This source file includes following definitions.
- lockdep_tasklist_lock_is_held
- nr_processes
- arch_release_task_struct
- alloc_task_struct_node
- free_task_struct
- free_vm_stack_cache
- alloc_thread_stack_node
- free_thread_stack
- alloc_thread_stack_node
- free_thread_stack
- thread_stack_cache_init
- vm_area_alloc
- vm_area_dup
- vm_area_free
- account_kernel_stack
- memcg_charge_kernel_stack
- release_task_stack
- put_task_stack
- free_task
- dup_mmap
- mm_alloc_pgd
- mm_free_pgd
- dup_mmap
- check_mm
- __mmdrop
- mmdrop_async_fn
- mmdrop_async
- free_signal_struct
- put_signal_struct
- __put_task_struct
- arch_task_cache_init
- set_max_threads
- task_struct_whitelist
- fork_init
- arch_dup_task_struct
- set_task_stack_end_magic
- dup_task_struct
- coredump_filter_setup
- mm_init_aio
- mm_clear_owner
- mm_init_owner
- mm_init_uprobes_state
- mm_init
- mm_alloc
- __mmput
- mmput
- mmput_async_fn
- mmput_async
- set_mm_exe_file
- get_mm_exe_file
- get_task_exe_file
- get_task_mm
- mm_access
- complete_vfork_done
- wait_for_vfork_done
- mm_release
- exit_mm_release
- exec_mm_release
- dup_mm
- copy_mm
- copy_fs
- copy_files
- copy_io
- copy_sighand
- __cleanup_sighand
- posix_cpu_timers_init_group
- copy_signal
- copy_seccomp
- SYSCALL_DEFINE1
- rt_mutex_init_task
- init_task_pid_links
- init_task_pid
- rcu_copy_process
- pidfd_pid
- pidfd_release
- pidfd_show_fdinfo
- pidfd_poll
- __delayed_free_task
- delayed_free_task
- copy_process
- init_idle_pids
- fork_idle
- copy_init_mm
- _do_fork
- legacy_clone_args_valid
- do_fork
- kernel_thread
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- SYSCALL_DEFINE5
- copy_clone_args_from_user
- clone3_stack_valid
- clone3_args_valid
- SYSCALL_DEFINE2
- walk_process_tree
- sighand_ctor
- proc_caches_init
- check_unshare_flags
- unshare_fs
- unshare_fd
- ksys_unshare
- SYSCALL_DEFINE1
- unshare_files
- sysctl_max_threads
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110
111
112
113 #define MIN_THREADS 20
114
115
116
117
118 #define MAX_THREADS FUTEX_TID_MASK
119
120
121
122
123 unsigned long total_forks;
124 int nr_threads;
125
126 static int max_threads;
127
128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif
148
149 int nr_processes(void)
150 {
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180
181
182
183
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187
188
189
190
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227
228 memset(s->addr, 0, THREAD_SIZE);
229
230 tsk->stack_vm_area = s;
231 tsk->stack = s->addr;
232 return s->addr;
233 }
234
235
236
237
238
239
240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 VMALLOC_START, VMALLOC_END,
242 THREADINFO_GFP & ~__GFP_ACCOUNT,
243 PAGE_KERNEL,
244 0, node, __builtin_return_address(0));
245
246
247
248
249
250
251 if (stack) {
252 tsk->stack_vm_area = find_vm_area(stack);
253 tsk->stack = stack;
254 }
255 return stack;
256 #else
257 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 THREAD_SIZE_ORDER);
259
260 if (likely(page)) {
261 tsk->stack = page_address(page);
262 return tsk->stack;
263 }
264 return NULL;
265 #endif
266 }
267
268 static inline void free_thread_stack(struct task_struct *tsk)
269 {
270 #ifdef CONFIG_VMAP_STACK
271 struct vm_struct *vm = task_stack_vm_area(tsk);
272
273 if (vm) {
274 int i;
275
276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 mod_memcg_page_state(vm->pages[i],
278 MEMCG_KERNEL_STACK_KB,
279 -(int)(PAGE_SIZE / 1024));
280
281 memcg_kmem_uncharge(vm->pages[i], 0);
282 }
283
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295 #endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304 {
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 tsk->stack = stack;
308 return stack;
309 }
310
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326
327 static struct kmem_cache *signal_cachep;
328
329
330 struct kmem_cache *sighand_cachep;
331
332
333 struct kmem_cache *files_cachep;
334
335
336 struct kmem_cache *fs_cachep;
337
338
339 static struct kmem_cache *vm_area_cachep;
340
341
342 static struct kmem_cache *mm_cachep;
343
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 *new = *orig;
360 INIT_LIST_HEAD(&new->anon_vma_chain);
361 }
362 return new;
363 }
364
365 void vm_area_free(struct vm_area_struct *vma)
366 {
367 kmem_cache_free(vm_area_cachep, vma);
368 }
369
370 static void account_kernel_stack(struct task_struct *tsk, int account)
371 {
372 void *stack = task_stack_page(tsk);
373 struct vm_struct *vm = task_stack_vm_area(tsk);
374
375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376
377 if (vm) {
378 int i;
379
380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381
382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 mod_zone_page_state(page_zone(vm->pages[i]),
384 NR_KERNEL_STACK_KB,
385 PAGE_SIZE / 1024 * account);
386 }
387 } else {
388
389
390
391
392 struct page *first_page = virt_to_page(stack);
393
394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 THREAD_SIZE / 1024 * account);
396
397 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
398 account * (THREAD_SIZE / 1024));
399 }
400 }
401
402 static int memcg_charge_kernel_stack(struct task_struct *tsk)
403 {
404 #ifdef CONFIG_VMAP_STACK
405 struct vm_struct *vm = task_stack_vm_area(tsk);
406 int ret;
407
408 if (vm) {
409 int i;
410
411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412
413
414
415
416
417
418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 if (ret)
420 return ret;
421
422 mod_memcg_page_state(vm->pages[i],
423 MEMCG_KERNEL_STACK_KB,
424 PAGE_SIZE / 1024);
425 }
426 }
427 #endif
428 return 0;
429 }
430
431 static void release_task_stack(struct task_struct *tsk)
432 {
433 if (WARN_ON(tsk->state != TASK_DEAD))
434 return;
435
436 account_kernel_stack(tsk, -1);
437 free_thread_stack(tsk);
438 tsk->stack = NULL;
439 #ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441 #endif
442 }
443
444 #ifdef CONFIG_THREAD_INFO_IN_TASK
445 void put_task_stack(struct task_struct *tsk)
446 {
447 if (refcount_dec_and_test(&tsk->stack_refcount))
448 release_task_stack(tsk);
449 }
450 #endif
451
452 void free_task(struct task_struct *tsk)
453 {
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455
456
457
458
459 release_task_stack(tsk);
460 #else
461
462
463
464
465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 rt_mutex_debug_task_free(tsk);
468 ftrace_graph_exit_task(tsk);
469 put_seccomp_filter(tsk);
470 arch_release_task_struct(tsk);
471 if (tsk->flags & PF_KTHREAD)
472 free_kthread_struct(tsk);
473 free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476
477 #ifdef CONFIG_MMU
478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 struct mm_struct *oldmm)
480 {
481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 struct rb_node **rb_link, *rb_parent;
483 int retval;
484 unsigned long charge;
485 LIST_HEAD(uf);
486
487 uprobe_start_dup_mmap();
488 if (down_write_killable(&oldmm->mmap_sem)) {
489 retval = -EINTR;
490 goto fail_uprobe_end;
491 }
492 flush_cache_dup_mm(oldmm);
493 uprobe_dup_mmap(oldmm, mm);
494
495
496
497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498
499
500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501
502 mm->total_vm = oldmm->total_vm;
503 mm->data_vm = oldmm->data_vm;
504 mm->exec_vm = oldmm->exec_vm;
505 mm->stack_vm = oldmm->stack_vm;
506
507 rb_link = &mm->mm_rb.rb_node;
508 rb_parent = NULL;
509 pprev = &mm->mmap;
510 retval = ksm_fork(mm, oldmm);
511 if (retval)
512 goto out;
513 retval = khugepaged_fork(mm, oldmm);
514 if (retval)
515 goto out;
516
517 prev = NULL;
518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 struct file *file;
520
521 if (mpnt->vm_flags & VM_DONTCOPY) {
522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 continue;
524 }
525 charge = 0;
526
527
528
529
530 if (fatal_signal_pending(current)) {
531 retval = -EINTR;
532 goto out;
533 }
534 if (mpnt->vm_flags & VM_ACCOUNT) {
535 unsigned long len = vma_pages(mpnt);
536
537 if (security_vm_enough_memory_mm(oldmm, len))
538 goto fail_nomem;
539 charge = len;
540 }
541 tmp = vm_area_dup(mpnt);
542 if (!tmp)
543 goto fail_nomem;
544 retval = vma_dup_policy(mpnt, tmp);
545 if (retval)
546 goto fail_nomem_policy;
547 tmp->vm_mm = mm;
548 retval = dup_userfaultfd(tmp, &uf);
549 if (retval)
550 goto fail_nomem_anon_vma_fork;
551 if (tmp->vm_flags & VM_WIPEONFORK) {
552
553 tmp->anon_vma = NULL;
554 if (anon_vma_prepare(tmp))
555 goto fail_nomem_anon_vma_fork;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 tmp->vm_next = tmp->vm_prev = NULL;
560 file = tmp->vm_file;
561 if (file) {
562 struct inode *inode = file_inode(file);
563 struct address_space *mapping = file->f_mapping;
564
565 get_file(file);
566 if (tmp->vm_flags & VM_DENYWRITE)
567 atomic_dec(&inode->i_writecount);
568 i_mmap_lock_write(mapping);
569 if (tmp->vm_flags & VM_SHARED)
570 atomic_inc(&mapping->i_mmap_writable);
571 flush_dcache_mmap_lock(mapping);
572
573 vma_interval_tree_insert_after(tmp, mpnt,
574 &mapping->i_mmap);
575 flush_dcache_mmap_unlock(mapping);
576 i_mmap_unlock_write(mapping);
577 }
578
579
580
581
582
583
584 if (is_vm_hugetlb_page(tmp))
585 reset_vma_resv_huge_pages(tmp);
586
587
588
589
590 *pprev = tmp;
591 pprev = &tmp->vm_next;
592 tmp->vm_prev = prev;
593 prev = tmp;
594
595 __vma_link_rb(mm, tmp, rb_link, rb_parent);
596 rb_link = &tmp->vm_rb.rb_right;
597 rb_parent = &tmp->vm_rb;
598
599 mm->map_count++;
600 if (!(tmp->vm_flags & VM_WIPEONFORK))
601 retval = copy_page_range(mm, oldmm, mpnt);
602
603 if (tmp->vm_ops && tmp->vm_ops->open)
604 tmp->vm_ops->open(tmp);
605
606 if (retval)
607 goto out;
608 }
609
610 retval = arch_dup_mmap(oldmm, mm);
611 out:
612 up_write(&mm->mmap_sem);
613 flush_tlb_mm(oldmm);
614 up_write(&oldmm->mmap_sem);
615 dup_userfaultfd_complete(&uf);
616 fail_uprobe_end:
617 uprobe_end_dup_mmap();
618 return retval;
619 fail_nomem_anon_vma_fork:
620 mpol_put(vma_policy(tmp));
621 fail_nomem_policy:
622 vm_area_free(tmp);
623 fail_nomem:
624 retval = -ENOMEM;
625 vm_unacct_memory(charge);
626 goto out;
627 }
628
629 static inline int mm_alloc_pgd(struct mm_struct *mm)
630 {
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635 }
636
637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 pgd_free(mm, mm->pgd);
640 }
641 #else
642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643 {
644 down_write(&oldmm->mmap_sem);
645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 up_write(&oldmm->mmap_sem);
647 return 0;
648 }
649 #define mm_alloc_pgd(mm) (0)
650 #define mm_free_pgd(mm)
651 #endif
652
653 static void check_mm(struct mm_struct *mm)
654 {
655 int i;
656
657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 "Please make sure 'struct resident_page_types[]' is updated as well");
659
660 for (i = 0; i < NR_MM_COUNTERS; i++) {
661 long x = atomic_long_read(&mm->rss_stat.count[i]);
662
663 if (unlikely(x))
664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 mm, resident_page_types[i], x);
666 }
667
668 if (mm_pgtables_bytes(mm))
669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 mm_pgtables_bytes(mm));
671
672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #endif
675 }
676
677 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
679
680
681
682
683
684
685 void __mmdrop(struct mm_struct *mm)
686 {
687 BUG_ON(mm == &init_mm);
688 WARN_ON_ONCE(mm == current->mm);
689 WARN_ON_ONCE(mm == current->active_mm);
690 mm_free_pgd(mm);
691 destroy_context(mm);
692 mmu_notifier_mm_destroy(mm);
693 check_mm(mm);
694 put_user_ns(mm->user_ns);
695 free_mm(mm);
696 }
697 EXPORT_SYMBOL_GPL(__mmdrop);
698
699 static void mmdrop_async_fn(struct work_struct *work)
700 {
701 struct mm_struct *mm;
702
703 mm = container_of(work, struct mm_struct, async_put_work);
704 __mmdrop(mm);
705 }
706
707 static void mmdrop_async(struct mm_struct *mm)
708 {
709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 schedule_work(&mm->async_put_work);
712 }
713 }
714
715 static inline void free_signal_struct(struct signal_struct *sig)
716 {
717 taskstats_tgid_free(sig);
718 sched_autogroup_exit(sig);
719
720
721
722
723 if (sig->oom_mm)
724 mmdrop_async(sig->oom_mm);
725 kmem_cache_free(signal_cachep, sig);
726 }
727
728 static inline void put_signal_struct(struct signal_struct *sig)
729 {
730 if (refcount_dec_and_test(&sig->sigcnt))
731 free_signal_struct(sig);
732 }
733
734 void __put_task_struct(struct task_struct *tsk)
735 {
736 WARN_ON(!tsk->exit_state);
737 WARN_ON(refcount_read(&tsk->usage));
738 WARN_ON(tsk == current);
739
740 cgroup_free(tsk);
741 task_numa_free(tsk, true);
742 security_task_free(tsk);
743 exit_creds(tsk);
744 delayacct_tsk_free(tsk);
745 put_signal_struct(tsk->signal);
746
747 if (!profile_handoff_task(tsk))
748 free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751
752 void __init __weak arch_task_cache_init(void) { }
753
754
755
756
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 u64 threads;
760 unsigned long nr_pages = totalram_pages();
761
762
763
764
765
766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 threads = MAX_THREADS;
768 else
769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 (u64) THREAD_SIZE * 8UL);
771
772 if (threads > max_threads_suggested)
773 threads = max_threads_suggested;
774
775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779
780 int arch_task_struct_size __read_mostly;
781 #endif
782
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786
787 arch_thread_struct_whitelist(offset, size);
788
789
790
791
792
793 if (unlikely(*size == 0))
794 *offset = 0;
795 else
796 *offset += offsetof(struct task_struct, thread);
797 }
798 #endif
799
800 void __init fork_init(void)
801 {
802 int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN 0
806 #endif
807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 unsigned long useroffset, usersize;
809
810
811 task_struct_whitelist(&useroffset, &usersize);
812 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 arch_task_struct_size, align,
814 SLAB_PANIC|SLAB_ACCOUNT,
815 useroffset, usersize, NULL);
816 #endif
817
818
819 arch_task_cache_init();
820
821 set_max_threads(MAX_THREADS);
822
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 init_task.signal->rlim[RLIMIT_NPROC];
827
828 for (i = 0; i < UCOUNT_COUNTS; i++) {
829 init_user_ns.ucount_max[i] = max_threads/2;
830 }
831
832 #ifdef CONFIG_VMAP_STACK
833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 NULL, free_vm_stack_cache);
835 #endif
836
837 lockdep_init_task(&init_task);
838 uprobes_init();
839 }
840
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 struct task_struct *src)
843 {
844 *dst = *src;
845 return 0;
846 }
847
848 void set_task_stack_end_magic(struct task_struct *tsk)
849 {
850 unsigned long *stackend;
851
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC;
854 }
855
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857 {
858 struct task_struct *tsk;
859 unsigned long *stack;
860 struct vm_struct *stack_vm_area __maybe_unused;
861 int err;
862
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
865 tsk = alloc_task_struct_node(node);
866 if (!tsk)
867 return NULL;
868
869 stack = alloc_thread_stack_node(tsk, node);
870 if (!stack)
871 goto free_tsk;
872
873 if (memcg_charge_kernel_stack(tsk))
874 goto free_stack;
875
876 stack_vm_area = task_stack_vm_area(tsk);
877
878 err = arch_dup_task_struct(tsk, orig);
879
880
881
882
883
884
885 tsk->stack = stack;
886 #ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
888 #endif
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 refcount_set(&tsk->stack_refcount, 1);
891 #endif
892
893 if (err)
894 goto free_stack;
895
896 #ifdef CONFIG_SECCOMP
897
898
899
900
901
902
903 tsk->seccomp.filter = NULL;
904 #endif
905
906 setup_thread_stack(tsk, orig);
907 clear_user_return_notifier(tsk);
908 clear_tsk_need_resched(tsk);
909 set_task_stack_end_magic(tsk);
910
911 #ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
913 #endif
914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
916
917
918
919
920
921 refcount_set(&tsk->rcu_users, 2);
922
923 refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 tsk->btrace_seq = 0;
926 #endif
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
930
931 account_kernel_stack(tsk, 1);
932
933 kcov_task_init(tsk);
934
935 #ifdef CONFIG_FAULT_INJECTION
936 tsk->fail_nth = 0;
937 #endif
938
939 #ifdef CONFIG_BLK_CGROUP
940 tsk->throttle_queue = NULL;
941 tsk->use_memdelay = 0;
942 #endif
943
944 #ifdef CONFIG_MEMCG
945 tsk->active_memcg = NULL;
946 #endif
947 return tsk;
948
949 free_stack:
950 free_thread_stack(tsk);
951 free_tsk:
952 free_task_struct(tsk);
953 return NULL;
954 }
955
956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
957
958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
959
960 static int __init coredump_filter_setup(char *s)
961 {
962 default_dump_filter =
963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
964 MMF_DUMP_FILTER_MASK;
965 return 1;
966 }
967
968 __setup("coredump_filter=", coredump_filter_setup);
969
970 #include <linux/init_task.h>
971
972 static void mm_init_aio(struct mm_struct *mm)
973 {
974 #ifdef CONFIG_AIO
975 spin_lock_init(&mm->ioctx_lock);
976 mm->ioctx_table = NULL;
977 #endif
978 }
979
980 static __always_inline void mm_clear_owner(struct mm_struct *mm,
981 struct task_struct *p)
982 {
983 #ifdef CONFIG_MEMCG
984 if (mm->owner == p)
985 WRITE_ONCE(mm->owner, NULL);
986 #endif
987 }
988
989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
990 {
991 #ifdef CONFIG_MEMCG
992 mm->owner = p;
993 #endif
994 }
995
996 static void mm_init_uprobes_state(struct mm_struct *mm)
997 {
998 #ifdef CONFIG_UPROBES
999 mm->uprobes_state.xol_area = NULL;
1000 #endif
1001 }
1002
1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004 struct user_namespace *user_ns)
1005 {
1006 mm->mmap = NULL;
1007 mm->mm_rb = RB_ROOT;
1008 mm->vmacache_seqnum = 0;
1009 atomic_set(&mm->mm_users, 1);
1010 atomic_set(&mm->mm_count, 1);
1011 init_rwsem(&mm->mmap_sem);
1012 INIT_LIST_HEAD(&mm->mmlist);
1013 mm->core_state = NULL;
1014 mm_pgtables_bytes_init(mm);
1015 mm->map_count = 0;
1016 mm->locked_vm = 0;
1017 atomic64_set(&mm->pinned_vm, 0);
1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 spin_lock_init(&mm->page_table_lock);
1020 spin_lock_init(&mm->arg_lock);
1021 mm_init_cpumask(mm);
1022 mm_init_aio(mm);
1023 mm_init_owner(mm, p);
1024 RCU_INIT_POINTER(mm->exe_file, NULL);
1025 mmu_notifier_mm_init(mm);
1026 init_tlb_flush_pending(mm);
1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 mm->pmd_huge_pte = NULL;
1029 #endif
1030 mm_init_uprobes_state(mm);
1031
1032 if (current->mm) {
1033 mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 } else {
1036 mm->flags = default_dump_filter;
1037 mm->def_flags = 0;
1038 }
1039
1040 if (mm_alloc_pgd(mm))
1041 goto fail_nopgd;
1042
1043 if (init_new_context(p, mm))
1044 goto fail_nocontext;
1045
1046 mm->user_ns = get_user_ns(user_ns);
1047 return mm;
1048
1049 fail_nocontext:
1050 mm_free_pgd(mm);
1051 fail_nopgd:
1052 free_mm(mm);
1053 return NULL;
1054 }
1055
1056
1057
1058
1059 struct mm_struct *mm_alloc(void)
1060 {
1061 struct mm_struct *mm;
1062
1063 mm = allocate_mm();
1064 if (!mm)
1065 return NULL;
1066
1067 memset(mm, 0, sizeof(*mm));
1068 return mm_init(mm, current, current_user_ns());
1069 }
1070
1071 static inline void __mmput(struct mm_struct *mm)
1072 {
1073 VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075 uprobe_clear_state(mm);
1076 exit_aio(mm);
1077 ksm_exit(mm);
1078 khugepaged_exit(mm);
1079 exit_mmap(mm);
1080 mm_put_huge_zero_page(mm);
1081 set_mm_exe_file(mm, NULL);
1082 if (!list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 list_del(&mm->mmlist);
1085 spin_unlock(&mmlist_lock);
1086 }
1087 if (mm->binfmt)
1088 module_put(mm->binfmt->module);
1089 mmdrop(mm);
1090 }
1091
1092
1093
1094
1095 void mmput(struct mm_struct *mm)
1096 {
1097 might_sleep();
1098
1099 if (atomic_dec_and_test(&mm->mm_users))
1100 __mmput(mm);
1101 }
1102 EXPORT_SYMBOL_GPL(mmput);
1103
1104 #ifdef CONFIG_MMU
1105 static void mmput_async_fn(struct work_struct *work)
1106 {
1107 struct mm_struct *mm = container_of(work, struct mm_struct,
1108 async_put_work);
1109
1110 __mmput(mm);
1111 }
1112
1113 void mmput_async(struct mm_struct *mm)
1114 {
1115 if (atomic_dec_and_test(&mm->mm_users)) {
1116 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 schedule_work(&mm->async_put_work);
1118 }
1119 }
1120 #endif
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134 {
1135 struct file *old_exe_file;
1136
1137
1138
1139
1140
1141
1142 old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144 if (new_exe_file)
1145 get_file(new_exe_file);
1146 rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 if (old_exe_file)
1148 fput(old_exe_file);
1149 }
1150
1151
1152
1153
1154
1155
1156
1157 struct file *get_mm_exe_file(struct mm_struct *mm)
1158 {
1159 struct file *exe_file;
1160
1161 rcu_read_lock();
1162 exe_file = rcu_dereference(mm->exe_file);
1163 if (exe_file && !get_file_rcu(exe_file))
1164 exe_file = NULL;
1165 rcu_read_unlock();
1166 return exe_file;
1167 }
1168 EXPORT_SYMBOL(get_mm_exe_file);
1169
1170
1171
1172
1173
1174
1175
1176
1177 struct file *get_task_exe_file(struct task_struct *task)
1178 {
1179 struct file *exe_file = NULL;
1180 struct mm_struct *mm;
1181
1182 task_lock(task);
1183 mm = task->mm;
1184 if (mm) {
1185 if (!(task->flags & PF_KTHREAD))
1186 exe_file = get_mm_exe_file(mm);
1187 }
1188 task_unlock(task);
1189 return exe_file;
1190 }
1191 EXPORT_SYMBOL(get_task_exe_file);
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202 struct mm_struct *get_task_mm(struct task_struct *task)
1203 {
1204 struct mm_struct *mm;
1205
1206 task_lock(task);
1207 mm = task->mm;
1208 if (mm) {
1209 if (task->flags & PF_KTHREAD)
1210 mm = NULL;
1211 else
1212 mmget(mm);
1213 }
1214 task_unlock(task);
1215 return mm;
1216 }
1217 EXPORT_SYMBOL_GPL(get_task_mm);
1218
1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220 {
1221 struct mm_struct *mm;
1222 int err;
1223
1224 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1225 if (err)
1226 return ERR_PTR(err);
1227
1228 mm = get_task_mm(task);
1229 if (mm && mm != current->mm &&
1230 !ptrace_may_access(task, mode)) {
1231 mmput(mm);
1232 mm = ERR_PTR(-EACCES);
1233 }
1234 mutex_unlock(&task->signal->cred_guard_mutex);
1235
1236 return mm;
1237 }
1238
1239 static void complete_vfork_done(struct task_struct *tsk)
1240 {
1241 struct completion *vfork;
1242
1243 task_lock(tsk);
1244 vfork = tsk->vfork_done;
1245 if (likely(vfork)) {
1246 tsk->vfork_done = NULL;
1247 complete(vfork);
1248 }
1249 task_unlock(tsk);
1250 }
1251
1252 static int wait_for_vfork_done(struct task_struct *child,
1253 struct completion *vfork)
1254 {
1255 int killed;
1256
1257 freezer_do_not_count();
1258 cgroup_enter_frozen();
1259 killed = wait_for_completion_killable(vfork);
1260 cgroup_leave_frozen(false);
1261 freezer_count();
1262
1263 if (killed) {
1264 task_lock(child);
1265 child->vfork_done = NULL;
1266 task_unlock(child);
1267 }
1268
1269 put_task_struct(child);
1270 return killed;
1271 }
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287 {
1288 uprobe_free_utask(tsk);
1289
1290
1291 deactivate_mm(tsk, mm);
1292
1293
1294
1295
1296
1297
1298 if (tsk->clear_child_tid) {
1299 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1300 atomic_read(&mm->mm_users) > 1) {
1301
1302
1303
1304
1305 put_user(0, tsk->clear_child_tid);
1306 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1307 1, NULL, NULL, 0, 0);
1308 }
1309 tsk->clear_child_tid = NULL;
1310 }
1311
1312
1313
1314
1315
1316 if (tsk->vfork_done)
1317 complete_vfork_done(tsk);
1318 }
1319
1320 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1321 {
1322 futex_exit_release(tsk);
1323 mm_release(tsk, mm);
1324 }
1325
1326 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 futex_exec_release(tsk);
1329 mm_release(tsk, mm);
1330 }
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342 static struct mm_struct *dup_mm(struct task_struct *tsk,
1343 struct mm_struct *oldmm)
1344 {
1345 struct mm_struct *mm;
1346 int err;
1347
1348 mm = allocate_mm();
1349 if (!mm)
1350 goto fail_nomem;
1351
1352 memcpy(mm, oldmm, sizeof(*mm));
1353
1354 if (!mm_init(mm, tsk, mm->user_ns))
1355 goto fail_nomem;
1356
1357 err = dup_mmap(mm, oldmm);
1358 if (err)
1359 goto free_pt;
1360
1361 mm->hiwater_rss = get_mm_rss(mm);
1362 mm->hiwater_vm = mm->total_vm;
1363
1364 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1365 goto free_pt;
1366
1367 return mm;
1368
1369 free_pt:
1370
1371 mm->binfmt = NULL;
1372 mm_init_owner(mm, NULL);
1373 mmput(mm);
1374
1375 fail_nomem:
1376 return NULL;
1377 }
1378
1379 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1380 {
1381 struct mm_struct *mm, *oldmm;
1382 int retval;
1383
1384 tsk->min_flt = tsk->maj_flt = 0;
1385 tsk->nvcsw = tsk->nivcsw = 0;
1386 #ifdef CONFIG_DETECT_HUNG_TASK
1387 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1388 tsk->last_switch_time = 0;
1389 #endif
1390
1391 tsk->mm = NULL;
1392 tsk->active_mm = NULL;
1393
1394
1395
1396
1397
1398
1399 oldmm = current->mm;
1400 if (!oldmm)
1401 return 0;
1402
1403
1404 vmacache_flush(tsk);
1405
1406 if (clone_flags & CLONE_VM) {
1407 mmget(oldmm);
1408 mm = oldmm;
1409 goto good_mm;
1410 }
1411
1412 retval = -ENOMEM;
1413 mm = dup_mm(tsk, current->mm);
1414 if (!mm)
1415 goto fail_nomem;
1416
1417 good_mm:
1418 tsk->mm = mm;
1419 tsk->active_mm = mm;
1420 return 0;
1421
1422 fail_nomem:
1423 return retval;
1424 }
1425
1426 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1427 {
1428 struct fs_struct *fs = current->fs;
1429 if (clone_flags & CLONE_FS) {
1430
1431 spin_lock(&fs->lock);
1432 if (fs->in_exec) {
1433 spin_unlock(&fs->lock);
1434 return -EAGAIN;
1435 }
1436 fs->users++;
1437 spin_unlock(&fs->lock);
1438 return 0;
1439 }
1440 tsk->fs = copy_fs_struct(fs);
1441 if (!tsk->fs)
1442 return -ENOMEM;
1443 return 0;
1444 }
1445
1446 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1447 {
1448 struct files_struct *oldf, *newf;
1449 int error = 0;
1450
1451
1452
1453
1454 oldf = current->files;
1455 if (!oldf)
1456 goto out;
1457
1458 if (clone_flags & CLONE_FILES) {
1459 atomic_inc(&oldf->count);
1460 goto out;
1461 }
1462
1463 newf = dup_fd(oldf, &error);
1464 if (!newf)
1465 goto out;
1466
1467 tsk->files = newf;
1468 error = 0;
1469 out:
1470 return error;
1471 }
1472
1473 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1474 {
1475 #ifdef CONFIG_BLOCK
1476 struct io_context *ioc = current->io_context;
1477 struct io_context *new_ioc;
1478
1479 if (!ioc)
1480 return 0;
1481
1482
1483
1484 if (clone_flags & CLONE_IO) {
1485 ioc_task_link(ioc);
1486 tsk->io_context = ioc;
1487 } else if (ioprio_valid(ioc->ioprio)) {
1488 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1489 if (unlikely(!new_ioc))
1490 return -ENOMEM;
1491
1492 new_ioc->ioprio = ioc->ioprio;
1493 put_io_context(new_ioc);
1494 }
1495 #endif
1496 return 0;
1497 }
1498
1499 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1500 {
1501 struct sighand_struct *sig;
1502
1503 if (clone_flags & CLONE_SIGHAND) {
1504 refcount_inc(¤t->sighand->count);
1505 return 0;
1506 }
1507 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1508 rcu_assign_pointer(tsk->sighand, sig);
1509 if (!sig)
1510 return -ENOMEM;
1511
1512 refcount_set(&sig->count, 1);
1513 spin_lock_irq(¤t->sighand->siglock);
1514 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1515 spin_unlock_irq(¤t->sighand->siglock);
1516 return 0;
1517 }
1518
1519 void __cleanup_sighand(struct sighand_struct *sighand)
1520 {
1521 if (refcount_dec_and_test(&sighand->count)) {
1522 signalfd_cleanup(sighand);
1523
1524
1525
1526
1527 kmem_cache_free(sighand_cachep, sighand);
1528 }
1529 }
1530
1531
1532
1533
1534 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1535 {
1536 struct posix_cputimers *pct = &sig->posix_cputimers;
1537 unsigned long cpu_limit;
1538
1539 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1540 posix_cputimers_group_init(pct, cpu_limit);
1541 }
1542
1543 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1544 {
1545 struct signal_struct *sig;
1546
1547 if (clone_flags & CLONE_THREAD)
1548 return 0;
1549
1550 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1551 tsk->signal = sig;
1552 if (!sig)
1553 return -ENOMEM;
1554
1555 sig->nr_threads = 1;
1556 atomic_set(&sig->live, 1);
1557 refcount_set(&sig->sigcnt, 1);
1558
1559
1560 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1561 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1562
1563 init_waitqueue_head(&sig->wait_chldexit);
1564 sig->curr_target = tsk;
1565 init_sigpending(&sig->shared_pending);
1566 INIT_HLIST_HEAD(&sig->multiprocess);
1567 seqlock_init(&sig->stats_lock);
1568 prev_cputime_init(&sig->prev_cputime);
1569
1570 #ifdef CONFIG_POSIX_TIMERS
1571 INIT_LIST_HEAD(&sig->posix_timers);
1572 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1573 sig->real_timer.function = it_real_fn;
1574 #endif
1575
1576 task_lock(current->group_leader);
1577 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1578 task_unlock(current->group_leader);
1579
1580 posix_cpu_timers_init_group(sig);
1581
1582 tty_audit_fork(sig);
1583 sched_autogroup_fork(sig);
1584
1585 sig->oom_score_adj = current->signal->oom_score_adj;
1586 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1587
1588 mutex_init(&sig->cred_guard_mutex);
1589
1590 return 0;
1591 }
1592
1593 static void copy_seccomp(struct task_struct *p)
1594 {
1595 #ifdef CONFIG_SECCOMP
1596
1597
1598
1599
1600
1601
1602 assert_spin_locked(¤t->sighand->siglock);
1603
1604
1605 get_seccomp_filter(current);
1606 p->seccomp = current->seccomp;
1607
1608
1609
1610
1611
1612
1613 if (task_no_new_privs(current))
1614 task_set_no_new_privs(p);
1615
1616
1617
1618
1619
1620
1621 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1622 set_tsk_thread_flag(p, TIF_SECCOMP);
1623 #endif
1624 }
1625
1626 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1627 {
1628 current->clear_child_tid = tidptr;
1629
1630 return task_pid_vnr(current);
1631 }
1632
1633 static void rt_mutex_init_task(struct task_struct *p)
1634 {
1635 raw_spin_lock_init(&p->pi_lock);
1636 #ifdef CONFIG_RT_MUTEXES
1637 p->pi_waiters = RB_ROOT_CACHED;
1638 p->pi_top_task = NULL;
1639 p->pi_blocked_on = NULL;
1640 #endif
1641 }
1642
1643 static inline void init_task_pid_links(struct task_struct *task)
1644 {
1645 enum pid_type type;
1646
1647 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1648 INIT_HLIST_NODE(&task->pid_links[type]);
1649 }
1650 }
1651
1652 static inline void
1653 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1654 {
1655 if (type == PIDTYPE_PID)
1656 task->thread_pid = pid;
1657 else
1658 task->signal->pids[type] = pid;
1659 }
1660
1661 static inline void rcu_copy_process(struct task_struct *p)
1662 {
1663 #ifdef CONFIG_PREEMPT_RCU
1664 p->rcu_read_lock_nesting = 0;
1665 p->rcu_read_unlock_special.s = 0;
1666 p->rcu_blocked_node = NULL;
1667 INIT_LIST_HEAD(&p->rcu_node_entry);
1668 #endif
1669 #ifdef CONFIG_TASKS_RCU
1670 p->rcu_tasks_holdout = false;
1671 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1672 p->rcu_tasks_idle_cpu = -1;
1673 #endif
1674 }
1675
1676 struct pid *pidfd_pid(const struct file *file)
1677 {
1678 if (file->f_op == &pidfd_fops)
1679 return file->private_data;
1680
1681 return ERR_PTR(-EBADF);
1682 }
1683
1684 static int pidfd_release(struct inode *inode, struct file *file)
1685 {
1686 struct pid *pid = file->private_data;
1687
1688 file->private_data = NULL;
1689 put_pid(pid);
1690 return 0;
1691 }
1692
1693 #ifdef CONFIG_PROC_FS
1694 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1695 {
1696 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1697 struct pid *pid = f->private_data;
1698
1699 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1700 seq_putc(m, '\n');
1701 }
1702 #endif
1703
1704
1705
1706
1707 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1708 {
1709 struct task_struct *task;
1710 struct pid *pid = file->private_data;
1711 __poll_t poll_flags = 0;
1712
1713 poll_wait(file, &pid->wait_pidfd, pts);
1714
1715 rcu_read_lock();
1716 task = pid_task(pid, PIDTYPE_PID);
1717
1718
1719
1720
1721
1722 if (!task || (task->exit_state && thread_group_empty(task)))
1723 poll_flags = EPOLLIN | EPOLLRDNORM;
1724 rcu_read_unlock();
1725
1726 return poll_flags;
1727 }
1728
1729 const struct file_operations pidfd_fops = {
1730 .release = pidfd_release,
1731 .poll = pidfd_poll,
1732 #ifdef CONFIG_PROC_FS
1733 .show_fdinfo = pidfd_show_fdinfo,
1734 #endif
1735 };
1736
1737 static void __delayed_free_task(struct rcu_head *rhp)
1738 {
1739 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1740
1741 free_task(tsk);
1742 }
1743
1744 static __always_inline void delayed_free_task(struct task_struct *tsk)
1745 {
1746 if (IS_ENABLED(CONFIG_MEMCG))
1747 call_rcu(&tsk->rcu, __delayed_free_task);
1748 else
1749 free_task(tsk);
1750 }
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760 static __latent_entropy struct task_struct *copy_process(
1761 struct pid *pid,
1762 int trace,
1763 int node,
1764 struct kernel_clone_args *args)
1765 {
1766 int pidfd = -1, retval;
1767 struct task_struct *p;
1768 struct multiprocess_signals delayed;
1769 struct file *pidfile = NULL;
1770 u64 clone_flags = args->flags;
1771
1772
1773
1774
1775
1776 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1777 return ERR_PTR(-EINVAL);
1778
1779 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1780 return ERR_PTR(-EINVAL);
1781
1782
1783
1784
1785
1786 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1787 return ERR_PTR(-EINVAL);
1788
1789
1790
1791
1792
1793
1794 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1795 return ERR_PTR(-EINVAL);
1796
1797
1798
1799
1800
1801
1802
1803 if ((clone_flags & CLONE_PARENT) &&
1804 current->signal->flags & SIGNAL_UNKILLABLE)
1805 return ERR_PTR(-EINVAL);
1806
1807
1808
1809
1810
1811 if (clone_flags & CLONE_THREAD) {
1812 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1813 (task_active_pid_ns(current) !=
1814 current->nsproxy->pid_ns_for_children))
1815 return ERR_PTR(-EINVAL);
1816 }
1817
1818 if (clone_flags & CLONE_PIDFD) {
1819
1820
1821
1822
1823
1824 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1825 return ERR_PTR(-EINVAL);
1826 }
1827
1828
1829
1830
1831
1832
1833
1834 sigemptyset(&delayed.signal);
1835 INIT_HLIST_NODE(&delayed.node);
1836
1837 spin_lock_irq(¤t->sighand->siglock);
1838 if (!(clone_flags & CLONE_THREAD))
1839 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1840 recalc_sigpending();
1841 spin_unlock_irq(¤t->sighand->siglock);
1842 retval = -ERESTARTNOINTR;
1843 if (signal_pending(current))
1844 goto fork_out;
1845
1846 retval = -ENOMEM;
1847 p = dup_task_struct(current, node);
1848 if (!p)
1849 goto fork_out;
1850
1851
1852
1853
1854
1855
1856
1857 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1858
1859
1860
1861 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1862
1863 ftrace_graph_init_task(p);
1864
1865 rt_mutex_init_task(p);
1866
1867 #ifdef CONFIG_PROVE_LOCKING
1868 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1869 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1870 #endif
1871 retval = -EAGAIN;
1872 if (atomic_read(&p->real_cred->user->processes) >=
1873 task_rlimit(p, RLIMIT_NPROC)) {
1874 if (p->real_cred->user != INIT_USER &&
1875 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1876 goto bad_fork_free;
1877 }
1878 current->flags &= ~PF_NPROC_EXCEEDED;
1879
1880 retval = copy_creds(p, clone_flags);
1881 if (retval < 0)
1882 goto bad_fork_free;
1883
1884
1885
1886
1887
1888
1889 retval = -EAGAIN;
1890 if (nr_threads >= max_threads)
1891 goto bad_fork_cleanup_count;
1892
1893 delayacct_tsk_init(p);
1894 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1895 p->flags |= PF_FORKNOEXEC;
1896 INIT_LIST_HEAD(&p->children);
1897 INIT_LIST_HEAD(&p->sibling);
1898 rcu_copy_process(p);
1899 p->vfork_done = NULL;
1900 spin_lock_init(&p->alloc_lock);
1901
1902 init_sigpending(&p->pending);
1903
1904 p->utime = p->stime = p->gtime = 0;
1905 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1906 p->utimescaled = p->stimescaled = 0;
1907 #endif
1908 prev_cputime_init(&p->prev_cputime);
1909
1910 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1911 seqcount_init(&p->vtime.seqcount);
1912 p->vtime.starttime = 0;
1913 p->vtime.state = VTIME_INACTIVE;
1914 #endif
1915
1916 #if defined(SPLIT_RSS_COUNTING)
1917 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1918 #endif
1919
1920 p->default_timer_slack_ns = current->timer_slack_ns;
1921
1922 #ifdef CONFIG_PSI
1923 p->psi_flags = 0;
1924 #endif
1925
1926 task_io_accounting_init(&p->ioac);
1927 acct_clear_integrals(p);
1928
1929 posix_cputimers_init(&p->posix_cputimers);
1930
1931 p->io_context = NULL;
1932 audit_set_context(p, NULL);
1933 cgroup_fork(p);
1934 #ifdef CONFIG_NUMA
1935 p->mempolicy = mpol_dup(p->mempolicy);
1936 if (IS_ERR(p->mempolicy)) {
1937 retval = PTR_ERR(p->mempolicy);
1938 p->mempolicy = NULL;
1939 goto bad_fork_cleanup_threadgroup_lock;
1940 }
1941 #endif
1942 #ifdef CONFIG_CPUSETS
1943 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1944 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1945 seqcount_init(&p->mems_allowed_seq);
1946 #endif
1947 #ifdef CONFIG_TRACE_IRQFLAGS
1948 p->irq_events = 0;
1949 p->hardirqs_enabled = 0;
1950 p->hardirq_enable_ip = 0;
1951 p->hardirq_enable_event = 0;
1952 p->hardirq_disable_ip = _THIS_IP_;
1953 p->hardirq_disable_event = 0;
1954 p->softirqs_enabled = 1;
1955 p->softirq_enable_ip = _THIS_IP_;
1956 p->softirq_enable_event = 0;
1957 p->softirq_disable_ip = 0;
1958 p->softirq_disable_event = 0;
1959 p->hardirq_context = 0;
1960 p->softirq_context = 0;
1961 #endif
1962
1963 p->pagefault_disabled = 0;
1964
1965 #ifdef CONFIG_LOCKDEP
1966 lockdep_init_task(p);
1967 #endif
1968
1969 #ifdef CONFIG_DEBUG_MUTEXES
1970 p->blocked_on = NULL;
1971 #endif
1972 #ifdef CONFIG_BCACHE
1973 p->sequential_io = 0;
1974 p->sequential_io_avg = 0;
1975 #endif
1976
1977
1978 retval = sched_fork(clone_flags, p);
1979 if (retval)
1980 goto bad_fork_cleanup_policy;
1981
1982 retval = perf_event_init_task(p);
1983 if (retval)
1984 goto bad_fork_cleanup_policy;
1985 retval = audit_alloc(p);
1986 if (retval)
1987 goto bad_fork_cleanup_perf;
1988
1989 shm_init_task(p);
1990 retval = security_task_alloc(p, clone_flags);
1991 if (retval)
1992 goto bad_fork_cleanup_audit;
1993 retval = copy_semundo(clone_flags, p);
1994 if (retval)
1995 goto bad_fork_cleanup_security;
1996 retval = copy_files(clone_flags, p);
1997 if (retval)
1998 goto bad_fork_cleanup_semundo;
1999 retval = copy_fs(clone_flags, p);
2000 if (retval)
2001 goto bad_fork_cleanup_files;
2002 retval = copy_sighand(clone_flags, p);
2003 if (retval)
2004 goto bad_fork_cleanup_fs;
2005 retval = copy_signal(clone_flags, p);
2006 if (retval)
2007 goto bad_fork_cleanup_sighand;
2008 retval = copy_mm(clone_flags, p);
2009 if (retval)
2010 goto bad_fork_cleanup_signal;
2011 retval = copy_namespaces(clone_flags, p);
2012 if (retval)
2013 goto bad_fork_cleanup_mm;
2014 retval = copy_io(clone_flags, p);
2015 if (retval)
2016 goto bad_fork_cleanup_namespaces;
2017 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2018 args->tls);
2019 if (retval)
2020 goto bad_fork_cleanup_io;
2021
2022 stackleak_task_init(p);
2023
2024 if (pid != &init_struct_pid) {
2025 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2026 if (IS_ERR(pid)) {
2027 retval = PTR_ERR(pid);
2028 goto bad_fork_cleanup_thread;
2029 }
2030 }
2031
2032
2033
2034
2035
2036
2037 if (clone_flags & CLONE_PIDFD) {
2038 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2039 if (retval < 0)
2040 goto bad_fork_free_pid;
2041
2042 pidfd = retval;
2043
2044 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2045 O_RDWR | O_CLOEXEC);
2046 if (IS_ERR(pidfile)) {
2047 put_unused_fd(pidfd);
2048 retval = PTR_ERR(pidfile);
2049 goto bad_fork_free_pid;
2050 }
2051 get_pid(pid);
2052
2053 retval = put_user(pidfd, args->pidfd);
2054 if (retval)
2055 goto bad_fork_put_pidfd;
2056 }
2057
2058 #ifdef CONFIG_BLOCK
2059 p->plug = NULL;
2060 #endif
2061 futex_init_task(p);
2062
2063
2064
2065
2066 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2067 sas_ss_reset(p);
2068
2069
2070
2071
2072
2073 user_disable_single_step(p);
2074 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2075 #ifdef TIF_SYSCALL_EMU
2076 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2077 #endif
2078 clear_tsk_latency_tracing(p);
2079
2080
2081 p->pid = pid_nr(pid);
2082 if (clone_flags & CLONE_THREAD) {
2083 p->exit_signal = -1;
2084 p->group_leader = current->group_leader;
2085 p->tgid = current->tgid;
2086 } else {
2087 if (clone_flags & CLONE_PARENT)
2088 p->exit_signal = current->group_leader->exit_signal;
2089 else
2090 p->exit_signal = args->exit_signal;
2091 p->group_leader = p;
2092 p->tgid = p->pid;
2093 }
2094
2095 p->nr_dirtied = 0;
2096 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2097 p->dirty_paused_when = 0;
2098
2099 p->pdeath_signal = 0;
2100 INIT_LIST_HEAD(&p->thread_group);
2101 p->task_works = NULL;
2102
2103 cgroup_threadgroup_change_begin(current);
2104
2105
2106
2107
2108
2109
2110 retval = cgroup_can_fork(p);
2111 if (retval)
2112 goto bad_fork_cgroup_threadgroup_change_end;
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122 p->start_time = ktime_get_ns();
2123 p->real_start_time = ktime_get_boottime_ns();
2124
2125
2126
2127
2128
2129 write_lock_irq(&tasklist_lock);
2130
2131
2132 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2133 p->real_parent = current->real_parent;
2134 p->parent_exec_id = current->parent_exec_id;
2135 } else {
2136 p->real_parent = current;
2137 p->parent_exec_id = current->self_exec_id;
2138 }
2139
2140 klp_copy_process(p);
2141
2142 spin_lock(¤t->sighand->siglock);
2143
2144
2145
2146
2147
2148 copy_seccomp(p);
2149
2150 rseq_fork(p, clone_flags);
2151
2152
2153 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2154 retval = -ENOMEM;
2155 goto bad_fork_cancel_cgroup;
2156 }
2157
2158
2159 if (fatal_signal_pending(current)) {
2160 retval = -EINTR;
2161 goto bad_fork_cancel_cgroup;
2162 }
2163
2164
2165 if (pidfile)
2166 fd_install(pidfd, pidfile);
2167
2168 init_task_pid_links(p);
2169 if (likely(p->pid)) {
2170 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2171
2172 init_task_pid(p, PIDTYPE_PID, pid);
2173 if (thread_group_leader(p)) {
2174 init_task_pid(p, PIDTYPE_TGID, pid);
2175 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2176 init_task_pid(p, PIDTYPE_SID, task_session(current));
2177
2178 if (is_child_reaper(pid)) {
2179 ns_of_pid(pid)->child_reaper = p;
2180 p->signal->flags |= SIGNAL_UNKILLABLE;
2181 }
2182 p->signal->shared_pending.signal = delayed.signal;
2183 p->signal->tty = tty_kref_get(current->signal->tty);
2184
2185
2186
2187
2188
2189 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2190 p->real_parent->signal->is_child_subreaper;
2191 list_add_tail(&p->sibling, &p->real_parent->children);
2192 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2193 attach_pid(p, PIDTYPE_TGID);
2194 attach_pid(p, PIDTYPE_PGID);
2195 attach_pid(p, PIDTYPE_SID);
2196 __this_cpu_inc(process_counts);
2197 } else {
2198 current->signal->nr_threads++;
2199 atomic_inc(¤t->signal->live);
2200 refcount_inc(¤t->signal->sigcnt);
2201 task_join_group_stop(p);
2202 list_add_tail_rcu(&p->thread_group,
2203 &p->group_leader->thread_group);
2204 list_add_tail_rcu(&p->thread_node,
2205 &p->signal->thread_head);
2206 }
2207 attach_pid(p, PIDTYPE_PID);
2208 nr_threads++;
2209 }
2210 total_forks++;
2211 hlist_del_init(&delayed.node);
2212 spin_unlock(¤t->sighand->siglock);
2213 syscall_tracepoint_update(p);
2214 write_unlock_irq(&tasklist_lock);
2215
2216 proc_fork_connector(p);
2217 cgroup_post_fork(p);
2218 cgroup_threadgroup_change_end(current);
2219 perf_event_fork(p);
2220
2221 trace_task_newtask(p, clone_flags);
2222 uprobe_copy_process(p, clone_flags);
2223
2224 return p;
2225
2226 bad_fork_cancel_cgroup:
2227 spin_unlock(¤t->sighand->siglock);
2228 write_unlock_irq(&tasklist_lock);
2229 cgroup_cancel_fork(p);
2230 bad_fork_cgroup_threadgroup_change_end:
2231 cgroup_threadgroup_change_end(current);
2232 bad_fork_put_pidfd:
2233 if (clone_flags & CLONE_PIDFD) {
2234 fput(pidfile);
2235 put_unused_fd(pidfd);
2236 }
2237 bad_fork_free_pid:
2238 if (pid != &init_struct_pid)
2239 free_pid(pid);
2240 bad_fork_cleanup_thread:
2241 exit_thread(p);
2242 bad_fork_cleanup_io:
2243 if (p->io_context)
2244 exit_io_context(p);
2245 bad_fork_cleanup_namespaces:
2246 exit_task_namespaces(p);
2247 bad_fork_cleanup_mm:
2248 if (p->mm) {
2249 mm_clear_owner(p->mm, p);
2250 mmput(p->mm);
2251 }
2252 bad_fork_cleanup_signal:
2253 if (!(clone_flags & CLONE_THREAD))
2254 free_signal_struct(p->signal);
2255 bad_fork_cleanup_sighand:
2256 __cleanup_sighand(p->sighand);
2257 bad_fork_cleanup_fs:
2258 exit_fs(p);
2259 bad_fork_cleanup_files:
2260 exit_files(p);
2261 bad_fork_cleanup_semundo:
2262 exit_sem(p);
2263 bad_fork_cleanup_security:
2264 security_task_free(p);
2265 bad_fork_cleanup_audit:
2266 audit_free(p);
2267 bad_fork_cleanup_perf:
2268 perf_event_free_task(p);
2269 bad_fork_cleanup_policy:
2270 lockdep_free_task(p);
2271 #ifdef CONFIG_NUMA
2272 mpol_put(p->mempolicy);
2273 bad_fork_cleanup_threadgroup_lock:
2274 #endif
2275 delayacct_tsk_free(p);
2276 bad_fork_cleanup_count:
2277 atomic_dec(&p->cred->user->processes);
2278 exit_creds(p);
2279 bad_fork_free:
2280 p->state = TASK_DEAD;
2281 put_task_stack(p);
2282 delayed_free_task(p);
2283 fork_out:
2284 spin_lock_irq(¤t->sighand->siglock);
2285 hlist_del_init(&delayed.node);
2286 spin_unlock_irq(¤t->sighand->siglock);
2287 return ERR_PTR(retval);
2288 }
2289
2290 static inline void init_idle_pids(struct task_struct *idle)
2291 {
2292 enum pid_type type;
2293
2294 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2295 INIT_HLIST_NODE(&idle->pid_links[type]);
2296 init_task_pid(idle, type, &init_struct_pid);
2297 }
2298 }
2299
2300 struct task_struct *fork_idle(int cpu)
2301 {
2302 struct task_struct *task;
2303 struct kernel_clone_args args = {
2304 .flags = CLONE_VM,
2305 };
2306
2307 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2308 if (!IS_ERR(task)) {
2309 init_idle_pids(task);
2310 init_idle(task, cpu);
2311 }
2312
2313 return task;
2314 }
2315
2316 struct mm_struct *copy_init_mm(void)
2317 {
2318 return dup_mm(NULL, &init_mm);
2319 }
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329 long _do_fork(struct kernel_clone_args *args)
2330 {
2331 u64 clone_flags = args->flags;
2332 struct completion vfork;
2333 struct pid *pid;
2334 struct task_struct *p;
2335 int trace = 0;
2336 long nr;
2337
2338
2339
2340
2341
2342
2343
2344 if (!(clone_flags & CLONE_UNTRACED)) {
2345 if (clone_flags & CLONE_VFORK)
2346 trace = PTRACE_EVENT_VFORK;
2347 else if (args->exit_signal != SIGCHLD)
2348 trace = PTRACE_EVENT_CLONE;
2349 else
2350 trace = PTRACE_EVENT_FORK;
2351
2352 if (likely(!ptrace_event_enabled(current, trace)))
2353 trace = 0;
2354 }
2355
2356 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2357 add_latent_entropy();
2358
2359 if (IS_ERR(p))
2360 return PTR_ERR(p);
2361
2362
2363
2364
2365
2366 trace_sched_process_fork(current, p);
2367
2368 pid = get_task_pid(p, PIDTYPE_PID);
2369 nr = pid_vnr(pid);
2370
2371 if (clone_flags & CLONE_PARENT_SETTID)
2372 put_user(nr, args->parent_tid);
2373
2374 if (clone_flags & CLONE_VFORK) {
2375 p->vfork_done = &vfork;
2376 init_completion(&vfork);
2377 get_task_struct(p);
2378 }
2379
2380 wake_up_new_task(p);
2381
2382
2383 if (unlikely(trace))
2384 ptrace_event_pid(trace, pid);
2385
2386 if (clone_flags & CLONE_VFORK) {
2387 if (!wait_for_vfork_done(p, &vfork))
2388 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2389 }
2390
2391 put_pid(pid);
2392 return nr;
2393 }
2394
2395 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2396 {
2397
2398 if ((kargs->flags & CLONE_PIDFD) &&
2399 (kargs->flags & CLONE_PARENT_SETTID))
2400 return false;
2401
2402 return true;
2403 }
2404
2405 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2406
2407
2408 long do_fork(unsigned long clone_flags,
2409 unsigned long stack_start,
2410 unsigned long stack_size,
2411 int __user *parent_tidptr,
2412 int __user *child_tidptr)
2413 {
2414 struct kernel_clone_args args = {
2415 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2416 .pidfd = parent_tidptr,
2417 .child_tid = child_tidptr,
2418 .parent_tid = parent_tidptr,
2419 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2420 .stack = stack_start,
2421 .stack_size = stack_size,
2422 };
2423
2424 if (!legacy_clone_args_valid(&args))
2425 return -EINVAL;
2426
2427 return _do_fork(&args);
2428 }
2429 #endif
2430
2431
2432
2433
2434 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2435 {
2436 struct kernel_clone_args args = {
2437 .flags = ((lower_32_bits(flags) | CLONE_VM |
2438 CLONE_UNTRACED) & ~CSIGNAL),
2439 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2440 .stack = (unsigned long)fn,
2441 .stack_size = (unsigned long)arg,
2442 };
2443
2444 return _do_fork(&args);
2445 }
2446
2447 #ifdef __ARCH_WANT_SYS_FORK
2448 SYSCALL_DEFINE0(fork)
2449 {
2450 #ifdef CONFIG_MMU
2451 struct kernel_clone_args args = {
2452 .exit_signal = SIGCHLD,
2453 };
2454
2455 return _do_fork(&args);
2456 #else
2457
2458 return -EINVAL;
2459 #endif
2460 }
2461 #endif
2462
2463 #ifdef __ARCH_WANT_SYS_VFORK
2464 SYSCALL_DEFINE0(vfork)
2465 {
2466 struct kernel_clone_args args = {
2467 .flags = CLONE_VFORK | CLONE_VM,
2468 .exit_signal = SIGCHLD,
2469 };
2470
2471 return _do_fork(&args);
2472 }
2473 #endif
2474
2475 #ifdef __ARCH_WANT_SYS_CLONE
2476 #ifdef CONFIG_CLONE_BACKWARDS
2477 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2478 int __user *, parent_tidptr,
2479 unsigned long, tls,
2480 int __user *, child_tidptr)
2481 #elif defined(CONFIG_CLONE_BACKWARDS2)
2482 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2483 int __user *, parent_tidptr,
2484 int __user *, child_tidptr,
2485 unsigned long, tls)
2486 #elif defined(CONFIG_CLONE_BACKWARDS3)
2487 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2488 int, stack_size,
2489 int __user *, parent_tidptr,
2490 int __user *, child_tidptr,
2491 unsigned long, tls)
2492 #else
2493 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2494 int __user *, parent_tidptr,
2495 int __user *, child_tidptr,
2496 unsigned long, tls)
2497 #endif
2498 {
2499 struct kernel_clone_args args = {
2500 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2501 .pidfd = parent_tidptr,
2502 .child_tid = child_tidptr,
2503 .parent_tid = parent_tidptr,
2504 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2505 .stack = newsp,
2506 .tls = tls,
2507 };
2508
2509 if (!legacy_clone_args_valid(&args))
2510 return -EINVAL;
2511
2512 return _do_fork(&args);
2513 }
2514 #endif
2515
2516 #ifdef __ARCH_WANT_SYS_CLONE3
2517
2518
2519
2520
2521
2522
2523 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2524 #error clone3 requires copy_thread_tls support in arch
2525 #endif
2526
2527 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2528 struct clone_args __user *uargs,
2529 size_t usize)
2530 {
2531 int err;
2532 struct clone_args args;
2533
2534 if (unlikely(usize > PAGE_SIZE))
2535 return -E2BIG;
2536 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2537 return -EINVAL;
2538
2539 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2540 if (err)
2541 return err;
2542
2543
2544
2545
2546
2547 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2548 !valid_signal(args.exit_signal)))
2549 return -EINVAL;
2550
2551 *kargs = (struct kernel_clone_args){
2552 .flags = args.flags,
2553 .pidfd = u64_to_user_ptr(args.pidfd),
2554 .child_tid = u64_to_user_ptr(args.child_tid),
2555 .parent_tid = u64_to_user_ptr(args.parent_tid),
2556 .exit_signal = args.exit_signal,
2557 .stack = args.stack,
2558 .stack_size = args.stack_size,
2559 .tls = args.tls,
2560 };
2561
2562 return 0;
2563 }
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2574 {
2575 if (kargs->stack == 0) {
2576 if (kargs->stack_size > 0)
2577 return false;
2578 } else {
2579 if (kargs->stack_size == 0)
2580 return false;
2581
2582 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2583 return false;
2584
2585 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2586 kargs->stack += kargs->stack_size;
2587 #endif
2588 }
2589
2590 return true;
2591 }
2592
2593 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2594 {
2595
2596
2597
2598
2599 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2600 return false;
2601
2602
2603
2604
2605
2606 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2607 return false;
2608
2609 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2610 kargs->exit_signal)
2611 return false;
2612
2613 if (!clone3_stack_valid(kargs))
2614 return false;
2615
2616 return true;
2617 }
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2631 {
2632 int err;
2633
2634 struct kernel_clone_args kargs;
2635
2636 err = copy_clone_args_from_user(&kargs, uargs, size);
2637 if (err)
2638 return err;
2639
2640 if (!clone3_args_valid(&kargs))
2641 return -EINVAL;
2642
2643 return _do_fork(&kargs);
2644 }
2645 #endif
2646
2647 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2648 {
2649 struct task_struct *leader, *parent, *child;
2650 int res;
2651
2652 read_lock(&tasklist_lock);
2653 leader = top = top->group_leader;
2654 down:
2655 for_each_thread(leader, parent) {
2656 list_for_each_entry(child, &parent->children, sibling) {
2657 res = visitor(child, data);
2658 if (res) {
2659 if (res < 0)
2660 goto out;
2661 leader = child;
2662 goto down;
2663 }
2664 up:
2665 ;
2666 }
2667 }
2668
2669 if (leader != top) {
2670 child = leader;
2671 parent = child->real_parent;
2672 leader = parent->group_leader;
2673 goto up;
2674 }
2675 out:
2676 read_unlock(&tasklist_lock);
2677 }
2678
2679 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2680 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2681 #endif
2682
2683 static void sighand_ctor(void *data)
2684 {
2685 struct sighand_struct *sighand = data;
2686
2687 spin_lock_init(&sighand->siglock);
2688 init_waitqueue_head(&sighand->signalfd_wqh);
2689 }
2690
2691 void __init proc_caches_init(void)
2692 {
2693 unsigned int mm_size;
2694
2695 sighand_cachep = kmem_cache_create("sighand_cache",
2696 sizeof(struct sighand_struct), 0,
2697 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2698 SLAB_ACCOUNT, sighand_ctor);
2699 signal_cachep = kmem_cache_create("signal_cache",
2700 sizeof(struct signal_struct), 0,
2701 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2702 NULL);
2703 files_cachep = kmem_cache_create("files_cache",
2704 sizeof(struct files_struct), 0,
2705 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2706 NULL);
2707 fs_cachep = kmem_cache_create("fs_cache",
2708 sizeof(struct fs_struct), 0,
2709 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2710 NULL);
2711
2712
2713
2714
2715
2716
2717 mm_size = sizeof(struct mm_struct) + cpumask_size();
2718
2719 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2720 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2721 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2722 offsetof(struct mm_struct, saved_auxv),
2723 sizeof_field(struct mm_struct, saved_auxv),
2724 NULL);
2725 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2726 mmap_init();
2727 nsproxy_cache_init();
2728 }
2729
2730
2731
2732
2733 static int check_unshare_flags(unsigned long unshare_flags)
2734 {
2735 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2736 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2737 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2738 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2739 return -EINVAL;
2740
2741
2742
2743
2744
2745
2746 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2747 if (!thread_group_empty(current))
2748 return -EINVAL;
2749 }
2750 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2751 if (refcount_read(¤t->sighand->count) > 1)
2752 return -EINVAL;
2753 }
2754 if (unshare_flags & CLONE_VM) {
2755 if (!current_is_single_threaded())
2756 return -EINVAL;
2757 }
2758
2759 return 0;
2760 }
2761
2762
2763
2764
2765 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2766 {
2767 struct fs_struct *fs = current->fs;
2768
2769 if (!(unshare_flags & CLONE_FS) || !fs)
2770 return 0;
2771
2772
2773 if (fs->users == 1)
2774 return 0;
2775
2776 *new_fsp = copy_fs_struct(fs);
2777 if (!*new_fsp)
2778 return -ENOMEM;
2779
2780 return 0;
2781 }
2782
2783
2784
2785
2786 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2787 {
2788 struct files_struct *fd = current->files;
2789 int error = 0;
2790
2791 if ((unshare_flags & CLONE_FILES) &&
2792 (fd && atomic_read(&fd->count) > 1)) {
2793 *new_fdp = dup_fd(fd, &error);
2794 if (!*new_fdp)
2795 return error;
2796 }
2797
2798 return 0;
2799 }
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809 int ksys_unshare(unsigned long unshare_flags)
2810 {
2811 struct fs_struct *fs, *new_fs = NULL;
2812 struct files_struct *fd, *new_fd = NULL;
2813 struct cred *new_cred = NULL;
2814 struct nsproxy *new_nsproxy = NULL;
2815 int do_sysvsem = 0;
2816 int err;
2817
2818
2819
2820
2821
2822 if (unshare_flags & CLONE_NEWUSER)
2823 unshare_flags |= CLONE_THREAD | CLONE_FS;
2824
2825
2826
2827 if (unshare_flags & CLONE_VM)
2828 unshare_flags |= CLONE_SIGHAND;
2829
2830
2831
2832 if (unshare_flags & CLONE_SIGHAND)
2833 unshare_flags |= CLONE_THREAD;
2834
2835
2836
2837 if (unshare_flags & CLONE_NEWNS)
2838 unshare_flags |= CLONE_FS;
2839
2840 err = check_unshare_flags(unshare_flags);
2841 if (err)
2842 goto bad_unshare_out;
2843
2844
2845
2846
2847
2848 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2849 do_sysvsem = 1;
2850 err = unshare_fs(unshare_flags, &new_fs);
2851 if (err)
2852 goto bad_unshare_out;
2853 err = unshare_fd(unshare_flags, &new_fd);
2854 if (err)
2855 goto bad_unshare_cleanup_fs;
2856 err = unshare_userns(unshare_flags, &new_cred);
2857 if (err)
2858 goto bad_unshare_cleanup_fd;
2859 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2860 new_cred, new_fs);
2861 if (err)
2862 goto bad_unshare_cleanup_cred;
2863
2864 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2865 if (do_sysvsem) {
2866
2867
2868
2869 exit_sem(current);
2870 }
2871 if (unshare_flags & CLONE_NEWIPC) {
2872
2873 exit_shm(current);
2874 shm_init_task(current);
2875 }
2876
2877 if (new_nsproxy)
2878 switch_task_namespaces(current, new_nsproxy);
2879
2880 task_lock(current);
2881
2882 if (new_fs) {
2883 fs = current->fs;
2884 spin_lock(&fs->lock);
2885 current->fs = new_fs;
2886 if (--fs->users)
2887 new_fs = NULL;
2888 else
2889 new_fs = fs;
2890 spin_unlock(&fs->lock);
2891 }
2892
2893 if (new_fd) {
2894 fd = current->files;
2895 current->files = new_fd;
2896 new_fd = fd;
2897 }
2898
2899 task_unlock(current);
2900
2901 if (new_cred) {
2902
2903 commit_creds(new_cred);
2904 new_cred = NULL;
2905 }
2906 }
2907
2908 perf_event_namespaces(current);
2909
2910 bad_unshare_cleanup_cred:
2911 if (new_cred)
2912 put_cred(new_cred);
2913 bad_unshare_cleanup_fd:
2914 if (new_fd)
2915 put_files_struct(new_fd);
2916
2917 bad_unshare_cleanup_fs:
2918 if (new_fs)
2919 free_fs_struct(new_fs);
2920
2921 bad_unshare_out:
2922 return err;
2923 }
2924
2925 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2926 {
2927 return ksys_unshare(unshare_flags);
2928 }
2929
2930
2931
2932
2933
2934
2935
2936 int unshare_files(struct files_struct **displaced)
2937 {
2938 struct task_struct *task = current;
2939 struct files_struct *copy = NULL;
2940 int error;
2941
2942 error = unshare_fd(CLONE_FILES, ©);
2943 if (error || !copy) {
2944 *displaced = NULL;
2945 return error;
2946 }
2947 *displaced = task->files;
2948 task_lock(task);
2949 task->files = copy;
2950 task_unlock(task);
2951 return 0;
2952 }
2953
2954 int sysctl_max_threads(struct ctl_table *table, int write,
2955 void __user *buffer, size_t *lenp, loff_t *ppos)
2956 {
2957 struct ctl_table t;
2958 int ret;
2959 int threads = max_threads;
2960 int min = 1;
2961 int max = MAX_THREADS;
2962
2963 t = *table;
2964 t.data = &threads;
2965 t.extra1 = &min;
2966 t.extra2 = &max;
2967
2968 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2969 if (ret || !write)
2970 return ret;
2971
2972 max_threads = threads;
2973
2974 return 0;
2975 }