Structure to receive results
  69  * Returns:
  70  *      0       No sections contain this address, symtab zero filled
  71  *      1       Address mapped to module/symbol/section, data in symtab
  72  * Remarks:
  73  *      2.6 kallsyms has a "feature" where it unpacks the name into a
  74  *      string.  If that string is reused before the caller expects it
  75  *      then the caller sees its string change without warning.  To
  76  *      avoid cluttering up the main kdb code with lots of kdb_strdup,
  77  *      tests and kfree calls, kdbnearsym maintains an LRU list of the
  78  *      last few unique strings.  The list is sized large enough to
  79  *      hold active strings, no kdb caller of kdbnearsym makes more
  80  *      than ~20 later calls before using a saved value.
  81  */
  82 int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab)
  83 {
  84         int ret = 0;
  85         unsigned long symbolsize = 0;
  86         unsigned long offset = 0;
  87 #define knt1_size 128           /* must be >= kallsyms table size */
  88         char *knt1 = NULL;
  89 
  90         if (KDB_DEBUG(AR))
  91                 kdb_printf("kdbnearsym: addr=0x%lx, symtab=%px\n", addr, symtab);
  92         memset(symtab, 0, sizeof(*symtab));
  93 
  94         if (addr < 4096)
  95                 goto out;
  96         knt1 = debug_kmalloc(knt1_size, GFP_ATOMIC);
  97         if (!knt1) {
  98                 kdb_printf("kdbnearsym: addr=0x%lx cannot kmalloc knt1\n",
  99                            addr);
 100                 goto out;
 101         }
 102         symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset,
 103                                 (char **)(&symtab->mod_name), knt1);
 104         if (offset > 8*1024*1024) {
 105                 symtab->sym_name = NULL;
 106                 addr = offset = symbolsize = 0;
 107         }
 108         symtab->sym_start = addr - offset;
 109         symtab->sym_end = symtab->sym_start + symbolsize;
 110         ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0';
 111 
 112         if (ret) {
 113                 int i;
 114                 /* Another 2.6 kallsyms "feature".  Sometimes the sym_name is
 115                  * set but the buffer passed into kallsyms_lookup is not used,
 116                  * so it contains garbage.  The caller has to work out which
 117                  * buffer needs to be saved.
 118                  *
 119                  * What was Rusty smoking when he wrote that code?
 120                  */
 121                 if (symtab->sym_name != knt1) {
 122                         strncpy(knt1, symtab->sym_name, knt1_size);
 123                         knt1[knt1_size-1] = '\0';
 124                 }
 125                 for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) {
 126                         if (kdb_name_table[i] &&
 127                             strcmp(kdb_name_table[i], knt1) == 0)
 128                                 break;
 129                 }
 130                 if (i >= ARRAY_SIZE(kdb_name_table)) {
 131                         debug_kfree(kdb_name_table[0]);
 132                         memmove(kdb_name_table, kdb_name_table+1,
 133                                sizeof(kdb_name_table[0]) *
 134                                (ARRAY_SIZE(kdb_name_table)-1));
 135                 } else {
 136                         debug_kfree(knt1);
 137                         knt1 = kdb_name_table[i];
 138                         memmove(kdb_name_table+i, kdb_name_table+i+1,
 139                                sizeof(kdb_name_table[0]) *
 140                                (ARRAY_SIZE(kdb_name_table)-i-1));
 141                 }
 142                 i = ARRAY_SIZE(kdb_name_table) - 1;
 143                 kdb_name_table[i] = knt1;
 144                 symtab->sym_name = kdb_name_table[i];
 145                 knt1 = NULL;
 146         }
 147 
 148         if (symtab->mod_name == NULL)
 149                 symtab->mod_name = "kernel";
 150         if (KDB_DEBUG(AR))
 151                 kdb_printf("kdbnearsym: returns %d symtab->sym_start=0x%lx, "
 152                    "symtab->mod_name=%px, symtab->sym_name=%px (%s)\n", ret,
 153                    symtab->sym_start, symtab->mod_name, symtab->sym_name,
 154                    symtab->sym_name);
 155 
 156 out:
 157         debug_kfree(knt1);
 158         return ret;
 159 }
 160 
 161 void kdbnearsym_cleanup(void)
 162 {
 163         int i;
 164         for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) {
 165                 if (kdb_name_table[i]) {
 166                         debug_kfree(kdb_name_table[i]);
 167                         kdb_name_table[i] = NULL;
 168                 }
 169         }
 170 }
 171 
 172 static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1];
 173 
 174 /*
 175  * kallsyms_symbol_complete
 176  *
 177  * Parameters:
 178  *      prefix_name     prefix of a symbol name to lookup
 179  *      max_len         maximum length that can be returned
 180  * Returns:
 181  *      Number of symbols which match the given prefix.
 182  * Notes:
 183  *      prefix_name is changed to contain the longest unique prefix that
 184  *      starts with this prefix (tab completion).
 185  */
 186 int kallsyms_symbol_complete(char *prefix_name, int max_len)
 187 {
 188         loff_t pos = 0;
 189         int prefix_len = strlen(prefix_name), prev_len = 0;
 190         int i, number = 0;
 191         const char *name;
 192 
 193         while ((name = kdb_walk_kallsyms(&pos))) {
 194                 if (strncmp(name, prefix_name, prefix_len) == 0) {
 195                         strscpy(ks_namebuf, name, sizeof(ks_namebuf));
 196                         /* Work out the longest name that matches the prefix */
 197                         if (++number == 1) {
 198                                 prev_len = min_t(int, max_len-1,
 199                                                  strlen(ks_namebuf));
 200                                 memcpy(ks_namebuf_prev, ks_namebuf, prev_len);
 201                                 ks_namebuf_prev[prev_len] = '\0';
 202                                 continue;
 203                         }
 204                         for (i = 0; i < prev_len; i++) {
 205                                 if (ks_namebuf[i] != ks_namebuf_prev[i]) {
 206                                         prev_len = i;
 207                                         ks_namebuf_prev[i] = '\0';
 208                                         break;
 209                                 }
 210                         }
 211                 }
 212         }
 213         if (prev_len > prefix_len)
 214                 memcpy(prefix_name, ks_namebuf_prev, prev_len+1);
 215         return number;
 216 }
 217 
 218 /*
 219  * kallsyms_symbol_next
 220  *
 221  * Parameters:
 222  *      prefix_name     prefix of a symbol name to lookup
 223  *      flag    0 means search from the head, 1 means continue search.
 224  *      buf_size        maximum length that can be written to prefix_name
 225  *                      buffer
 226  * Returns:
 227  *      1 if a symbol matches the given prefix.
 228  *      0 if no string found
 229  */
 230 int kallsyms_symbol_next(char *prefix_name, int flag, int buf_size)
 231 {
 232         int prefix_len = strlen(prefix_name);
 233         static loff_t pos;
 234         const char *name;
 235 
 236         if (!flag)
 237                 pos = 0;
 238 
 239         while ((name = kdb_walk_kallsyms(&pos))) {
 240                 if (!strncmp(name, prefix_name, prefix_len))
 241                         return strscpy(prefix_name, name, buf_size);
 242         }
 243         return 0;
 244 }
 245 
 246 /*
 247  * kdb_symbol_print - Standard method for printing a symbol name and offset.
 248  * Inputs:
 249  *      addr    Address to be printed.
 250  *      symtab  Address of symbol data, if NULL this routine does its
 251  *              own lookup.
 252  *      punc    Punctuation for string, bit field.
 253  * Remarks:
 254  *      The string and its punctuation is only printed if the address
 255  *      is inside the kernel, except that the value is always printed
 256  *      when requested.
 257  */
 258 void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p,
 259                       unsigned int punc)
 260 {
 261         kdb_symtab_t symtab, *symtab_p2;
 262         if (symtab_p) {
 263                 symtab_p2 = (kdb_symtab_t *)symtab_p;
 264         } else {
 265                 symtab_p2 = &symtab;
 266                 kdbnearsym(addr, symtab_p2);
 267         }
 268         if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE)))
 269                 return;
 270         if (punc & KDB_SP_SPACEB)
 271                 kdb_printf(" ");
 272         if (punc & KDB_SP_VALUE)
 273                 kdb_printf(kdb_machreg_fmt0, addr);
 274         if (symtab_p2->sym_name) {
 275                 if (punc & KDB_SP_VALUE)
 276                         kdb_printf(" ");
 277                 if (punc & KDB_SP_PAREN)
 278                         kdb_printf("(");
 279                 if (strcmp(symtab_p2->mod_name, "kernel"))
 280                         kdb_printf("[%s]", symtab_p2->mod_name);
 281                 kdb_printf("%s", symtab_p2->sym_name);
 282                 if (addr != symtab_p2->sym_start)
 283                         kdb_printf("+0x%lx", addr - symtab_p2->sym_start);
 284                 if (punc & KDB_SP_SYMSIZE)
 285                         kdb_printf("/0x%lx",
 286                                    symtab_p2->sym_end - symtab_p2->sym_start);
 287                 if (punc & KDB_SP_PAREN)
 288                         kdb_printf(")");
 289         }
 290         if (punc & KDB_SP_SPACEA)
 291                 kdb_printf(" ");
 292         if (punc & KDB_SP_NEWLINE)
 293                 kdb_printf("\n");
 294 }
 295 
 296 /*
 297  * kdb_strdup - kdb equivalent of strdup, for disasm code.
 298  * Inputs:
 299  *      str     The string to duplicate.
 300  *      type    Flags to kmalloc for the new string.
 301  * Returns:
 302  *      Address of the new string, NULL if storage could not be allocated.
 303  * Remarks:
 304  *      This is not in lib/string.c because it uses kmalloc which is not
 305  *      available when string.o is used in boot loaders.
 306  */
 307 char *kdb_strdup(const char *str, gfp_t type)
 308 {
 309         int n = strlen(str)+1;
 310         char *s = kmalloc(n, type);
 311         if (!s)
 312                 return NULL;
 313         return strcpy(s, str);
 314 }
 315 
 316 /*
 317  * kdb_getarea_size - Read an area of data.  The kdb equivalent of
 318  *      copy_from_user, with kdb messages for invalid addresses.
 319  * Inputs:
 320  *      res     Pointer to the area to receive the result.
 321  *      addr    Address of the area to copy.
 322  *      size    Size of the area.
 323  * Returns:
 324  *      0 for success, < 0 for error.
 325  */
 326 int kdb_getarea_size(void *res, unsigned long addr, size_t size)
 327 {
 328         int ret = probe_kernel_read((char *)res, (char *)addr, size);
 329         if (ret) {
 330                 if (!KDB_STATE(SUPPRESS)) {
 331                         kdb_printf("kdb_getarea: Bad address 0x%lx\n", addr);
 332                         KDB_STATE_SET(SUPPRESS);
 333                 }
 334                 ret = KDB_BADADDR;
 335         } else {
 336                 KDB_STATE_CLEAR(SUPPRESS);
 337         }
 338         return ret;
 339 }
 340 
 341 /*
 342  * kdb_putarea_size - Write an area of data.  The kdb equivalent of
 343  *      copy_to_user, with kdb messages for invalid addresses.
 344  * Inputs:
 345  *      addr    Address of the area to write to.
 346  *      res     Pointer to the area holding the data.
 347  *      size    Size of the area.
 348  * Returns:
 349  *      0 for success, < 0 for error.
 350  */
 351 int kdb_putarea_size(unsigned long addr, void *res, size_t size)
 352 {
 353         int ret = probe_kernel_read((char *)addr, (char *)res, size);
 354         if (ret) {
 355                 if (!KDB_STATE(SUPPRESS)) {
 356                         kdb_printf("kdb_putarea: Bad address 0x%lx\n", addr);
 357                         KDB_STATE_SET(SUPPRESS);
 358                 }
 359                 ret = KDB_BADADDR;
 360         } else {
 361                 KDB_STATE_CLEAR(SUPPRESS);
 362         }
 363         return ret;
 364 }
 365 
 366 /*
 367  * kdb_getphys - Read data from a physical address. Validate the
 368  *      address is in range, use kmap_atomic() to get data
 369  *      similar to kdb_getarea() - but for phys addresses
 370  * Inputs:
 371  *      res     Pointer to the word to receive the result
 372  *      addr    Physical address of the area to copy
 373  *      size    Size of the area
 374  * Returns:
 375  *      0 for success, < 0 for error.
 376  */
 377 static int kdb_getphys(void *res, unsigned long addr, size_t size)
 378 {
 379         unsigned long pfn;
 380         void *vaddr;
 381         struct page *page;
 382 
 383         pfn = (addr >> PAGE_SHIFT);
 384         if (!pfn_valid(pfn))
 385                 return 1;
 386         page = pfn_to_page(pfn);
 387         vaddr = kmap_atomic(page);
 388         memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size);
 389         kunmap_atomic(vaddr);
 390 
 391         return 0;
 392 }
 393 
 394 /*
 395  * kdb_getphysword
 396  * Inputs:
 397  *      word    Pointer to the word to receive the result.
 398  *      addr    Address of the area to copy.
 399  *      size    Size of the area.
 400  * Returns:
 401  *      0 for success, < 0 for error.
 402  */
 403 int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size)
 404 {
 405         int diag;
 406         __u8  w1;
 407         __u16 w2;
 408         __u32 w4;
 409         __u64 w8;
 410         *word = 0;      /* Default value if addr or size is invalid */
 411 
 412         switch (size) {
 413         case 1:
 414                 diag = kdb_getphys(&w1, addr, sizeof(w1));
 415                 if (!diag)
 416                         *word = w1;
 417                 break;
 418         case 2:
 419                 diag = kdb_getphys(&w2, addr, sizeof(w2));
 420                 if (!diag)
 421                         *word = w2;
 422                 break;
 423         case 4:
 424                 diag = kdb_getphys(&w4, addr, sizeof(w4));
 425                 if (!diag)
 426                         *word = w4;
 427                 break;
 428         case 8:
 429                 if (size <= sizeof(*word)) {
 430                         diag = kdb_getphys(&w8, addr, sizeof(w8));
 431                         if (!diag)
 432                                 *word = w8;
 433                         break;
 434                 }
 435                 /* fall through */
 436         default:
 437                 diag = KDB_BADWIDTH;
 438                 kdb_printf("kdb_getphysword: bad width %ld\n", (long) size);
 439         }
 440         return diag;
 441 }
 442 
 443 /*
 444  * kdb_getword - Read a binary value.  Unlike kdb_getarea, this treats
 445  *      data as numbers.
 446  * Inputs:
 447  *      word    Pointer to the word to receive the result.
 448  *      addr    Address of the area to copy.
 449  *      size    Size of the area.
 450  * Returns:
 451  *      0 for success, < 0 for error.
 452  */
 453 int kdb_getword(unsigned long *word, unsigned long addr, size_t size)
 454 {
 455         int diag;
 456         __u8  w1;
 457         __u16 w2;
 458         __u32 w4;
 459         __u64 w8;
 460         *word = 0;      /* Default value if addr or size is invalid */
 461         switch (size) {
 462         case 1:
 463                 diag = kdb_getarea(w1, addr);
 464                 if (!diag)
 465                         *word = w1;
 466                 break;
 467         case 2:
 468                 diag = kdb_getarea(w2, addr);
 469                 if (!diag)
 470                         *word = w2;
 471                 break;
 472         case 4:
 473                 diag = kdb_getarea(w4, addr);
 474                 if (!diag)
 475                         *word = w4;
 476                 break;
 477         case 8:
 478                 if (size <= sizeof(*word)) {
 479                         diag = kdb_getarea(w8, addr);
 480                         if (!diag)
 481                                 *word = w8;
 482                         break;
 483                 }
 484                 /* fall through */
 485         default:
 486                 diag = KDB_BADWIDTH;
 487                 kdb_printf("kdb_getword: bad width %ld\n", (long) size);
 488         }
 489         return diag;
 490 }
 491 
 492 /*
 493  * kdb_putword - Write a binary value.  Unlike kdb_putarea, this
 494  *      treats data as numbers.
 495  * Inputs:
 496  *      addr    Address of the area to write to..
 497  *      word    The value to set.
 498  *      size    Size of the area.
 499  * Returns:
 500  *      0 for success, < 0 for error.
 501  */
 502 int kdb_putword(unsigned long addr, unsigned long word, size_t size)
 503 {
 504         int diag;
 505         __u8  w1;
 506         __u16 w2;
 507         __u32 w4;
 508         __u64 w8;
 509         switch (size) {
 510         case 1:
 511                 w1 = word;
 512                 diag = kdb_putarea(addr, w1);
 513                 break;
 514         case 2:
 515                 w2 = word;
 516                 diag = kdb_putarea(addr, w2);
 517                 break;
 518         case 4:
 519                 w4 = word;
 520                 diag = kdb_putarea(addr, w4);
 521                 break;
 522         case 8:
 523                 if (size <= sizeof(word)) {
 524                         w8 = word;
 525                         diag = kdb_putarea(addr, w8);
 526                         break;
 527                 }
 528                 /* fall through */
 529         default:
 530                 diag = KDB_BADWIDTH;
 531                 kdb_printf("kdb_putword: bad width %ld\n", (long) size);
 532         }
 533         return diag;
 534 }
 535 
 536 /*
 537  * kdb_task_state_string - Convert a string containing any of the
 538  *      letters DRSTCZEUIMA to a mask for the process state field and
 539  *      return the value.  If no argument is supplied, return the mask
 540  *      that corresponds to environment variable PS, DRSTCZEU by
 541  *      default.
 542  * Inputs:
 543  *      s       String to convert
 544  * Returns:
 545  *      Mask for process state.
 546  * Notes:
 547  *      The mask folds data from several sources into a single long value, so
 548  *      be careful not to overlap the bits.  TASK_* bits are in the LSB,
 549  *      special cases like UNRUNNABLE are in the MSB.  As of 2.6.10-rc1 there
 550  *      is no overlap between TASK_* and EXIT_* but that may not always be
 551  *      true, so EXIT_* bits are shifted left 16 bits before being stored in
 552  *      the mask.
 553  */
 554 
 555 /* unrunnable is < 0 */
 556 #define UNRUNNABLE      (1UL << (8*sizeof(unsigned long) - 1))
 557 #define RUNNING         (1UL << (8*sizeof(unsigned long) - 2))
 558 #define IDLE            (1UL << (8*sizeof(unsigned long) - 3))
 559 #define DAEMON          (1UL << (8*sizeof(unsigned long) - 4))
 560 
 561 unsigned long kdb_task_state_string(const char *s)
 562 {
 563         long res = 0;
 564         if (!s) {
 565                 s = kdbgetenv("PS");
 566                 if (!s)
 567                         s = "DRSTCZEU"; /* default value for ps */
 568         }
 569         while (*s) {
 570                 switch (*s) {
 571                 case 'D':
 572                         res |= TASK_UNINTERRUPTIBLE;
 573                         break;
 574                 case 'R':
 575                         res |= RUNNING;
 576                         break;
 577                 case 'S':
 578                         res |= TASK_INTERRUPTIBLE;
 579                         break;
 580                 case 'T':
 581                         res |= TASK_STOPPED;
 582                         break;
 583                 case 'C':
 584                         res |= TASK_TRACED;
 585                         break;
 586                 case 'Z':
 587                         res |= EXIT_ZOMBIE << 16;
 588                         break;
 589                 case 'E':
 590                         res |= EXIT_DEAD << 16;
 591                         break;
 592                 case 'U':
 593                         res |= UNRUNNABLE;
 594                         break;
 595                 case 'I':
 596                         res |= IDLE;
 597                         break;
 598                 case 'M':
 599                         res |= DAEMON;
 600                         break;
 601                 case 'A':
 602                         res = ~0UL;
 603                         break;
 604                 default:
 605                           kdb_printf("%s: unknown flag '%c' ignored\n",
 606                                      __func__, *s);
 607                           break;
 608                 }
 609                 ++s;
 610         }
 611         return res;
 612 }
 613 
 614 /*
 615  * kdb_task_state_char - Return the character that represents the task state.
 616  * Inputs:
 617  *      p       struct task for the process
 618  * Returns:
 619  *      One character to represent the task state.
 620  */
 621 char kdb_task_state_char (const struct task_struct *p)
 622 {
 623         int cpu;
 624         char state;
 625         unsigned long tmp;
 626 
 627         if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 628                 return 'E';
 629 
 630         cpu = kdb_process_cpu(p);
 631         state = (p->state == 0) ? 'R' :
 632                 (p->state < 0) ? 'U' :
 633                 (p->state & TASK_UNINTERRUPTIBLE) ? 'D' :
 634                 (p->state & TASK_STOPPED) ? 'T' :
 635                 (p->state & TASK_TRACED) ? 'C' :
 636                 (p->exit_state & EXIT_ZOMBIE) ? 'Z' :
 637                 (p->exit_state & EXIT_DEAD) ? 'E' :
 638                 (p->state & TASK_INTERRUPTIBLE) ? 'S' : '?';
 639         if (is_idle_task(p)) {
 640                 /* Idle task.  Is it really idle, apart from the kdb
 641                  * interrupt? */
 642                 if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) {
 643                         if (cpu != kdb_initial_cpu)
 644                                 state = 'I';    /* idle task */
 645                 }
 646         } else if (!p->mm && state == 'S') {
 647                 state = 'M';    /* sleeping system daemon */
 648         }
 649         return state;
 650 }
 651 
 652 /*
 653  * kdb_task_state - Return true if a process has the desired state
 654  *      given by the mask.
 655  * Inputs:
 656  *      p       struct task for the process
 657  *      mask    mask from kdb_task_state_string to select processes
 658  * Returns:
 659  *      True if the process matches at least one criteria defined by the mask.
 660  */
 661 unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask)
 662 {
 663         char state[] = { kdb_task_state_char(p), '\0' };
 664         return (mask & kdb_task_state_string(state)) != 0;
 665 }
 666 
 667 /*
 668  * kdb_print_nameval - Print a name and its value, converting the
 669  *      value to a symbol lookup if possible.
 670  * Inputs:
 671  *      name    field name to print
 672  *      val     value of field
 673  */
 674 void kdb_print_nameval(const char *name, unsigned long val)
 675 {
 676         kdb_symtab_t symtab;
 677         kdb_printf("  %-11.11s ", name);
 678         if (kdbnearsym(val, &symtab))
 679                 kdb_symbol_print(val, &symtab,
 680                                  KDB_SP_VALUE|KDB_SP_SYMSIZE|KDB_SP_NEWLINE);
 681         else
 682                 kdb_printf("0x%lx\n", val);
 683 }
 684 
 685 /* Last ditch allocator for debugging, so we can still debug even when
 686  * the GFP_ATOMIC pool has been exhausted.  The algorithms are tuned
 687  * for space usage, not for speed.  One smallish memory pool, the free
 688  * chain is always in ascending address order to allow coalescing,
 689  * allocations are done in brute force best fit.
 690  */
 691 
 692 struct debug_alloc_header {
 693         u32 next;       /* offset of next header from start of pool */
 694         u32 size;
 695         void *caller;
 696 };
 697 
 698 /* The memory returned by this allocator must be aligned, which means
 699  * so must the header size.  Do not assume that sizeof(struct
 700  * debug_alloc_header) is a multiple of the alignment, explicitly
 701  * calculate the overhead of this header, including the alignment.
 702  * The rest of this code must not use sizeof() on any header or
 703  * pointer to a header.
 704  */
 705 #define dah_align 8
 706 #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align)
 707 
 708 static u64 debug_alloc_pool_aligned[256*1024/dah_align];        /* 256K pool */
 709 static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned;
 710 static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max;
 711 
 712 /* Locking is awkward.  The debug code is called from all contexts,
 713  * including non maskable interrupts.  A normal spinlock is not safe
 714  * in NMI context.  Try to get the debug allocator lock, if it cannot
 715  * be obtained after a second then give up.  If the lock could not be
 716  * previously obtained on this cpu then only try once.
 717  *
 718  * sparse has no annotation for "this function _sometimes_ acquires a
 719  * lock", so fudge the acquire/release notation.
 720  */
 721 static DEFINE_SPINLOCK(dap_lock);
 722 static int get_dap_lock(void)
 723         __acquires(dap_lock)
 724 {
 725         static int dap_locked = -1;
 726         int count;
 727         if (dap_locked == smp_processor_id())
 728                 count = 1;
 729         else
 730                 count = 1000;
 731         while (1) {
 732                 if (spin_trylock(&dap_lock)) {
 733                         dap_locked = -1;
 734                         return 1;
 735                 }
 736                 if (!count--)
 737                         break;
 738                 udelay(1000);
 739         }
 740         dap_locked = smp_processor_id();
 741         __acquire(dap_lock);
 742         return 0;
 743 }
 744 
 745 void *debug_kmalloc(size_t size, gfp_t flags)
 746 {
 747         unsigned int rem, h_offset;
 748         struct debug_alloc_header *best, *bestprev, *prev, *h;
 749         void *p = NULL;
 750         if (!get_dap_lock()) {
 751                 __release(dap_lock);    /* we never actually got it */
 752                 return NULL;
 753         }
 754         h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first);
 755         if (dah_first_call) {
 756                 h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead;
 757                 dah_first_call = 0;
 758         }
 759         size = ALIGN(size, dah_align);
 760         prev = best = bestprev = NULL;
 761         while (1) {
 762                 if (h->size >= size && (!best || h->size < best->size)) {
 763                         best = h;
 764                         bestprev = prev;
 765                         if (h->size == size)
 766                                 break;
 767                 }
 768                 if (!h->next)
 769                         break;
 770                 prev = h;
 771                 h = (struct debug_alloc_header *)(debug_alloc_pool + h->next);
 772         }
 773         if (!best)
 774                 goto out;
 775         rem = best->size - size;
 776         /* The pool must always contain at least one header */
 777         if (best->next == 0 && bestprev == NULL && rem < dah_overhead)
 778                 goto out;
 779         if (rem >= dah_overhead) {
 780                 best->size = size;
 781                 h_offset = ((char *)best - debug_alloc_pool) +
 782                            dah_overhead + best->size;
 783                 h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset);
 784                 h->size = rem - dah_overhead;
 785                 h->next = best->next;
 786         } else
 787                 h_offset = best->next;
 788         best->caller = __builtin_return_address(0);
 789         dah_used += best->size;
 790         dah_used_max = max(dah_used, dah_used_max);
 791         if (bestprev)
 792                 bestprev->next = h_offset;
 793         else
 794                 dah_first = h_offset;
 795         p = (char *)best + dah_overhead;
 796         memset(p, POISON_INUSE, best->size - 1);
 797         *((char *)p + best->size - 1) = POISON_END;
 798 out:
 799         spin_unlock(&dap_lock);
 800         return p;
 801 }
 802 
 803 void debug_kfree(void *p)
 804 {
 805         struct debug_alloc_header *h;
 806         unsigned int h_offset;
 807         if (!p)
 808                 return;
 809         if ((char *)p < debug_alloc_pool ||
 810             (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) {
 811                 kfree(p);
 812                 return;
 813         }
 814         if (!get_dap_lock()) {
 815                 __release(dap_lock);    /* we never actually got it */
 816                 return;         /* memory leak, cannot be helped */
 817         }
 818         h = (struct debug_alloc_header *)((char *)p - dah_overhead);
 819         memset(p, POISON_FREE, h->size - 1);
 820         *((char *)p + h->size - 1) = POISON_END;
 821         h->caller = NULL;
 822         dah_used -= h->size;
 823         h_offset = (char *)h - debug_alloc_pool;
 824         if (h_offset < dah_first) {
 825                 h->next = dah_first;
 826                 dah_first = h_offset;
 827         } else {
 828                 struct debug_alloc_header *prev;
 829                 unsigned int prev_offset;
 830                 prev = (struct debug_alloc_header *)(debug_alloc_pool +
 831                                                      dah_first);
 832                 while (1) {
 833                         if (!prev->next || prev->next > h_offset)
 834                                 break;
 835                         prev = (struct debug_alloc_header *)
 836                                 (debug_alloc_pool + prev->next);
 837                 }
 838                 prev_offset = (char *)prev - debug_alloc_pool;
 839                 if (prev_offset + dah_overhead + prev->size == h_offset) {
 840                         prev->size += dah_overhead + h->size;
 841                         memset(h, POISON_FREE, dah_overhead - 1);
 842                         *((char *)h + dah_overhead - 1) = POISON_END;
 843                         h = prev;
 844                         h_offset = prev_offset;
 845                 } else {
 846                         h->next = prev->next;
 847                         prev->next = h_offset;
 848                 }
 849         }
 850         if (h_offset + dah_overhead + h->size == h->next) {
 851                 struct debug_alloc_header *next;
 852                 next = (struct debug_alloc_header *)
 853                         (debug_alloc_pool + h->next);
 854                 h->size += dah_overhead + next->size;
 855                 h->next = next->next;
 856                 memset(next, POISON_FREE, dah_overhead - 1);
 857                 *((char *)next + dah_overhead - 1) = POISON_END;
 858         }
 859         spin_unlock(&dap_lock);
 860 }
 861 
 862 void debug_kusage(void)
 863 {
 864         struct debug_alloc_header *h_free, *h_used;
 865 #ifdef  CONFIG_IA64
 866         /* FIXME: using dah for ia64 unwind always results in a memory leak.
 867          * Fix that memory leak first, then set debug_kusage_one_time = 1 for
 868          * all architectures.
 869          */
 870         static int debug_kusage_one_time;
 871 #else
 872         static int debug_kusage_one_time = 1;
 873 #endif
 874         if (!get_dap_lock()) {
 875                 __release(dap_lock);    /* we never actually got it */
 876                 return;
 877         }
 878         h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first);
 879         if (dah_first == 0 &&
 880             (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead ||
 881              dah_first_call))
 882                 goto out;
 883         if (!debug_kusage_one_time)
 884                 goto out;
 885         debug_kusage_one_time = 0;
 886         kdb_printf("%s: debug_kmalloc memory leak dah_first %d\n",
 887                    __func__, dah_first);
 888         if (dah_first) {
 889                 h_used = (struct debug_alloc_header *)debug_alloc_pool;
 890                 kdb_printf("%s: h_used %px size %d\n", __func__, h_used,
 891                            h_used->size);
 892         }
 893         do {
 894                 h_used = (struct debug_alloc_header *)
 895                           ((char *)h_free + dah_overhead + h_free->size);
 896                 kdb_printf("%s: h_used %px size %d caller %px\n",
 897                            __func__, h_used, h_used->size, h_used->caller);
 898                 h_free = (struct debug_alloc_header *)
 899                           (debug_alloc_pool + h_free->next);
 900         } while (h_free->next);
 901         h_used = (struct debug_alloc_header *)
 902                   ((char *)h_free + dah_overhead + h_free->size);
 903         if ((char *)h_used - debug_alloc_pool !=
 904             sizeof(debug_alloc_pool_aligned))
 905                 kdb_printf("%s: h_used %px size %d caller %px\n",
 906                            __func__, h_used, h_used->size, h_used->caller);
 907 out:
 908         spin_unlock(&dap_lock);
 909 }
 910 
 911 /* Maintain a small stack of kdb_flags to allow recursion without disturbing
 912  * the global kdb state.
 913  */
 914 
 915 static int kdb_flags_stack[4], kdb_flags_index;
 916 
 917 void kdb_save_flags(void)
 918 {
 919         BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack));
 920         kdb_flags_stack[kdb_flags_index++] = kdb_flags;
 921 }
 922 
 923 void kdb_restore_flags(void)
 924 {
 925         BUG_ON(kdb_flags_index <= 0);
 926         kdb_flags = kdb_flags_stack[--kdb_flags_index];
 927 }

/* [<][>][^][v][top][bottom][index][help] */