root/kernel/trace/ring_buffer.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ring_buffer_print_entry_header
  2. rb_null_event
  3. rb_event_set_padding
  4. rb_event_data_length
  5. rb_event_length
  6. rb_event_ts_length
  7. ring_buffer_event_length
  8. rb_event_data
  9. ring_buffer_event_data
  10. ring_buffer_event_time_stamp
  11. rb_init_page
  12. free_buffer_page
  13. test_time_stamp
  14. ring_buffer_print_page_header
  15. ring_buffer_nr_pages
  16. ring_buffer_nr_dirty_pages
  17. rb_wake_up_waiters
  18. ring_buffer_wait
  19. ring_buffer_poll_wait
  20. rb_time_stamp
  21. ring_buffer_time_stamp
  22. ring_buffer_normalize_time_stamp
  23. rb_list_head
  24. rb_is_head_page
  25. rb_is_reader_page
  26. rb_set_list_to_head
  27. rb_head_page_activate
  28. rb_list_head_clear
  29. rb_head_page_deactivate
  30. rb_head_page_set
  31. rb_head_page_set_update
  32. rb_head_page_set_head
  33. rb_head_page_set_normal
  34. rb_inc_page
  35. rb_set_head_page
  36. rb_head_page_replace
  37. rb_tail_page_update
  38. rb_check_bpage
  39. rb_check_list
  40. rb_check_pages
  41. __rb_allocate_pages
  42. rb_allocate_pages
  43. rb_allocate_cpu_buffer
  44. rb_free_cpu_buffer
  45. __ring_buffer_alloc
  46. ring_buffer_free
  47. ring_buffer_set_clock
  48. ring_buffer_set_time_stamp_abs
  49. ring_buffer_time_stamp_abs
  50. rb_page_entries
  51. rb_page_write
  52. rb_remove_pages
  53. rb_insert_pages
  54. rb_update_pages
  55. update_pages_handler
  56. ring_buffer_resize
  57. ring_buffer_change_overwrite
  58. __rb_page_index
  59. rb_reader_event
  60. rb_iter_head_event
  61. rb_page_commit
  62. rb_page_size
  63. rb_commit_index
  64. rb_event_index
  65. rb_inc_iter
  66. rb_handle_head_page
  67. rb_reset_tail
  68. rb_move_tail
  69. rb_add_time_stamp
  70. rb_update_event
  71. rb_calculate_event_length
  72. sched_clock_stable
  73. rb_try_to_discard
  74. rb_start_commit
  75. rb_set_commit_to_write
  76. rb_end_commit
  77. rb_event_discard
  78. rb_event_is_commit
  79. rb_update_write_stamp
  80. rb_commit
  81. rb_wakeups
  82. trace_recursive_lock
  83. trace_recursive_unlock
  84. ring_buffer_nest_start
  85. ring_buffer_nest_end
  86. ring_buffer_unlock_commit
  87. rb_handle_timestamp
  88. __rb_reserve_next
  89. rb_reserve_next_event
  90. ring_buffer_lock_reserve
  91. rb_decrement_entry
  92. ring_buffer_discard_commit
  93. ring_buffer_write
  94. rb_per_cpu_empty
  95. ring_buffer_record_disable
  96. ring_buffer_record_enable
  97. ring_buffer_record_off
  98. ring_buffer_record_on
  99. ring_buffer_record_is_on
  100. ring_buffer_record_is_set_on
  101. ring_buffer_record_disable_cpu
  102. ring_buffer_record_enable_cpu
  103. rb_num_of_entries
  104. ring_buffer_oldest_event_ts
  105. ring_buffer_bytes_cpu
  106. ring_buffer_entries_cpu
  107. ring_buffer_overrun_cpu
  108. ring_buffer_commit_overrun_cpu
  109. ring_buffer_dropped_events_cpu
  110. ring_buffer_read_events_cpu
  111. ring_buffer_entries
  112. ring_buffer_overruns
  113. rb_iter_reset
  114. ring_buffer_iter_reset
  115. ring_buffer_iter_empty
  116. rb_update_read_stamp
  117. rb_update_iter_read_stamp
  118. rb_get_reader_page
  119. rb_advance_reader
  120. rb_advance_iter
  121. rb_lost_events
  122. rb_buffer_peek
  123. rb_iter_peek
  124. rb_reader_lock
  125. rb_reader_unlock
  126. ring_buffer_peek
  127. ring_buffer_iter_peek
  128. ring_buffer_consume
  129. ring_buffer_read_prepare
  130. ring_buffer_read_prepare_sync
  131. ring_buffer_read_start
  132. ring_buffer_read_finish
  133. ring_buffer_read
  134. ring_buffer_size
  135. rb_reset_cpu
  136. ring_buffer_reset_cpu
  137. ring_buffer_reset
  138. ring_buffer_empty
  139. ring_buffer_empty_cpu
  140. ring_buffer_swap_cpu
  141. ring_buffer_alloc_read_page
  142. ring_buffer_free_read_page
  143. ring_buffer_read_page
  144. trace_rb_cpu_prepare
  145. rb_write_something
  146. rb_test
  147. rb_ipi
  148. rb_hammer_test
  149. test_ringbuffer

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Generic ring buffer
   4  *
   5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6  */
   7 #include <linux/trace_events.h>
   8 #include <linux/ring_buffer.h>
   9 #include <linux/trace_clock.h>
  10 #include <linux/sched/clock.h>
  11 #include <linux/trace_seq.h>
  12 #include <linux/spinlock.h>
  13 #include <linux/irq_work.h>
  14 #include <linux/security.h>
  15 #include <linux/uaccess.h>
  16 #include <linux/hardirq.h>
  17 #include <linux/kthread.h>      /* for self test */
  18 #include <linux/module.h>
  19 #include <linux/percpu.h>
  20 #include <linux/mutex.h>
  21 #include <linux/delay.h>
  22 #include <linux/slab.h>
  23 #include <linux/init.h>
  24 #include <linux/hash.h>
  25 #include <linux/list.h>
  26 #include <linux/cpu.h>
  27 #include <linux/oom.h>
  28 
  29 #include <asm/local.h>
  30 
  31 static void update_pages_handler(struct work_struct *work);
  32 
  33 /*
  34  * The ring buffer header is special. We must manually up keep it.
  35  */
  36 int ring_buffer_print_entry_header(struct trace_seq *s)
  37 {
  38         trace_seq_puts(s, "# compressed entry header\n");
  39         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  40         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  41         trace_seq_puts(s, "\tarray       :   32 bits\n");
  42         trace_seq_putc(s, '\n');
  43         trace_seq_printf(s, "\tpadding     : type == %d\n",
  44                          RINGBUF_TYPE_PADDING);
  45         trace_seq_printf(s, "\ttime_extend : type == %d\n",
  46                          RINGBUF_TYPE_TIME_EXTEND);
  47         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  48                          RINGBUF_TYPE_TIME_STAMP);
  49         trace_seq_printf(s, "\tdata max type_len  == %d\n",
  50                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  51 
  52         return !trace_seq_has_overflowed(s);
  53 }
  54 
  55 /*
  56  * The ring buffer is made up of a list of pages. A separate list of pages is
  57  * allocated for each CPU. A writer may only write to a buffer that is
  58  * associated with the CPU it is currently executing on.  A reader may read
  59  * from any per cpu buffer.
  60  *
  61  * The reader is special. For each per cpu buffer, the reader has its own
  62  * reader page. When a reader has read the entire reader page, this reader
  63  * page is swapped with another page in the ring buffer.
  64  *
  65  * Now, as long as the writer is off the reader page, the reader can do what
  66  * ever it wants with that page. The writer will never write to that page
  67  * again (as long as it is out of the ring buffer).
  68  *
  69  * Here's some silly ASCII art.
  70  *
  71  *   +------+
  72  *   |reader|          RING BUFFER
  73  *   |page  |
  74  *   +------+        +---+   +---+   +---+
  75  *                   |   |-->|   |-->|   |
  76  *                   +---+   +---+   +---+
  77  *                     ^               |
  78  *                     |               |
  79  *                     +---------------+
  80  *
  81  *
  82  *   +------+
  83  *   |reader|          RING BUFFER
  84  *   |page  |------------------v
  85  *   +------+        +---+   +---+   +---+
  86  *                   |   |-->|   |-->|   |
  87  *                   +---+   +---+   +---+
  88  *                     ^               |
  89  *                     |               |
  90  *                     +---------------+
  91  *
  92  *
  93  *   +------+
  94  *   |reader|          RING BUFFER
  95  *   |page  |------------------v
  96  *   +------+        +---+   +---+   +---+
  97  *      ^            |   |-->|   |-->|   |
  98  *      |            +---+   +---+   +---+
  99  *      |                              |
 100  *      |                              |
 101  *      +------------------------------+
 102  *
 103  *
 104  *   +------+
 105  *   |buffer|          RING BUFFER
 106  *   |page  |------------------v
 107  *   +------+        +---+   +---+   +---+
 108  *      ^            |   |   |   |-->|   |
 109  *      |   New      +---+   +---+   +---+
 110  *      |  Reader------^               |
 111  *      |   page                       |
 112  *      +------------------------------+
 113  *
 114  *
 115  * After we make this swap, the reader can hand this page off to the splice
 116  * code and be done with it. It can even allocate a new page if it needs to
 117  * and swap that into the ring buffer.
 118  *
 119  * We will be using cmpxchg soon to make all this lockless.
 120  *
 121  */
 122 
 123 /* Used for individual buffers (after the counter) */
 124 #define RB_BUFFER_OFF           (1 << 20)
 125 
 126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 127 
 128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 129 #define RB_ALIGNMENT            4U
 130 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 131 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 132 #define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
 133 
 134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 136 
 137 enum {
 138         RB_LEN_TIME_EXTEND = 8,
 139         RB_LEN_TIME_STAMP =  8,
 140 };
 141 
 142 #define skip_time_extend(event) \
 143         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 144 
 145 #define extended_time(event) \
 146         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 147 
 148 static inline int rb_null_event(struct ring_buffer_event *event)
 149 {
 150         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 151 }
 152 
 153 static void rb_event_set_padding(struct ring_buffer_event *event)
 154 {
 155         /* padding has a NULL time_delta */
 156         event->type_len = RINGBUF_TYPE_PADDING;
 157         event->time_delta = 0;
 158 }
 159 
 160 static unsigned
 161 rb_event_data_length(struct ring_buffer_event *event)
 162 {
 163         unsigned length;
 164 
 165         if (event->type_len)
 166                 length = event->type_len * RB_ALIGNMENT;
 167         else
 168                 length = event->array[0];
 169         return length + RB_EVNT_HDR_SIZE;
 170 }
 171 
 172 /*
 173  * Return the length of the given event. Will return
 174  * the length of the time extend if the event is a
 175  * time extend.
 176  */
 177 static inline unsigned
 178 rb_event_length(struct ring_buffer_event *event)
 179 {
 180         switch (event->type_len) {
 181         case RINGBUF_TYPE_PADDING:
 182                 if (rb_null_event(event))
 183                         /* undefined */
 184                         return -1;
 185                 return  event->array[0] + RB_EVNT_HDR_SIZE;
 186 
 187         case RINGBUF_TYPE_TIME_EXTEND:
 188                 return RB_LEN_TIME_EXTEND;
 189 
 190         case RINGBUF_TYPE_TIME_STAMP:
 191                 return RB_LEN_TIME_STAMP;
 192 
 193         case RINGBUF_TYPE_DATA:
 194                 return rb_event_data_length(event);
 195         default:
 196                 BUG();
 197         }
 198         /* not hit */
 199         return 0;
 200 }
 201 
 202 /*
 203  * Return total length of time extend and data,
 204  *   or just the event length for all other events.
 205  */
 206 static inline unsigned
 207 rb_event_ts_length(struct ring_buffer_event *event)
 208 {
 209         unsigned len = 0;
 210 
 211         if (extended_time(event)) {
 212                 /* time extends include the data event after it */
 213                 len = RB_LEN_TIME_EXTEND;
 214                 event = skip_time_extend(event);
 215         }
 216         return len + rb_event_length(event);
 217 }
 218 
 219 /**
 220  * ring_buffer_event_length - return the length of the event
 221  * @event: the event to get the length of
 222  *
 223  * Returns the size of the data load of a data event.
 224  * If the event is something other than a data event, it
 225  * returns the size of the event itself. With the exception
 226  * of a TIME EXTEND, where it still returns the size of the
 227  * data load of the data event after it.
 228  */
 229 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 230 {
 231         unsigned length;
 232 
 233         if (extended_time(event))
 234                 event = skip_time_extend(event);
 235 
 236         length = rb_event_length(event);
 237         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 238                 return length;
 239         length -= RB_EVNT_HDR_SIZE;
 240         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 241                 length -= sizeof(event->array[0]);
 242         return length;
 243 }
 244 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 245 
 246 /* inline for ring buffer fast paths */
 247 static __always_inline void *
 248 rb_event_data(struct ring_buffer_event *event)
 249 {
 250         if (extended_time(event))
 251                 event = skip_time_extend(event);
 252         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 253         /* If length is in len field, then array[0] has the data */
 254         if (event->type_len)
 255                 return (void *)&event->array[0];
 256         /* Otherwise length is in array[0] and array[1] has the data */
 257         return (void *)&event->array[1];
 258 }
 259 
 260 /**
 261  * ring_buffer_event_data - return the data of the event
 262  * @event: the event to get the data from
 263  */
 264 void *ring_buffer_event_data(struct ring_buffer_event *event)
 265 {
 266         return rb_event_data(event);
 267 }
 268 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 269 
 270 #define for_each_buffer_cpu(buffer, cpu)                \
 271         for_each_cpu(cpu, buffer->cpumask)
 272 
 273 #define TS_SHIFT        27
 274 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 275 #define TS_DELTA_TEST   (~TS_MASK)
 276 
 277 /**
 278  * ring_buffer_event_time_stamp - return the event's extended timestamp
 279  * @event: the event to get the timestamp of
 280  *
 281  * Returns the extended timestamp associated with a data event.
 282  * An extended time_stamp is a 64-bit timestamp represented
 283  * internally in a special way that makes the best use of space
 284  * contained within a ring buffer event.  This function decodes
 285  * it and maps it to a straight u64 value.
 286  */
 287 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 288 {
 289         u64 ts;
 290 
 291         ts = event->array[0];
 292         ts <<= TS_SHIFT;
 293         ts += event->time_delta;
 294 
 295         return ts;
 296 }
 297 
 298 /* Flag when events were overwritten */
 299 #define RB_MISSED_EVENTS        (1 << 31)
 300 /* Missed count stored at end */
 301 #define RB_MISSED_STORED        (1 << 30)
 302 
 303 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
 304 
 305 struct buffer_data_page {
 306         u64              time_stamp;    /* page time stamp */
 307         local_t          commit;        /* write committed index */
 308         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 309 };
 310 
 311 /*
 312  * Note, the buffer_page list must be first. The buffer pages
 313  * are allocated in cache lines, which means that each buffer
 314  * page will be at the beginning of a cache line, and thus
 315  * the least significant bits will be zero. We use this to
 316  * add flags in the list struct pointers, to make the ring buffer
 317  * lockless.
 318  */
 319 struct buffer_page {
 320         struct list_head list;          /* list of buffer pages */
 321         local_t          write;         /* index for next write */
 322         unsigned         read;          /* index for next read */
 323         local_t          entries;       /* entries on this page */
 324         unsigned long    real_end;      /* real end of data */
 325         struct buffer_data_page *page;  /* Actual data page */
 326 };
 327 
 328 /*
 329  * The buffer page counters, write and entries, must be reset
 330  * atomically when crossing page boundaries. To synchronize this
 331  * update, two counters are inserted into the number. One is
 332  * the actual counter for the write position or count on the page.
 333  *
 334  * The other is a counter of updaters. Before an update happens
 335  * the update partition of the counter is incremented. This will
 336  * allow the updater to update the counter atomically.
 337  *
 338  * The counter is 20 bits, and the state data is 12.
 339  */
 340 #define RB_WRITE_MASK           0xfffff
 341 #define RB_WRITE_INTCNT         (1 << 20)
 342 
 343 static void rb_init_page(struct buffer_data_page *bpage)
 344 {
 345         local_set(&bpage->commit, 0);
 346 }
 347 
 348 /*
 349  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 350  * this issue out.
 351  */
 352 static void free_buffer_page(struct buffer_page *bpage)
 353 {
 354         free_page((unsigned long)bpage->page);
 355         kfree(bpage);
 356 }
 357 
 358 /*
 359  * We need to fit the time_stamp delta into 27 bits.
 360  */
 361 static inline int test_time_stamp(u64 delta)
 362 {
 363         if (delta & TS_DELTA_TEST)
 364                 return 1;
 365         return 0;
 366 }
 367 
 368 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 369 
 370 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 371 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 372 
 373 int ring_buffer_print_page_header(struct trace_seq *s)
 374 {
 375         struct buffer_data_page field;
 376 
 377         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 378                          "offset:0;\tsize:%u;\tsigned:%u;\n",
 379                          (unsigned int)sizeof(field.time_stamp),
 380                          (unsigned int)is_signed_type(u64));
 381 
 382         trace_seq_printf(s, "\tfield: local_t commit;\t"
 383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
 384                          (unsigned int)offsetof(typeof(field), commit),
 385                          (unsigned int)sizeof(field.commit),
 386                          (unsigned int)is_signed_type(long));
 387 
 388         trace_seq_printf(s, "\tfield: int overwrite;\t"
 389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
 390                          (unsigned int)offsetof(typeof(field), commit),
 391                          1,
 392                          (unsigned int)is_signed_type(long));
 393 
 394         trace_seq_printf(s, "\tfield: char data;\t"
 395                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
 396                          (unsigned int)offsetof(typeof(field), data),
 397                          (unsigned int)BUF_PAGE_SIZE,
 398                          (unsigned int)is_signed_type(char));
 399 
 400         return !trace_seq_has_overflowed(s);
 401 }
 402 
 403 struct rb_irq_work {
 404         struct irq_work                 work;
 405         wait_queue_head_t               waiters;
 406         wait_queue_head_t               full_waiters;
 407         bool                            waiters_pending;
 408         bool                            full_waiters_pending;
 409         bool                            wakeup_full;
 410 };
 411 
 412 /*
 413  * Structure to hold event state and handle nested events.
 414  */
 415 struct rb_event_info {
 416         u64                     ts;
 417         u64                     delta;
 418         unsigned long           length;
 419         struct buffer_page      *tail_page;
 420         int                     add_timestamp;
 421 };
 422 
 423 /*
 424  * Used for which event context the event is in.
 425  *  NMI     = 0
 426  *  IRQ     = 1
 427  *  SOFTIRQ = 2
 428  *  NORMAL  = 3
 429  *
 430  * See trace_recursive_lock() comment below for more details.
 431  */
 432 enum {
 433         RB_CTX_NMI,
 434         RB_CTX_IRQ,
 435         RB_CTX_SOFTIRQ,
 436         RB_CTX_NORMAL,
 437         RB_CTX_MAX
 438 };
 439 
 440 /*
 441  * head_page == tail_page && head == tail then buffer is empty.
 442  */
 443 struct ring_buffer_per_cpu {
 444         int                             cpu;
 445         atomic_t                        record_disabled;
 446         struct ring_buffer              *buffer;
 447         raw_spinlock_t                  reader_lock;    /* serialize readers */
 448         arch_spinlock_t                 lock;
 449         struct lock_class_key           lock_key;
 450         struct buffer_data_page         *free_page;
 451         unsigned long                   nr_pages;
 452         unsigned int                    current_context;
 453         struct list_head                *pages;
 454         struct buffer_page              *head_page;     /* read from head */
 455         struct buffer_page              *tail_page;     /* write to tail */
 456         struct buffer_page              *commit_page;   /* committed pages */
 457         struct buffer_page              *reader_page;
 458         unsigned long                   lost_events;
 459         unsigned long                   last_overrun;
 460         unsigned long                   nest;
 461         local_t                         entries_bytes;
 462         local_t                         entries;
 463         local_t                         overrun;
 464         local_t                         commit_overrun;
 465         local_t                         dropped_events;
 466         local_t                         committing;
 467         local_t                         commits;
 468         local_t                         pages_touched;
 469         local_t                         pages_read;
 470         long                            last_pages_touch;
 471         size_t                          shortest_full;
 472         unsigned long                   read;
 473         unsigned long                   read_bytes;
 474         u64                             write_stamp;
 475         u64                             read_stamp;
 476         /* ring buffer pages to update, > 0 to add, < 0 to remove */
 477         long                            nr_pages_to_update;
 478         struct list_head                new_pages; /* new pages to add */
 479         struct work_struct              update_pages_work;
 480         struct completion               update_done;
 481 
 482         struct rb_irq_work              irq_work;
 483 };
 484 
 485 struct ring_buffer {
 486         unsigned                        flags;
 487         int                             cpus;
 488         atomic_t                        record_disabled;
 489         atomic_t                        resize_disabled;
 490         cpumask_var_t                   cpumask;
 491 
 492         struct lock_class_key           *reader_lock_key;
 493 
 494         struct mutex                    mutex;
 495 
 496         struct ring_buffer_per_cpu      **buffers;
 497 
 498         struct hlist_node               node;
 499         u64                             (*clock)(void);
 500 
 501         struct rb_irq_work              irq_work;
 502         bool                            time_stamp_abs;
 503 };
 504 
 505 struct ring_buffer_iter {
 506         struct ring_buffer_per_cpu      *cpu_buffer;
 507         unsigned long                   head;
 508         struct buffer_page              *head_page;
 509         struct buffer_page              *cache_reader_page;
 510         unsigned long                   cache_read;
 511         u64                             read_stamp;
 512 };
 513 
 514 /**
 515  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 516  * @buffer: The ring_buffer to get the number of pages from
 517  * @cpu: The cpu of the ring_buffer to get the number of pages from
 518  *
 519  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 520  */
 521 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
 522 {
 523         return buffer->buffers[cpu]->nr_pages;
 524 }
 525 
 526 /**
 527  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 528  * @buffer: The ring_buffer to get the number of pages from
 529  * @cpu: The cpu of the ring_buffer to get the number of pages from
 530  *
 531  * Returns the number of pages that have content in the ring buffer.
 532  */
 533 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
 534 {
 535         size_t read;
 536         size_t cnt;
 537 
 538         read = local_read(&buffer->buffers[cpu]->pages_read);
 539         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 540         /* The reader can read an empty page, but not more than that */
 541         if (cnt < read) {
 542                 WARN_ON_ONCE(read > cnt + 1);
 543                 return 0;
 544         }
 545 
 546         return cnt - read;
 547 }
 548 
 549 /*
 550  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 551  *
 552  * Schedules a delayed work to wake up any task that is blocked on the
 553  * ring buffer waiters queue.
 554  */
 555 static void rb_wake_up_waiters(struct irq_work *work)
 556 {
 557         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 558 
 559         wake_up_all(&rbwork->waiters);
 560         if (rbwork->wakeup_full) {
 561                 rbwork->wakeup_full = false;
 562                 wake_up_all(&rbwork->full_waiters);
 563         }
 564 }
 565 
 566 /**
 567  * ring_buffer_wait - wait for input to the ring buffer
 568  * @buffer: buffer to wait on
 569  * @cpu: the cpu buffer to wait on
 570  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 571  *
 572  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 573  * as data is added to any of the @buffer's cpu buffers. Otherwise
 574  * it will wait for data to be added to a specific cpu buffer.
 575  */
 576 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
 577 {
 578         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 579         DEFINE_WAIT(wait);
 580         struct rb_irq_work *work;
 581         int ret = 0;
 582 
 583         /*
 584          * Depending on what the caller is waiting for, either any
 585          * data in any cpu buffer, or a specific buffer, put the
 586          * caller on the appropriate wait queue.
 587          */
 588         if (cpu == RING_BUFFER_ALL_CPUS) {
 589                 work = &buffer->irq_work;
 590                 /* Full only makes sense on per cpu reads */
 591                 full = 0;
 592         } else {
 593                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
 594                         return -ENODEV;
 595                 cpu_buffer = buffer->buffers[cpu];
 596                 work = &cpu_buffer->irq_work;
 597         }
 598 
 599 
 600         while (true) {
 601                 if (full)
 602                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 603                 else
 604                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 605 
 606                 /*
 607                  * The events can happen in critical sections where
 608                  * checking a work queue can cause deadlocks.
 609                  * After adding a task to the queue, this flag is set
 610                  * only to notify events to try to wake up the queue
 611                  * using irq_work.
 612                  *
 613                  * We don't clear it even if the buffer is no longer
 614                  * empty. The flag only causes the next event to run
 615                  * irq_work to do the work queue wake up. The worse
 616                  * that can happen if we race with !trace_empty() is that
 617                  * an event will cause an irq_work to try to wake up
 618                  * an empty queue.
 619                  *
 620                  * There's no reason to protect this flag either, as
 621                  * the work queue and irq_work logic will do the necessary
 622                  * synchronization for the wake ups. The only thing
 623                  * that is necessary is that the wake up happens after
 624                  * a task has been queued. It's OK for spurious wake ups.
 625                  */
 626                 if (full)
 627                         work->full_waiters_pending = true;
 628                 else
 629                         work->waiters_pending = true;
 630 
 631                 if (signal_pending(current)) {
 632                         ret = -EINTR;
 633                         break;
 634                 }
 635 
 636                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 637                         break;
 638 
 639                 if (cpu != RING_BUFFER_ALL_CPUS &&
 640                     !ring_buffer_empty_cpu(buffer, cpu)) {
 641                         unsigned long flags;
 642                         bool pagebusy;
 643                         size_t nr_pages;
 644                         size_t dirty;
 645 
 646                         if (!full)
 647                                 break;
 648 
 649                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 650                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 651                         nr_pages = cpu_buffer->nr_pages;
 652                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 653                         if (!cpu_buffer->shortest_full ||
 654                             cpu_buffer->shortest_full < full)
 655                                 cpu_buffer->shortest_full = full;
 656                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 657                         if (!pagebusy &&
 658                             (!nr_pages || (dirty * 100) > full * nr_pages))
 659                                 break;
 660                 }
 661 
 662                 schedule();
 663         }
 664 
 665         if (full)
 666                 finish_wait(&work->full_waiters, &wait);
 667         else
 668                 finish_wait(&work->waiters, &wait);
 669 
 670         return ret;
 671 }
 672 
 673 /**
 674  * ring_buffer_poll_wait - poll on buffer input
 675  * @buffer: buffer to wait on
 676  * @cpu: the cpu buffer to wait on
 677  * @filp: the file descriptor
 678  * @poll_table: The poll descriptor
 679  *
 680  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 681  * as data is added to any of the @buffer's cpu buffers. Otherwise
 682  * it will wait for data to be added to a specific cpu buffer.
 683  *
 684  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 685  * zero otherwise.
 686  */
 687 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 688                           struct file *filp, poll_table *poll_table)
 689 {
 690         struct ring_buffer_per_cpu *cpu_buffer;
 691         struct rb_irq_work *work;
 692 
 693         if (cpu == RING_BUFFER_ALL_CPUS)
 694                 work = &buffer->irq_work;
 695         else {
 696                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
 697                         return -EINVAL;
 698 
 699                 cpu_buffer = buffer->buffers[cpu];
 700                 work = &cpu_buffer->irq_work;
 701         }
 702 
 703         poll_wait(filp, &work->waiters, poll_table);
 704         work->waiters_pending = true;
 705         /*
 706          * There's a tight race between setting the waiters_pending and
 707          * checking if the ring buffer is empty.  Once the waiters_pending bit
 708          * is set, the next event will wake the task up, but we can get stuck
 709          * if there's only a single event in.
 710          *
 711          * FIXME: Ideally, we need a memory barrier on the writer side as well,
 712          * but adding a memory barrier to all events will cause too much of a
 713          * performance hit in the fast path.  We only need a memory barrier when
 714          * the buffer goes from empty to having content.  But as this race is
 715          * extremely small, and it's not a problem if another event comes in, we
 716          * will fix it later.
 717          */
 718         smp_mb();
 719 
 720         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 721             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 722                 return EPOLLIN | EPOLLRDNORM;
 723         return 0;
 724 }
 725 
 726 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
 727 #define RB_WARN_ON(b, cond)                                             \
 728         ({                                                              \
 729                 int _____ret = unlikely(cond);                          \
 730                 if (_____ret) {                                         \
 731                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 732                                 struct ring_buffer_per_cpu *__b =       \
 733                                         (void *)b;                      \
 734                                 atomic_inc(&__b->buffer->record_disabled); \
 735                         } else                                          \
 736                                 atomic_inc(&b->record_disabled);        \
 737                         WARN_ON(1);                                     \
 738                 }                                                       \
 739                 _____ret;                                               \
 740         })
 741 
 742 /* Up this if you want to test the TIME_EXTENTS and normalization */
 743 #define DEBUG_SHIFT 0
 744 
 745 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 746 {
 747         /* shift to debug/test normalization and TIME_EXTENTS */
 748         return buffer->clock() << DEBUG_SHIFT;
 749 }
 750 
 751 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 752 {
 753         u64 time;
 754 
 755         preempt_disable_notrace();
 756         time = rb_time_stamp(buffer);
 757         preempt_enable_notrace();
 758 
 759         return time;
 760 }
 761 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 762 
 763 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 764                                       int cpu, u64 *ts)
 765 {
 766         /* Just stupid testing the normalize function and deltas */
 767         *ts >>= DEBUG_SHIFT;
 768 }
 769 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 770 
 771 /*
 772  * Making the ring buffer lockless makes things tricky.
 773  * Although writes only happen on the CPU that they are on,
 774  * and they only need to worry about interrupts. Reads can
 775  * happen on any CPU.
 776  *
 777  * The reader page is always off the ring buffer, but when the
 778  * reader finishes with a page, it needs to swap its page with
 779  * a new one from the buffer. The reader needs to take from
 780  * the head (writes go to the tail). But if a writer is in overwrite
 781  * mode and wraps, it must push the head page forward.
 782  *
 783  * Here lies the problem.
 784  *
 785  * The reader must be careful to replace only the head page, and
 786  * not another one. As described at the top of the file in the
 787  * ASCII art, the reader sets its old page to point to the next
 788  * page after head. It then sets the page after head to point to
 789  * the old reader page. But if the writer moves the head page
 790  * during this operation, the reader could end up with the tail.
 791  *
 792  * We use cmpxchg to help prevent this race. We also do something
 793  * special with the page before head. We set the LSB to 1.
 794  *
 795  * When the writer must push the page forward, it will clear the
 796  * bit that points to the head page, move the head, and then set
 797  * the bit that points to the new head page.
 798  *
 799  * We also don't want an interrupt coming in and moving the head
 800  * page on another writer. Thus we use the second LSB to catch
 801  * that too. Thus:
 802  *
 803  * head->list->prev->next        bit 1          bit 0
 804  *                              -------        -------
 805  * Normal page                     0              0
 806  * Points to head page             0              1
 807  * New head page                   1              0
 808  *
 809  * Note we can not trust the prev pointer of the head page, because:
 810  *
 811  * +----+       +-----+        +-----+
 812  * |    |------>|  T  |---X--->|  N  |
 813  * |    |<------|     |        |     |
 814  * +----+       +-----+        +-----+
 815  *   ^                           ^ |
 816  *   |          +-----+          | |
 817  *   +----------|  R  |----------+ |
 818  *              |     |<-----------+
 819  *              +-----+
 820  *
 821  * Key:  ---X-->  HEAD flag set in pointer
 822  *         T      Tail page
 823  *         R      Reader page
 824  *         N      Next page
 825  *
 826  * (see __rb_reserve_next() to see where this happens)
 827  *
 828  *  What the above shows is that the reader just swapped out
 829  *  the reader page with a page in the buffer, but before it
 830  *  could make the new header point back to the new page added
 831  *  it was preempted by a writer. The writer moved forward onto
 832  *  the new page added by the reader and is about to move forward
 833  *  again.
 834  *
 835  *  You can see, it is legitimate for the previous pointer of
 836  *  the head (or any page) not to point back to itself. But only
 837  *  temporarily.
 838  */
 839 
 840 #define RB_PAGE_NORMAL          0UL
 841 #define RB_PAGE_HEAD            1UL
 842 #define RB_PAGE_UPDATE          2UL
 843 
 844 
 845 #define RB_FLAG_MASK            3UL
 846 
 847 /* PAGE_MOVED is not part of the mask */
 848 #define RB_PAGE_MOVED           4UL
 849 
 850 /*
 851  * rb_list_head - remove any bit
 852  */
 853 static struct list_head *rb_list_head(struct list_head *list)
 854 {
 855         unsigned long val = (unsigned long)list;
 856 
 857         return (struct list_head *)(val & ~RB_FLAG_MASK);
 858 }
 859 
 860 /*
 861  * rb_is_head_page - test if the given page is the head page
 862  *
 863  * Because the reader may move the head_page pointer, we can
 864  * not trust what the head page is (it may be pointing to
 865  * the reader page). But if the next page is a header page,
 866  * its flags will be non zero.
 867  */
 868 static inline int
 869 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 870                 struct buffer_page *page, struct list_head *list)
 871 {
 872         unsigned long val;
 873 
 874         val = (unsigned long)list->next;
 875 
 876         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 877                 return RB_PAGE_MOVED;
 878 
 879         return val & RB_FLAG_MASK;
 880 }
 881 
 882 /*
 883  * rb_is_reader_page
 884  *
 885  * The unique thing about the reader page, is that, if the
 886  * writer is ever on it, the previous pointer never points
 887  * back to the reader page.
 888  */
 889 static bool rb_is_reader_page(struct buffer_page *page)
 890 {
 891         struct list_head *list = page->list.prev;
 892 
 893         return rb_list_head(list->next) != &page->list;
 894 }
 895 
 896 /*
 897  * rb_set_list_to_head - set a list_head to be pointing to head.
 898  */
 899 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 900                                 struct list_head *list)
 901 {
 902         unsigned long *ptr;
 903 
 904         ptr = (unsigned long *)&list->next;
 905         *ptr |= RB_PAGE_HEAD;
 906         *ptr &= ~RB_PAGE_UPDATE;
 907 }
 908 
 909 /*
 910  * rb_head_page_activate - sets up head page
 911  */
 912 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 913 {
 914         struct buffer_page *head;
 915 
 916         head = cpu_buffer->head_page;
 917         if (!head)
 918                 return;
 919 
 920         /*
 921          * Set the previous list pointer to have the HEAD flag.
 922          */
 923         rb_set_list_to_head(cpu_buffer, head->list.prev);
 924 }
 925 
 926 static void rb_list_head_clear(struct list_head *list)
 927 {
 928         unsigned long *ptr = (unsigned long *)&list->next;
 929 
 930         *ptr &= ~RB_FLAG_MASK;
 931 }
 932 
 933 /*
 934  * rb_head_page_deactivate - clears head page ptr (for free list)
 935  */
 936 static void
 937 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 938 {
 939         struct list_head *hd;
 940 
 941         /* Go through the whole list and clear any pointers found. */
 942         rb_list_head_clear(cpu_buffer->pages);
 943 
 944         list_for_each(hd, cpu_buffer->pages)
 945                 rb_list_head_clear(hd);
 946 }
 947 
 948 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 949                             struct buffer_page *head,
 950                             struct buffer_page *prev,
 951                             int old_flag, int new_flag)
 952 {
 953         struct list_head *list;
 954         unsigned long val = (unsigned long)&head->list;
 955         unsigned long ret;
 956 
 957         list = &prev->list;
 958 
 959         val &= ~RB_FLAG_MASK;
 960 
 961         ret = cmpxchg((unsigned long *)&list->next,
 962                       val | old_flag, val | new_flag);
 963 
 964         /* check if the reader took the page */
 965         if ((ret & ~RB_FLAG_MASK) != val)
 966                 return RB_PAGE_MOVED;
 967 
 968         return ret & RB_FLAG_MASK;
 969 }
 970 
 971 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 972                                    struct buffer_page *head,
 973                                    struct buffer_page *prev,
 974                                    int old_flag)
 975 {
 976         return rb_head_page_set(cpu_buffer, head, prev,
 977                                 old_flag, RB_PAGE_UPDATE);
 978 }
 979 
 980 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 981                                  struct buffer_page *head,
 982                                  struct buffer_page *prev,
 983                                  int old_flag)
 984 {
 985         return rb_head_page_set(cpu_buffer, head, prev,
 986                                 old_flag, RB_PAGE_HEAD);
 987 }
 988 
 989 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 990                                    struct buffer_page *head,
 991                                    struct buffer_page *prev,
 992                                    int old_flag)
 993 {
 994         return rb_head_page_set(cpu_buffer, head, prev,
 995                                 old_flag, RB_PAGE_NORMAL);
 996 }
 997 
 998 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 999                                struct buffer_page **bpage)
1000 {
1001         struct list_head *p = rb_list_head((*bpage)->list.next);
1002 
1003         *bpage = list_entry(p, struct buffer_page, list);
1004 }
1005 
1006 static struct buffer_page *
1007 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1008 {
1009         struct buffer_page *head;
1010         struct buffer_page *page;
1011         struct list_head *list;
1012         int i;
1013 
1014         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1015                 return NULL;
1016 
1017         /* sanity check */
1018         list = cpu_buffer->pages;
1019         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1020                 return NULL;
1021 
1022         page = head = cpu_buffer->head_page;
1023         /*
1024          * It is possible that the writer moves the header behind
1025          * where we started, and we miss in one loop.
1026          * A second loop should grab the header, but we'll do
1027          * three loops just because I'm paranoid.
1028          */
1029         for (i = 0; i < 3; i++) {
1030                 do {
1031                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1032                                 cpu_buffer->head_page = page;
1033                                 return page;
1034                         }
1035                         rb_inc_page(cpu_buffer, &page);
1036                 } while (page != head);
1037         }
1038 
1039         RB_WARN_ON(cpu_buffer, 1);
1040 
1041         return NULL;
1042 }
1043 
1044 static int rb_head_page_replace(struct buffer_page *old,
1045                                 struct buffer_page *new)
1046 {
1047         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1048         unsigned long val;
1049         unsigned long ret;
1050 
1051         val = *ptr & ~RB_FLAG_MASK;
1052         val |= RB_PAGE_HEAD;
1053 
1054         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1055 
1056         return ret == val;
1057 }
1058 
1059 /*
1060  * rb_tail_page_update - move the tail page forward
1061  */
1062 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1063                                struct buffer_page *tail_page,
1064                                struct buffer_page *next_page)
1065 {
1066         unsigned long old_entries;
1067         unsigned long old_write;
1068 
1069         /*
1070          * The tail page now needs to be moved forward.
1071          *
1072          * We need to reset the tail page, but without messing
1073          * with possible erasing of data brought in by interrupts
1074          * that have moved the tail page and are currently on it.
1075          *
1076          * We add a counter to the write field to denote this.
1077          */
1078         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1079         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1080 
1081         local_inc(&cpu_buffer->pages_touched);
1082         /*
1083          * Just make sure we have seen our old_write and synchronize
1084          * with any interrupts that come in.
1085          */
1086         barrier();
1087 
1088         /*
1089          * If the tail page is still the same as what we think
1090          * it is, then it is up to us to update the tail
1091          * pointer.
1092          */
1093         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1094                 /* Zero the write counter */
1095                 unsigned long val = old_write & ~RB_WRITE_MASK;
1096                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1097 
1098                 /*
1099                  * This will only succeed if an interrupt did
1100                  * not come in and change it. In which case, we
1101                  * do not want to modify it.
1102                  *
1103                  * We add (void) to let the compiler know that we do not care
1104                  * about the return value of these functions. We use the
1105                  * cmpxchg to only update if an interrupt did not already
1106                  * do it for us. If the cmpxchg fails, we don't care.
1107                  */
1108                 (void)local_cmpxchg(&next_page->write, old_write, val);
1109                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1110 
1111                 /*
1112                  * No need to worry about races with clearing out the commit.
1113                  * it only can increment when a commit takes place. But that
1114                  * only happens in the outer most nested commit.
1115                  */
1116                 local_set(&next_page->page->commit, 0);
1117 
1118                 /* Again, either we update tail_page or an interrupt does */
1119                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1120         }
1121 }
1122 
1123 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1124                           struct buffer_page *bpage)
1125 {
1126         unsigned long val = (unsigned long)bpage;
1127 
1128         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1129                 return 1;
1130 
1131         return 0;
1132 }
1133 
1134 /**
1135  * rb_check_list - make sure a pointer to a list has the last bits zero
1136  */
1137 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1138                          struct list_head *list)
1139 {
1140         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1141                 return 1;
1142         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1143                 return 1;
1144         return 0;
1145 }
1146 
1147 /**
1148  * rb_check_pages - integrity check of buffer pages
1149  * @cpu_buffer: CPU buffer with pages to test
1150  *
1151  * As a safety measure we check to make sure the data pages have not
1152  * been corrupted.
1153  */
1154 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1155 {
1156         struct list_head *head = cpu_buffer->pages;
1157         struct buffer_page *bpage, *tmp;
1158 
1159         /* Reset the head page if it exists */
1160         if (cpu_buffer->head_page)
1161                 rb_set_head_page(cpu_buffer);
1162 
1163         rb_head_page_deactivate(cpu_buffer);
1164 
1165         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1166                 return -1;
1167         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1168                 return -1;
1169 
1170         if (rb_check_list(cpu_buffer, head))
1171                 return -1;
1172 
1173         list_for_each_entry_safe(bpage, tmp, head, list) {
1174                 if (RB_WARN_ON(cpu_buffer,
1175                                bpage->list.next->prev != &bpage->list))
1176                         return -1;
1177                 if (RB_WARN_ON(cpu_buffer,
1178                                bpage->list.prev->next != &bpage->list))
1179                         return -1;
1180                 if (rb_check_list(cpu_buffer, &bpage->list))
1181                         return -1;
1182         }
1183 
1184         rb_head_page_activate(cpu_buffer);
1185 
1186         return 0;
1187 }
1188 
1189 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1190 {
1191         struct buffer_page *bpage, *tmp;
1192         bool user_thread = current->mm != NULL;
1193         gfp_t mflags;
1194         long i;
1195 
1196         /*
1197          * Check if the available memory is there first.
1198          * Note, si_mem_available() only gives us a rough estimate of available
1199          * memory. It may not be accurate. But we don't care, we just want
1200          * to prevent doing any allocation when it is obvious that it is
1201          * not going to succeed.
1202          */
1203         i = si_mem_available();
1204         if (i < nr_pages)
1205                 return -ENOMEM;
1206 
1207         /*
1208          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1209          * gracefully without invoking oom-killer and the system is not
1210          * destabilized.
1211          */
1212         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1213 
1214         /*
1215          * If a user thread allocates too much, and si_mem_available()
1216          * reports there's enough memory, even though there is not.
1217          * Make sure the OOM killer kills this thread. This can happen
1218          * even with RETRY_MAYFAIL because another task may be doing
1219          * an allocation after this task has taken all memory.
1220          * This is the task the OOM killer needs to take out during this
1221          * loop, even if it was triggered by an allocation somewhere else.
1222          */
1223         if (user_thread)
1224                 set_current_oom_origin();
1225         for (i = 0; i < nr_pages; i++) {
1226                 struct page *page;
1227 
1228                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1229                                     mflags, cpu_to_node(cpu));
1230                 if (!bpage)
1231                         goto free_pages;
1232 
1233                 list_add(&bpage->list, pages);
1234 
1235                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1236                 if (!page)
1237                         goto free_pages;
1238                 bpage->page = page_address(page);
1239                 rb_init_page(bpage->page);
1240 
1241                 if (user_thread && fatal_signal_pending(current))
1242                         goto free_pages;
1243         }
1244         if (user_thread)
1245                 clear_current_oom_origin();
1246 
1247         return 0;
1248 
1249 free_pages:
1250         list_for_each_entry_safe(bpage, tmp, pages, list) {
1251                 list_del_init(&bpage->list);
1252                 free_buffer_page(bpage);
1253         }
1254         if (user_thread)
1255                 clear_current_oom_origin();
1256 
1257         return -ENOMEM;
1258 }
1259 
1260 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1261                              unsigned long nr_pages)
1262 {
1263         LIST_HEAD(pages);
1264 
1265         WARN_ON(!nr_pages);
1266 
1267         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1268                 return -ENOMEM;
1269 
1270         /*
1271          * The ring buffer page list is a circular list that does not
1272          * start and end with a list head. All page list items point to
1273          * other pages.
1274          */
1275         cpu_buffer->pages = pages.next;
1276         list_del(&pages);
1277 
1278         cpu_buffer->nr_pages = nr_pages;
1279 
1280         rb_check_pages(cpu_buffer);
1281 
1282         return 0;
1283 }
1284 
1285 static struct ring_buffer_per_cpu *
1286 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1287 {
1288         struct ring_buffer_per_cpu *cpu_buffer;
1289         struct buffer_page *bpage;
1290         struct page *page;
1291         int ret;
1292 
1293         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1294                                   GFP_KERNEL, cpu_to_node(cpu));
1295         if (!cpu_buffer)
1296                 return NULL;
1297 
1298         cpu_buffer->cpu = cpu;
1299         cpu_buffer->buffer = buffer;
1300         raw_spin_lock_init(&cpu_buffer->reader_lock);
1301         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1302         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1303         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1304         init_completion(&cpu_buffer->update_done);
1305         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1306         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1307         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1308 
1309         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1310                             GFP_KERNEL, cpu_to_node(cpu));
1311         if (!bpage)
1312                 goto fail_free_buffer;
1313 
1314         rb_check_bpage(cpu_buffer, bpage);
1315 
1316         cpu_buffer->reader_page = bpage;
1317         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1318         if (!page)
1319                 goto fail_free_reader;
1320         bpage->page = page_address(page);
1321         rb_init_page(bpage->page);
1322 
1323         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1324         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1325 
1326         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1327         if (ret < 0)
1328                 goto fail_free_reader;
1329 
1330         cpu_buffer->head_page
1331                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1332         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1333 
1334         rb_head_page_activate(cpu_buffer);
1335 
1336         return cpu_buffer;
1337 
1338  fail_free_reader:
1339         free_buffer_page(cpu_buffer->reader_page);
1340 
1341  fail_free_buffer:
1342         kfree(cpu_buffer);
1343         return NULL;
1344 }
1345 
1346 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1347 {
1348         struct list_head *head = cpu_buffer->pages;
1349         struct buffer_page *bpage, *tmp;
1350 
1351         free_buffer_page(cpu_buffer->reader_page);
1352 
1353         rb_head_page_deactivate(cpu_buffer);
1354 
1355         if (head) {
1356                 list_for_each_entry_safe(bpage, tmp, head, list) {
1357                         list_del_init(&bpage->list);
1358                         free_buffer_page(bpage);
1359                 }
1360                 bpage = list_entry(head, struct buffer_page, list);
1361                 free_buffer_page(bpage);
1362         }
1363 
1364         kfree(cpu_buffer);
1365 }
1366 
1367 /**
1368  * __ring_buffer_alloc - allocate a new ring_buffer
1369  * @size: the size in bytes per cpu that is needed.
1370  * @flags: attributes to set for the ring buffer.
1371  *
1372  * Currently the only flag that is available is the RB_FL_OVERWRITE
1373  * flag. This flag means that the buffer will overwrite old data
1374  * when the buffer wraps. If this flag is not set, the buffer will
1375  * drop data when the tail hits the head.
1376  */
1377 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1378                                         struct lock_class_key *key)
1379 {
1380         struct ring_buffer *buffer;
1381         long nr_pages;
1382         int bsize;
1383         int cpu;
1384         int ret;
1385 
1386         /* keep it in its own cache line */
1387         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1388                          GFP_KERNEL);
1389         if (!buffer)
1390                 return NULL;
1391 
1392         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1393                 goto fail_free_buffer;
1394 
1395         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1396         buffer->flags = flags;
1397         buffer->clock = trace_clock_local;
1398         buffer->reader_lock_key = key;
1399 
1400         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1401         init_waitqueue_head(&buffer->irq_work.waiters);
1402 
1403         /* need at least two pages */
1404         if (nr_pages < 2)
1405                 nr_pages = 2;
1406 
1407         buffer->cpus = nr_cpu_ids;
1408 
1409         bsize = sizeof(void *) * nr_cpu_ids;
1410         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1411                                   GFP_KERNEL);
1412         if (!buffer->buffers)
1413                 goto fail_free_cpumask;
1414 
1415         cpu = raw_smp_processor_id();
1416         cpumask_set_cpu(cpu, buffer->cpumask);
1417         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1418         if (!buffer->buffers[cpu])
1419                 goto fail_free_buffers;
1420 
1421         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1422         if (ret < 0)
1423                 goto fail_free_buffers;
1424 
1425         mutex_init(&buffer->mutex);
1426 
1427         return buffer;
1428 
1429  fail_free_buffers:
1430         for_each_buffer_cpu(buffer, cpu) {
1431                 if (buffer->buffers[cpu])
1432                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1433         }
1434         kfree(buffer->buffers);
1435 
1436  fail_free_cpumask:
1437         free_cpumask_var(buffer->cpumask);
1438 
1439  fail_free_buffer:
1440         kfree(buffer);
1441         return NULL;
1442 }
1443 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1444 
1445 /**
1446  * ring_buffer_free - free a ring buffer.
1447  * @buffer: the buffer to free.
1448  */
1449 void
1450 ring_buffer_free(struct ring_buffer *buffer)
1451 {
1452         int cpu;
1453 
1454         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1455 
1456         for_each_buffer_cpu(buffer, cpu)
1457                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1458 
1459         kfree(buffer->buffers);
1460         free_cpumask_var(buffer->cpumask);
1461 
1462         kfree(buffer);
1463 }
1464 EXPORT_SYMBOL_GPL(ring_buffer_free);
1465 
1466 void ring_buffer_set_clock(struct ring_buffer *buffer,
1467                            u64 (*clock)(void))
1468 {
1469         buffer->clock = clock;
1470 }
1471 
1472 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1473 {
1474         buffer->time_stamp_abs = abs;
1475 }
1476 
1477 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1478 {
1479         return buffer->time_stamp_abs;
1480 }
1481 
1482 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1483 
1484 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1485 {
1486         return local_read(&bpage->entries) & RB_WRITE_MASK;
1487 }
1488 
1489 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1490 {
1491         return local_read(&bpage->write) & RB_WRITE_MASK;
1492 }
1493 
1494 static int
1495 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1496 {
1497         struct list_head *tail_page, *to_remove, *next_page;
1498         struct buffer_page *to_remove_page, *tmp_iter_page;
1499         struct buffer_page *last_page, *first_page;
1500         unsigned long nr_removed;
1501         unsigned long head_bit;
1502         int page_entries;
1503 
1504         head_bit = 0;
1505 
1506         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1507         atomic_inc(&cpu_buffer->record_disabled);
1508         /*
1509          * We don't race with the readers since we have acquired the reader
1510          * lock. We also don't race with writers after disabling recording.
1511          * This makes it easy to figure out the first and the last page to be
1512          * removed from the list. We unlink all the pages in between including
1513          * the first and last pages. This is done in a busy loop so that we
1514          * lose the least number of traces.
1515          * The pages are freed after we restart recording and unlock readers.
1516          */
1517         tail_page = &cpu_buffer->tail_page->list;
1518 
1519         /*
1520          * tail page might be on reader page, we remove the next page
1521          * from the ring buffer
1522          */
1523         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1524                 tail_page = rb_list_head(tail_page->next);
1525         to_remove = tail_page;
1526 
1527         /* start of pages to remove */
1528         first_page = list_entry(rb_list_head(to_remove->next),
1529                                 struct buffer_page, list);
1530 
1531         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1532                 to_remove = rb_list_head(to_remove)->next;
1533                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1534         }
1535 
1536         next_page = rb_list_head(to_remove)->next;
1537 
1538         /*
1539          * Now we remove all pages between tail_page and next_page.
1540          * Make sure that we have head_bit value preserved for the
1541          * next page
1542          */
1543         tail_page->next = (struct list_head *)((unsigned long)next_page |
1544                                                 head_bit);
1545         next_page = rb_list_head(next_page);
1546         next_page->prev = tail_page;
1547 
1548         /* make sure pages points to a valid page in the ring buffer */
1549         cpu_buffer->pages = next_page;
1550 
1551         /* update head page */
1552         if (head_bit)
1553                 cpu_buffer->head_page = list_entry(next_page,
1554                                                 struct buffer_page, list);
1555 
1556         /*
1557          * change read pointer to make sure any read iterators reset
1558          * themselves
1559          */
1560         cpu_buffer->read = 0;
1561 
1562         /* pages are removed, resume tracing and then free the pages */
1563         atomic_dec(&cpu_buffer->record_disabled);
1564         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1565 
1566         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1567 
1568         /* last buffer page to remove */
1569         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1570                                 list);
1571         tmp_iter_page = first_page;
1572 
1573         do {
1574                 cond_resched();
1575 
1576                 to_remove_page = tmp_iter_page;
1577                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1578 
1579                 /* update the counters */
1580                 page_entries = rb_page_entries(to_remove_page);
1581                 if (page_entries) {
1582                         /*
1583                          * If something was added to this page, it was full
1584                          * since it is not the tail page. So we deduct the
1585                          * bytes consumed in ring buffer from here.
1586                          * Increment overrun to account for the lost events.
1587                          */
1588                         local_add(page_entries, &cpu_buffer->overrun);
1589                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1590                 }
1591 
1592                 /*
1593                  * We have already removed references to this list item, just
1594                  * free up the buffer_page and its page
1595                  */
1596                 free_buffer_page(to_remove_page);
1597                 nr_removed--;
1598 
1599         } while (to_remove_page != last_page);
1600 
1601         RB_WARN_ON(cpu_buffer, nr_removed);
1602 
1603         return nr_removed == 0;
1604 }
1605 
1606 static int
1607 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1608 {
1609         struct list_head *pages = &cpu_buffer->new_pages;
1610         int retries, success;
1611 
1612         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1613         /*
1614          * We are holding the reader lock, so the reader page won't be swapped
1615          * in the ring buffer. Now we are racing with the writer trying to
1616          * move head page and the tail page.
1617          * We are going to adapt the reader page update process where:
1618          * 1. We first splice the start and end of list of new pages between
1619          *    the head page and its previous page.
1620          * 2. We cmpxchg the prev_page->next to point from head page to the
1621          *    start of new pages list.
1622          * 3. Finally, we update the head->prev to the end of new list.
1623          *
1624          * We will try this process 10 times, to make sure that we don't keep
1625          * spinning.
1626          */
1627         retries = 10;
1628         success = 0;
1629         while (retries--) {
1630                 struct list_head *head_page, *prev_page, *r;
1631                 struct list_head *last_page, *first_page;
1632                 struct list_head *head_page_with_bit;
1633 
1634                 head_page = &rb_set_head_page(cpu_buffer)->list;
1635                 if (!head_page)
1636                         break;
1637                 prev_page = head_page->prev;
1638 
1639                 first_page = pages->next;
1640                 last_page  = pages->prev;
1641 
1642                 head_page_with_bit = (struct list_head *)
1643                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1644 
1645                 last_page->next = head_page_with_bit;
1646                 first_page->prev = prev_page;
1647 
1648                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1649 
1650                 if (r == head_page_with_bit) {
1651                         /*
1652                          * yay, we replaced the page pointer to our new list,
1653                          * now, we just have to update to head page's prev
1654                          * pointer to point to end of list
1655                          */
1656                         head_page->prev = last_page;
1657                         success = 1;
1658                         break;
1659                 }
1660         }
1661 
1662         if (success)
1663                 INIT_LIST_HEAD(pages);
1664         /*
1665          * If we weren't successful in adding in new pages, warn and stop
1666          * tracing
1667          */
1668         RB_WARN_ON(cpu_buffer, !success);
1669         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1670 
1671         /* free pages if they weren't inserted */
1672         if (!success) {
1673                 struct buffer_page *bpage, *tmp;
1674                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1675                                          list) {
1676                         list_del_init(&bpage->list);
1677                         free_buffer_page(bpage);
1678                 }
1679         }
1680         return success;
1681 }
1682 
1683 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1684 {
1685         int success;
1686 
1687         if (cpu_buffer->nr_pages_to_update > 0)
1688                 success = rb_insert_pages(cpu_buffer);
1689         else
1690                 success = rb_remove_pages(cpu_buffer,
1691                                         -cpu_buffer->nr_pages_to_update);
1692 
1693         if (success)
1694                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1695 }
1696 
1697 static void update_pages_handler(struct work_struct *work)
1698 {
1699         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1700                         struct ring_buffer_per_cpu, update_pages_work);
1701         rb_update_pages(cpu_buffer);
1702         complete(&cpu_buffer->update_done);
1703 }
1704 
1705 /**
1706  * ring_buffer_resize - resize the ring buffer
1707  * @buffer: the buffer to resize.
1708  * @size: the new size.
1709  * @cpu_id: the cpu buffer to resize
1710  *
1711  * Minimum size is 2 * BUF_PAGE_SIZE.
1712  *
1713  * Returns 0 on success and < 0 on failure.
1714  */
1715 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1716                         int cpu_id)
1717 {
1718         struct ring_buffer_per_cpu *cpu_buffer;
1719         unsigned long nr_pages;
1720         int cpu, err = 0;
1721 
1722         /*
1723          * Always succeed at resizing a non-existent buffer:
1724          */
1725         if (!buffer)
1726                 return size;
1727 
1728         /* Make sure the requested buffer exists */
1729         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1730             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1731                 return size;
1732 
1733         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1734 
1735         /* we need a minimum of two pages */
1736         if (nr_pages < 2)
1737                 nr_pages = 2;
1738 
1739         size = nr_pages * BUF_PAGE_SIZE;
1740 
1741         /*
1742          * Don't succeed if resizing is disabled, as a reader might be
1743          * manipulating the ring buffer and is expecting a sane state while
1744          * this is true.
1745          */
1746         if (atomic_read(&buffer->resize_disabled))
1747                 return -EBUSY;
1748 
1749         /* prevent another thread from changing buffer sizes */
1750         mutex_lock(&buffer->mutex);
1751 
1752         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1753                 /* calculate the pages to update */
1754                 for_each_buffer_cpu(buffer, cpu) {
1755                         cpu_buffer = buffer->buffers[cpu];
1756 
1757                         cpu_buffer->nr_pages_to_update = nr_pages -
1758                                                         cpu_buffer->nr_pages;
1759                         /*
1760                          * nothing more to do for removing pages or no update
1761                          */
1762                         if (cpu_buffer->nr_pages_to_update <= 0)
1763                                 continue;
1764                         /*
1765                          * to add pages, make sure all new pages can be
1766                          * allocated without receiving ENOMEM
1767                          */
1768                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1769                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1770                                                 &cpu_buffer->new_pages, cpu)) {
1771                                 /* not enough memory for new pages */
1772                                 err = -ENOMEM;
1773                                 goto out_err;
1774                         }
1775                 }
1776 
1777                 get_online_cpus();
1778                 /*
1779                  * Fire off all the required work handlers
1780                  * We can't schedule on offline CPUs, but it's not necessary
1781                  * since we can change their buffer sizes without any race.
1782                  */
1783                 for_each_buffer_cpu(buffer, cpu) {
1784                         cpu_buffer = buffer->buffers[cpu];
1785                         if (!cpu_buffer->nr_pages_to_update)
1786                                 continue;
1787 
1788                         /* Can't run something on an offline CPU. */
1789                         if (!cpu_online(cpu)) {
1790                                 rb_update_pages(cpu_buffer);
1791                                 cpu_buffer->nr_pages_to_update = 0;
1792                         } else {
1793                                 schedule_work_on(cpu,
1794                                                 &cpu_buffer->update_pages_work);
1795                         }
1796                 }
1797 
1798                 /* wait for all the updates to complete */
1799                 for_each_buffer_cpu(buffer, cpu) {
1800                         cpu_buffer = buffer->buffers[cpu];
1801                         if (!cpu_buffer->nr_pages_to_update)
1802                                 continue;
1803 
1804                         if (cpu_online(cpu))
1805                                 wait_for_completion(&cpu_buffer->update_done);
1806                         cpu_buffer->nr_pages_to_update = 0;
1807                 }
1808 
1809                 put_online_cpus();
1810         } else {
1811                 /* Make sure this CPU has been initialized */
1812                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1813                         goto out;
1814 
1815                 cpu_buffer = buffer->buffers[cpu_id];
1816 
1817                 if (nr_pages == cpu_buffer->nr_pages)
1818                         goto out;
1819 
1820                 cpu_buffer->nr_pages_to_update = nr_pages -
1821                                                 cpu_buffer->nr_pages;
1822 
1823                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1824                 if (cpu_buffer->nr_pages_to_update > 0 &&
1825                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1826                                             &cpu_buffer->new_pages, cpu_id)) {
1827                         err = -ENOMEM;
1828                         goto out_err;
1829                 }
1830 
1831                 get_online_cpus();
1832 
1833                 /* Can't run something on an offline CPU. */
1834                 if (!cpu_online(cpu_id))
1835                         rb_update_pages(cpu_buffer);
1836                 else {
1837                         schedule_work_on(cpu_id,
1838                                          &cpu_buffer->update_pages_work);
1839                         wait_for_completion(&cpu_buffer->update_done);
1840                 }
1841 
1842                 cpu_buffer->nr_pages_to_update = 0;
1843                 put_online_cpus();
1844         }
1845 
1846  out:
1847         /*
1848          * The ring buffer resize can happen with the ring buffer
1849          * enabled, so that the update disturbs the tracing as little
1850          * as possible. But if the buffer is disabled, we do not need
1851          * to worry about that, and we can take the time to verify
1852          * that the buffer is not corrupt.
1853          */
1854         if (atomic_read(&buffer->record_disabled)) {
1855                 atomic_inc(&buffer->record_disabled);
1856                 /*
1857                  * Even though the buffer was disabled, we must make sure
1858                  * that it is truly disabled before calling rb_check_pages.
1859                  * There could have been a race between checking
1860                  * record_disable and incrementing it.
1861                  */
1862                 synchronize_rcu();
1863                 for_each_buffer_cpu(buffer, cpu) {
1864                         cpu_buffer = buffer->buffers[cpu];
1865                         rb_check_pages(cpu_buffer);
1866                 }
1867                 atomic_dec(&buffer->record_disabled);
1868         }
1869 
1870         mutex_unlock(&buffer->mutex);
1871         return size;
1872 
1873  out_err:
1874         for_each_buffer_cpu(buffer, cpu) {
1875                 struct buffer_page *bpage, *tmp;
1876 
1877                 cpu_buffer = buffer->buffers[cpu];
1878                 cpu_buffer->nr_pages_to_update = 0;
1879 
1880                 if (list_empty(&cpu_buffer->new_pages))
1881                         continue;
1882 
1883                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1884                                         list) {
1885                         list_del_init(&bpage->list);
1886                         free_buffer_page(bpage);
1887                 }
1888         }
1889         mutex_unlock(&buffer->mutex);
1890         return err;
1891 }
1892 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1893 
1894 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1895 {
1896         mutex_lock(&buffer->mutex);
1897         if (val)
1898                 buffer->flags |= RB_FL_OVERWRITE;
1899         else
1900                 buffer->flags &= ~RB_FL_OVERWRITE;
1901         mutex_unlock(&buffer->mutex);
1902 }
1903 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1904 
1905 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1906 {
1907         return bpage->page->data + index;
1908 }
1909 
1910 static __always_inline struct ring_buffer_event *
1911 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1912 {
1913         return __rb_page_index(cpu_buffer->reader_page,
1914                                cpu_buffer->reader_page->read);
1915 }
1916 
1917 static __always_inline struct ring_buffer_event *
1918 rb_iter_head_event(struct ring_buffer_iter *iter)
1919 {
1920         return __rb_page_index(iter->head_page, iter->head);
1921 }
1922 
1923 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1924 {
1925         return local_read(&bpage->page->commit);
1926 }
1927 
1928 /* Size is determined by what has been committed */
1929 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1930 {
1931         return rb_page_commit(bpage);
1932 }
1933 
1934 static __always_inline unsigned
1935 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1936 {
1937         return rb_page_commit(cpu_buffer->commit_page);
1938 }
1939 
1940 static __always_inline unsigned
1941 rb_event_index(struct ring_buffer_event *event)
1942 {
1943         unsigned long addr = (unsigned long)event;
1944 
1945         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1946 }
1947 
1948 static void rb_inc_iter(struct ring_buffer_iter *iter)
1949 {
1950         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1951 
1952         /*
1953          * The iterator could be on the reader page (it starts there).
1954          * But the head could have moved, since the reader was
1955          * found. Check for this case and assign the iterator
1956          * to the head page instead of next.
1957          */
1958         if (iter->head_page == cpu_buffer->reader_page)
1959                 iter->head_page = rb_set_head_page(cpu_buffer);
1960         else
1961                 rb_inc_page(cpu_buffer, &iter->head_page);
1962 
1963         iter->read_stamp = iter->head_page->page->time_stamp;
1964         iter->head = 0;
1965 }
1966 
1967 /*
1968  * rb_handle_head_page - writer hit the head page
1969  *
1970  * Returns: +1 to retry page
1971  *           0 to continue
1972  *          -1 on error
1973  */
1974 static int
1975 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1976                     struct buffer_page *tail_page,
1977                     struct buffer_page *next_page)
1978 {
1979         struct buffer_page *new_head;
1980         int entries;
1981         int type;
1982         int ret;
1983 
1984         entries = rb_page_entries(next_page);
1985 
1986         /*
1987          * The hard part is here. We need to move the head
1988          * forward, and protect against both readers on
1989          * other CPUs and writers coming in via interrupts.
1990          */
1991         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1992                                        RB_PAGE_HEAD);
1993 
1994         /*
1995          * type can be one of four:
1996          *  NORMAL - an interrupt already moved it for us
1997          *  HEAD   - we are the first to get here.
1998          *  UPDATE - we are the interrupt interrupting
1999          *           a current move.
2000          *  MOVED  - a reader on another CPU moved the next
2001          *           pointer to its reader page. Give up
2002          *           and try again.
2003          */
2004 
2005         switch (type) {
2006         case RB_PAGE_HEAD:
2007                 /*
2008                  * We changed the head to UPDATE, thus
2009                  * it is our responsibility to update
2010                  * the counters.
2011                  */
2012                 local_add(entries, &cpu_buffer->overrun);
2013                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2014 
2015                 /*
2016                  * The entries will be zeroed out when we move the
2017                  * tail page.
2018                  */
2019 
2020                 /* still more to do */
2021                 break;
2022 
2023         case RB_PAGE_UPDATE:
2024                 /*
2025                  * This is an interrupt that interrupt the
2026                  * previous update. Still more to do.
2027                  */
2028                 break;
2029         case RB_PAGE_NORMAL:
2030                 /*
2031                  * An interrupt came in before the update
2032                  * and processed this for us.
2033                  * Nothing left to do.
2034                  */
2035                 return 1;
2036         case RB_PAGE_MOVED:
2037                 /*
2038                  * The reader is on another CPU and just did
2039                  * a swap with our next_page.
2040                  * Try again.
2041                  */
2042                 return 1;
2043         default:
2044                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2045                 return -1;
2046         }
2047 
2048         /*
2049          * Now that we are here, the old head pointer is
2050          * set to UPDATE. This will keep the reader from
2051          * swapping the head page with the reader page.
2052          * The reader (on another CPU) will spin till
2053          * we are finished.
2054          *
2055          * We just need to protect against interrupts
2056          * doing the job. We will set the next pointer
2057          * to HEAD. After that, we set the old pointer
2058          * to NORMAL, but only if it was HEAD before.
2059          * otherwise we are an interrupt, and only
2060          * want the outer most commit to reset it.
2061          */
2062         new_head = next_page;
2063         rb_inc_page(cpu_buffer, &new_head);
2064 
2065         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2066                                     RB_PAGE_NORMAL);
2067 
2068         /*
2069          * Valid returns are:
2070          *  HEAD   - an interrupt came in and already set it.
2071          *  NORMAL - One of two things:
2072          *            1) We really set it.
2073          *            2) A bunch of interrupts came in and moved
2074          *               the page forward again.
2075          */
2076         switch (ret) {
2077         case RB_PAGE_HEAD:
2078         case RB_PAGE_NORMAL:
2079                 /* OK */
2080                 break;
2081         default:
2082                 RB_WARN_ON(cpu_buffer, 1);
2083                 return -1;
2084         }
2085 
2086         /*
2087          * It is possible that an interrupt came in,
2088          * set the head up, then more interrupts came in
2089          * and moved it again. When we get back here,
2090          * the page would have been set to NORMAL but we
2091          * just set it back to HEAD.
2092          *
2093          * How do you detect this? Well, if that happened
2094          * the tail page would have moved.
2095          */
2096         if (ret == RB_PAGE_NORMAL) {
2097                 struct buffer_page *buffer_tail_page;
2098 
2099                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2100                 /*
2101                  * If the tail had moved passed next, then we need
2102                  * to reset the pointer.
2103                  */
2104                 if (buffer_tail_page != tail_page &&
2105                     buffer_tail_page != next_page)
2106                         rb_head_page_set_normal(cpu_buffer, new_head,
2107                                                 next_page,
2108                                                 RB_PAGE_HEAD);
2109         }
2110 
2111         /*
2112          * If this was the outer most commit (the one that
2113          * changed the original pointer from HEAD to UPDATE),
2114          * then it is up to us to reset it to NORMAL.
2115          */
2116         if (type == RB_PAGE_HEAD) {
2117                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2118                                               tail_page,
2119                                               RB_PAGE_UPDATE);
2120                 if (RB_WARN_ON(cpu_buffer,
2121                                ret != RB_PAGE_UPDATE))
2122                         return -1;
2123         }
2124 
2125         return 0;
2126 }
2127 
2128 static inline void
2129 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2130               unsigned long tail, struct rb_event_info *info)
2131 {
2132         struct buffer_page *tail_page = info->tail_page;
2133         struct ring_buffer_event *event;
2134         unsigned long length = info->length;
2135 
2136         /*
2137          * Only the event that crossed the page boundary
2138          * must fill the old tail_page with padding.
2139          */
2140         if (tail >= BUF_PAGE_SIZE) {
2141                 /*
2142                  * If the page was filled, then we still need
2143                  * to update the real_end. Reset it to zero
2144                  * and the reader will ignore it.
2145                  */
2146                 if (tail == BUF_PAGE_SIZE)
2147                         tail_page->real_end = 0;
2148 
2149                 local_sub(length, &tail_page->write);
2150                 return;
2151         }
2152 
2153         event = __rb_page_index(tail_page, tail);
2154 
2155         /* account for padding bytes */
2156         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2157 
2158         /*
2159          * Save the original length to the meta data.
2160          * This will be used by the reader to add lost event
2161          * counter.
2162          */
2163         tail_page->real_end = tail;
2164 
2165         /*
2166          * If this event is bigger than the minimum size, then
2167          * we need to be careful that we don't subtract the
2168          * write counter enough to allow another writer to slip
2169          * in on this page.
2170          * We put in a discarded commit instead, to make sure
2171          * that this space is not used again.
2172          *
2173          * If we are less than the minimum size, we don't need to
2174          * worry about it.
2175          */
2176         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2177                 /* No room for any events */
2178 
2179                 /* Mark the rest of the page with padding */
2180                 rb_event_set_padding(event);
2181 
2182                 /* Set the write back to the previous setting */
2183                 local_sub(length, &tail_page->write);
2184                 return;
2185         }
2186 
2187         /* Put in a discarded event */
2188         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2189         event->type_len = RINGBUF_TYPE_PADDING;
2190         /* time delta must be non zero */
2191         event->time_delta = 1;
2192 
2193         /* Set write to end of buffer */
2194         length = (tail + length) - BUF_PAGE_SIZE;
2195         local_sub(length, &tail_page->write);
2196 }
2197 
2198 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2199 
2200 /*
2201  * This is the slow path, force gcc not to inline it.
2202  */
2203 static noinline struct ring_buffer_event *
2204 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2205              unsigned long tail, struct rb_event_info *info)
2206 {
2207         struct buffer_page *tail_page = info->tail_page;
2208         struct buffer_page *commit_page = cpu_buffer->commit_page;
2209         struct ring_buffer *buffer = cpu_buffer->buffer;
2210         struct buffer_page *next_page;
2211         int ret;
2212 
2213         next_page = tail_page;
2214 
2215         rb_inc_page(cpu_buffer, &next_page);
2216 
2217         /*
2218          * If for some reason, we had an interrupt storm that made
2219          * it all the way around the buffer, bail, and warn
2220          * about it.
2221          */
2222         if (unlikely(next_page == commit_page)) {
2223                 local_inc(&cpu_buffer->commit_overrun);
2224                 goto out_reset;
2225         }
2226 
2227         /*
2228          * This is where the fun begins!
2229          *
2230          * We are fighting against races between a reader that
2231          * could be on another CPU trying to swap its reader
2232          * page with the buffer head.
2233          *
2234          * We are also fighting against interrupts coming in and
2235          * moving the head or tail on us as well.
2236          *
2237          * If the next page is the head page then we have filled
2238          * the buffer, unless the commit page is still on the
2239          * reader page.
2240          */
2241         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2242 
2243                 /*
2244                  * If the commit is not on the reader page, then
2245                  * move the header page.
2246                  */
2247                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2248                         /*
2249                          * If we are not in overwrite mode,
2250                          * this is easy, just stop here.
2251                          */
2252                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2253                                 local_inc(&cpu_buffer->dropped_events);
2254                                 goto out_reset;
2255                         }
2256 
2257                         ret = rb_handle_head_page(cpu_buffer,
2258                                                   tail_page,
2259                                                   next_page);
2260                         if (ret < 0)
2261                                 goto out_reset;
2262                         if (ret)
2263                                 goto out_again;
2264                 } else {
2265                         /*
2266                          * We need to be careful here too. The
2267                          * commit page could still be on the reader
2268                          * page. We could have a small buffer, and
2269                          * have filled up the buffer with events
2270                          * from interrupts and such, and wrapped.
2271                          *
2272                          * Note, if the tail page is also the on the
2273                          * reader_page, we let it move out.
2274                          */
2275                         if (unlikely((cpu_buffer->commit_page !=
2276                                       cpu_buffer->tail_page) &&
2277                                      (cpu_buffer->commit_page ==
2278                                       cpu_buffer->reader_page))) {
2279                                 local_inc(&cpu_buffer->commit_overrun);
2280                                 goto out_reset;
2281                         }
2282                 }
2283         }
2284 
2285         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2286 
2287  out_again:
2288 
2289         rb_reset_tail(cpu_buffer, tail, info);
2290 
2291         /* Commit what we have for now. */
2292         rb_end_commit(cpu_buffer);
2293         /* rb_end_commit() decs committing */
2294         local_inc(&cpu_buffer->committing);
2295 
2296         /* fail and let the caller try again */
2297         return ERR_PTR(-EAGAIN);
2298 
2299  out_reset:
2300         /* reset write */
2301         rb_reset_tail(cpu_buffer, tail, info);
2302 
2303         return NULL;
2304 }
2305 
2306 /* Slow path, do not inline */
2307 static noinline struct ring_buffer_event *
2308 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2309 {
2310         if (abs)
2311                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2312         else
2313                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2314 
2315         /* Not the first event on the page, or not delta? */
2316         if (abs || rb_event_index(event)) {
2317                 event->time_delta = delta & TS_MASK;
2318                 event->array[0] = delta >> TS_SHIFT;
2319         } else {
2320                 /* nope, just zero it */
2321                 event->time_delta = 0;
2322                 event->array[0] = 0;
2323         }
2324 
2325         return skip_time_extend(event);
2326 }
2327 
2328 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2329                                      struct ring_buffer_event *event);
2330 
2331 /**
2332  * rb_update_event - update event type and data
2333  * @event: the event to update
2334  * @type: the type of event
2335  * @length: the size of the event field in the ring buffer
2336  *
2337  * Update the type and data fields of the event. The length
2338  * is the actual size that is written to the ring buffer,
2339  * and with this, we can determine what to place into the
2340  * data field.
2341  */
2342 static void
2343 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2344                 struct ring_buffer_event *event,
2345                 struct rb_event_info *info)
2346 {
2347         unsigned length = info->length;
2348         u64 delta = info->delta;
2349 
2350         /* Only a commit updates the timestamp */
2351         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2352                 delta = 0;
2353 
2354         /*
2355          * If we need to add a timestamp, then we
2356          * add it to the start of the reserved space.
2357          */
2358         if (unlikely(info->add_timestamp)) {
2359                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2360 
2361                 event = rb_add_time_stamp(event, info->delta, abs);
2362                 length -= RB_LEN_TIME_EXTEND;
2363                 delta = 0;
2364         }
2365 
2366         event->time_delta = delta;
2367         length -= RB_EVNT_HDR_SIZE;
2368         if (length > RB_MAX_SMALL_DATA) {
2369                 event->type_len = 0;
2370                 event->array[0] = length;
2371         } else
2372                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2373 }
2374 
2375 static unsigned rb_calculate_event_length(unsigned length)
2376 {
2377         struct ring_buffer_event event; /* Used only for sizeof array */
2378 
2379         /* zero length can cause confusions */
2380         if (!length)
2381                 length++;
2382 
2383         if (length > RB_MAX_SMALL_DATA)
2384                 length += sizeof(event.array[0]);
2385 
2386         length += RB_EVNT_HDR_SIZE;
2387         length = ALIGN(length, RB_ALIGNMENT);
2388 
2389         /*
2390          * In case the time delta is larger than the 27 bits for it
2391          * in the header, we need to add a timestamp. If another
2392          * event comes in when trying to discard this one to increase
2393          * the length, then the timestamp will be added in the allocated
2394          * space of this event. If length is bigger than the size needed
2395          * for the TIME_EXTEND, then padding has to be used. The events
2396          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2397          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2398          * As length is a multiple of 4, we only need to worry if it
2399          * is 12 (RB_LEN_TIME_EXTEND + 4).
2400          */
2401         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2402                 length += RB_ALIGNMENT;
2403 
2404         return length;
2405 }
2406 
2407 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2408 static inline bool sched_clock_stable(void)
2409 {
2410         return true;
2411 }
2412 #endif
2413 
2414 static inline int
2415 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2416                   struct ring_buffer_event *event)
2417 {
2418         unsigned long new_index, old_index;
2419         struct buffer_page *bpage;
2420         unsigned long index;
2421         unsigned long addr;
2422 
2423         new_index = rb_event_index(event);
2424         old_index = new_index + rb_event_ts_length(event);
2425         addr = (unsigned long)event;
2426         addr &= PAGE_MASK;
2427 
2428         bpage = READ_ONCE(cpu_buffer->tail_page);
2429 
2430         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2431                 unsigned long write_mask =
2432                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2433                 unsigned long event_length = rb_event_length(event);
2434                 /*
2435                  * This is on the tail page. It is possible that
2436                  * a write could come in and move the tail page
2437                  * and write to the next page. That is fine
2438                  * because we just shorten what is on this page.
2439                  */
2440                 old_index += write_mask;
2441                 new_index += write_mask;
2442                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2443                 if (index == old_index) {
2444                         /* update counters */
2445                         local_sub(event_length, &cpu_buffer->entries_bytes);
2446                         return 1;
2447                 }
2448         }
2449 
2450         /* could not discard */
2451         return 0;
2452 }
2453 
2454 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2455 {
2456         local_inc(&cpu_buffer->committing);
2457         local_inc(&cpu_buffer->commits);
2458 }
2459 
2460 static __always_inline void
2461 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2462 {
2463         unsigned long max_count;
2464 
2465         /*
2466          * We only race with interrupts and NMIs on this CPU.
2467          * If we own the commit event, then we can commit
2468          * all others that interrupted us, since the interruptions
2469          * are in stack format (they finish before they come
2470          * back to us). This allows us to do a simple loop to
2471          * assign the commit to the tail.
2472          */
2473  again:
2474         max_count = cpu_buffer->nr_pages * 100;
2475 
2476         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2477                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2478                         return;
2479                 if (RB_WARN_ON(cpu_buffer,
2480                                rb_is_reader_page(cpu_buffer->tail_page)))
2481                         return;
2482                 local_set(&cpu_buffer->commit_page->page->commit,
2483                           rb_page_write(cpu_buffer->commit_page));
2484                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2485                 /* Only update the write stamp if the page has an event */
2486                 if (rb_page_write(cpu_buffer->commit_page))
2487                         cpu_buffer->write_stamp =
2488                                 cpu_buffer->commit_page->page->time_stamp;
2489                 /* add barrier to keep gcc from optimizing too much */
2490                 barrier();
2491         }
2492         while (rb_commit_index(cpu_buffer) !=
2493                rb_page_write(cpu_buffer->commit_page)) {
2494 
2495                 local_set(&cpu_buffer->commit_page->page->commit,
2496                           rb_page_write(cpu_buffer->commit_page));
2497                 RB_WARN_ON(cpu_buffer,
2498                            local_read(&cpu_buffer->commit_page->page->commit) &
2499                            ~RB_WRITE_MASK);
2500                 barrier();
2501         }
2502 
2503         /* again, keep gcc from optimizing */
2504         barrier();
2505 
2506         /*
2507          * If an interrupt came in just after the first while loop
2508          * and pushed the tail page forward, we will be left with
2509          * a dangling commit that will never go forward.
2510          */
2511         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2512                 goto again;
2513 }
2514 
2515 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2516 {
2517         unsigned long commits;
2518 
2519         if (RB_WARN_ON(cpu_buffer,
2520                        !local_read(&cpu_buffer->committing)))
2521                 return;
2522 
2523  again:
2524         commits = local_read(&cpu_buffer->commits);
2525         /* synchronize with interrupts */
2526         barrier();
2527         if (local_read(&cpu_buffer->committing) == 1)
2528                 rb_set_commit_to_write(cpu_buffer);
2529 
2530         local_dec(&cpu_buffer->committing);
2531 
2532         /* synchronize with interrupts */
2533         barrier();
2534 
2535         /*
2536          * Need to account for interrupts coming in between the
2537          * updating of the commit page and the clearing of the
2538          * committing counter.
2539          */
2540         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2541             !local_read(&cpu_buffer->committing)) {
2542                 local_inc(&cpu_buffer->committing);
2543                 goto again;
2544         }
2545 }
2546 
2547 static inline void rb_event_discard(struct ring_buffer_event *event)
2548 {
2549         if (extended_time(event))
2550                 event = skip_time_extend(event);
2551 
2552         /* array[0] holds the actual length for the discarded event */
2553         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2554         event->type_len = RINGBUF_TYPE_PADDING;
2555         /* time delta must be non zero */
2556         if (!event->time_delta)
2557                 event->time_delta = 1;
2558 }
2559 
2560 static __always_inline bool
2561 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2562                    struct ring_buffer_event *event)
2563 {
2564         unsigned long addr = (unsigned long)event;
2565         unsigned long index;
2566 
2567         index = rb_event_index(event);
2568         addr &= PAGE_MASK;
2569 
2570         return cpu_buffer->commit_page->page == (void *)addr &&
2571                 rb_commit_index(cpu_buffer) == index;
2572 }
2573 
2574 static __always_inline void
2575 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2576                       struct ring_buffer_event *event)
2577 {
2578         u64 delta;
2579 
2580         /*
2581          * The event first in the commit queue updates the
2582          * time stamp.
2583          */
2584         if (rb_event_is_commit(cpu_buffer, event)) {
2585                 /*
2586                  * A commit event that is first on a page
2587                  * updates the write timestamp with the page stamp
2588                  */
2589                 if (!rb_event_index(event))
2590                         cpu_buffer->write_stamp =
2591                                 cpu_buffer->commit_page->page->time_stamp;
2592                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2593                         delta = ring_buffer_event_time_stamp(event);
2594                         cpu_buffer->write_stamp += delta;
2595                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2596                         delta = ring_buffer_event_time_stamp(event);
2597                         cpu_buffer->write_stamp = delta;
2598                 } else
2599                         cpu_buffer->write_stamp += event->time_delta;
2600         }
2601 }
2602 
2603 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2604                       struct ring_buffer_event *event)
2605 {
2606         local_inc(&cpu_buffer->entries);
2607         rb_update_write_stamp(cpu_buffer, event);
2608         rb_end_commit(cpu_buffer);
2609 }
2610 
2611 static __always_inline void
2612 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2613 {
2614         size_t nr_pages;
2615         size_t dirty;
2616         size_t full;
2617 
2618         if (buffer->irq_work.waiters_pending) {
2619                 buffer->irq_work.waiters_pending = false;
2620                 /* irq_work_queue() supplies it's own memory barriers */
2621                 irq_work_queue(&buffer->irq_work.work);
2622         }
2623 
2624         if (cpu_buffer->irq_work.waiters_pending) {
2625                 cpu_buffer->irq_work.waiters_pending = false;
2626                 /* irq_work_queue() supplies it's own memory barriers */
2627                 irq_work_queue(&cpu_buffer->irq_work.work);
2628         }
2629 
2630         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2631                 return;
2632 
2633         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2634                 return;
2635 
2636         if (!cpu_buffer->irq_work.full_waiters_pending)
2637                 return;
2638 
2639         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2640 
2641         full = cpu_buffer->shortest_full;
2642         nr_pages = cpu_buffer->nr_pages;
2643         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2644         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2645                 return;
2646 
2647         cpu_buffer->irq_work.wakeup_full = true;
2648         cpu_buffer->irq_work.full_waiters_pending = false;
2649         /* irq_work_queue() supplies it's own memory barriers */
2650         irq_work_queue(&cpu_buffer->irq_work.work);
2651 }
2652 
2653 /*
2654  * The lock and unlock are done within a preempt disable section.
2655  * The current_context per_cpu variable can only be modified
2656  * by the current task between lock and unlock. But it can
2657  * be modified more than once via an interrupt. To pass this
2658  * information from the lock to the unlock without having to
2659  * access the 'in_interrupt()' functions again (which do show
2660  * a bit of overhead in something as critical as function tracing,
2661  * we use a bitmask trick.
2662  *
2663  *  bit 0 =  NMI context
2664  *  bit 1 =  IRQ context
2665  *  bit 2 =  SoftIRQ context
2666  *  bit 3 =  normal context.
2667  *
2668  * This works because this is the order of contexts that can
2669  * preempt other contexts. A SoftIRQ never preempts an IRQ
2670  * context.
2671  *
2672  * When the context is determined, the corresponding bit is
2673  * checked and set (if it was set, then a recursion of that context
2674  * happened).
2675  *
2676  * On unlock, we need to clear this bit. To do so, just subtract
2677  * 1 from the current_context and AND it to itself.
2678  *
2679  * (binary)
2680  *  101 - 1 = 100
2681  *  101 & 100 = 100 (clearing bit zero)
2682  *
2683  *  1010 - 1 = 1001
2684  *  1010 & 1001 = 1000 (clearing bit 1)
2685  *
2686  * The least significant bit can be cleared this way, and it
2687  * just so happens that it is the same bit corresponding to
2688  * the current context.
2689  */
2690 
2691 static __always_inline int
2692 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2693 {
2694         unsigned int val = cpu_buffer->current_context;
2695         unsigned long pc = preempt_count();
2696         int bit;
2697 
2698         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2699                 bit = RB_CTX_NORMAL;
2700         else
2701                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2702                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2703 
2704         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2705                 return 1;
2706 
2707         val |= (1 << (bit + cpu_buffer->nest));
2708         cpu_buffer->current_context = val;
2709 
2710         return 0;
2711 }
2712 
2713 static __always_inline void
2714 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2715 {
2716         cpu_buffer->current_context &=
2717                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2718 }
2719 
2720 /* The recursive locking above uses 4 bits */
2721 #define NESTED_BITS 4
2722 
2723 /**
2724  * ring_buffer_nest_start - Allow to trace while nested
2725  * @buffer: The ring buffer to modify
2726  *
2727  * The ring buffer has a safety mechanism to prevent recursion.
2728  * But there may be a case where a trace needs to be done while
2729  * tracing something else. In this case, calling this function
2730  * will allow this function to nest within a currently active
2731  * ring_buffer_lock_reserve().
2732  *
2733  * Call this function before calling another ring_buffer_lock_reserve() and
2734  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2735  */
2736 void ring_buffer_nest_start(struct ring_buffer *buffer)
2737 {
2738         struct ring_buffer_per_cpu *cpu_buffer;
2739         int cpu;
2740 
2741         /* Enabled by ring_buffer_nest_end() */
2742         preempt_disable_notrace();
2743         cpu = raw_smp_processor_id();
2744         cpu_buffer = buffer->buffers[cpu];
2745         /* This is the shift value for the above recursive locking */
2746         cpu_buffer->nest += NESTED_BITS;
2747 }
2748 
2749 /**
2750  * ring_buffer_nest_end - Allow to trace while nested
2751  * @buffer: The ring buffer to modify
2752  *
2753  * Must be called after ring_buffer_nest_start() and after the
2754  * ring_buffer_unlock_commit().
2755  */
2756 void ring_buffer_nest_end(struct ring_buffer *buffer)
2757 {
2758         struct ring_buffer_per_cpu *cpu_buffer;
2759         int cpu;
2760 
2761         /* disabled by ring_buffer_nest_start() */
2762         cpu = raw_smp_processor_id();
2763         cpu_buffer = buffer->buffers[cpu];
2764         /* This is the shift value for the above recursive locking */
2765         cpu_buffer->nest -= NESTED_BITS;
2766         preempt_enable_notrace();
2767 }
2768 
2769 /**
2770  * ring_buffer_unlock_commit - commit a reserved
2771  * @buffer: The buffer to commit to
2772  * @event: The event pointer to commit.
2773  *
2774  * This commits the data to the ring buffer, and releases any locks held.
2775  *
2776  * Must be paired with ring_buffer_lock_reserve.
2777  */
2778 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2779                               struct ring_buffer_event *event)
2780 {
2781         struct ring_buffer_per_cpu *cpu_buffer;
2782         int cpu = raw_smp_processor_id();
2783 
2784         cpu_buffer = buffer->buffers[cpu];
2785 
2786         rb_commit(cpu_buffer, event);
2787 
2788         rb_wakeups(buffer, cpu_buffer);
2789 
2790         trace_recursive_unlock(cpu_buffer);
2791 
2792         preempt_enable_notrace();
2793 
2794         return 0;
2795 }
2796 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2797 
2798 static noinline void
2799 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2800                     struct rb_event_info *info)
2801 {
2802         WARN_ONCE(info->delta > (1ULL << 59),
2803                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2804                   (unsigned long long)info->delta,
2805                   (unsigned long long)info->ts,
2806                   (unsigned long long)cpu_buffer->write_stamp,
2807                   sched_clock_stable() ? "" :
2808                   "If you just came from a suspend/resume,\n"
2809                   "please switch to the trace global clock:\n"
2810                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2811                   "or add trace_clock=global to the kernel command line\n");
2812         info->add_timestamp = 1;
2813 }
2814 
2815 static struct ring_buffer_event *
2816 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2817                   struct rb_event_info *info)
2818 {
2819         struct ring_buffer_event *event;
2820         struct buffer_page *tail_page;
2821         unsigned long tail, write;
2822 
2823         /*
2824          * If the time delta since the last event is too big to
2825          * hold in the time field of the event, then we append a
2826          * TIME EXTEND event ahead of the data event.
2827          */
2828         if (unlikely(info->add_timestamp))
2829                 info->length += RB_LEN_TIME_EXTEND;
2830 
2831         /* Don't let the compiler play games with cpu_buffer->tail_page */
2832         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2833         write = local_add_return(info->length, &tail_page->write);
2834 
2835         /* set write to only the index of the write */
2836         write &= RB_WRITE_MASK;
2837         tail = write - info->length;
2838 
2839         /*
2840          * If this is the first commit on the page, then it has the same
2841          * timestamp as the page itself.
2842          */
2843         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2844                 info->delta = 0;
2845 
2846         /* See if we shot pass the end of this buffer page */
2847         if (unlikely(write > BUF_PAGE_SIZE))
2848                 return rb_move_tail(cpu_buffer, tail, info);
2849 
2850         /* We reserved something on the buffer */
2851 
2852         event = __rb_page_index(tail_page, tail);
2853         rb_update_event(cpu_buffer, event, info);
2854 
2855         local_inc(&tail_page->entries);
2856 
2857         /*
2858          * If this is the first commit on the page, then update
2859          * its timestamp.
2860          */
2861         if (!tail)
2862                 tail_page->page->time_stamp = info->ts;
2863 
2864         /* account for these added bytes */
2865         local_add(info->length, &cpu_buffer->entries_bytes);
2866 
2867         return event;
2868 }
2869 
2870 static __always_inline struct ring_buffer_event *
2871 rb_reserve_next_event(struct ring_buffer *buffer,
2872                       struct ring_buffer_per_cpu *cpu_buffer,
2873                       unsigned long length)
2874 {
2875         struct ring_buffer_event *event;
2876         struct rb_event_info info;
2877         int nr_loops = 0;
2878         u64 diff;
2879 
2880         rb_start_commit(cpu_buffer);
2881 
2882 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2883         /*
2884          * Due to the ability to swap a cpu buffer from a buffer
2885          * it is possible it was swapped before we committed.
2886          * (committing stops a swap). We check for it here and
2887          * if it happened, we have to fail the write.
2888          */
2889         barrier();
2890         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2891                 local_dec(&cpu_buffer->committing);
2892                 local_dec(&cpu_buffer->commits);
2893                 return NULL;
2894         }
2895 #endif
2896 
2897         info.length = rb_calculate_event_length(length);
2898  again:
2899         info.add_timestamp = 0;
2900         info.delta = 0;
2901 
2902         /*
2903          * We allow for interrupts to reenter here and do a trace.
2904          * If one does, it will cause this original code to loop
2905          * back here. Even with heavy interrupts happening, this
2906          * should only happen a few times in a row. If this happens
2907          * 1000 times in a row, there must be either an interrupt
2908          * storm or we have something buggy.
2909          * Bail!
2910          */
2911         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2912                 goto out_fail;
2913 
2914         info.ts = rb_time_stamp(cpu_buffer->buffer);
2915         diff = info.ts - cpu_buffer->write_stamp;
2916 
2917         /* make sure this diff is calculated here */
2918         barrier();
2919 
2920         if (ring_buffer_time_stamp_abs(buffer)) {
2921                 info.delta = info.ts;
2922                 rb_handle_timestamp(cpu_buffer, &info);
2923         } else /* Did the write stamp get updated already? */
2924                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2925                 info.delta = diff;
2926                 if (unlikely(test_time_stamp(info.delta)))
2927                         rb_handle_timestamp(cpu_buffer, &info);
2928         }
2929 
2930         event = __rb_reserve_next(cpu_buffer, &info);
2931 
2932         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2933                 if (info.add_timestamp)
2934                         info.length -= RB_LEN_TIME_EXTEND;
2935                 goto again;
2936         }
2937 
2938         if (!event)
2939                 goto out_fail;
2940 
2941         return event;
2942 
2943  out_fail:
2944         rb_end_commit(cpu_buffer);
2945         return NULL;
2946 }
2947 
2948 /**
2949  * ring_buffer_lock_reserve - reserve a part of the buffer
2950  * @buffer: the ring buffer to reserve from
2951  * @length: the length of the data to reserve (excluding event header)
2952  *
2953  * Returns a reserved event on the ring buffer to copy directly to.
2954  * The user of this interface will need to get the body to write into
2955  * and can use the ring_buffer_event_data() interface.
2956  *
2957  * The length is the length of the data needed, not the event length
2958  * which also includes the event header.
2959  *
2960  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2961  * If NULL is returned, then nothing has been allocated or locked.
2962  */
2963 struct ring_buffer_event *
2964 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2965 {
2966         struct ring_buffer_per_cpu *cpu_buffer;
2967         struct ring_buffer_event *event;
2968         int cpu;
2969 
2970         /* If we are tracing schedule, we don't want to recurse */
2971         preempt_disable_notrace();
2972 
2973         if (unlikely(atomic_read(&buffer->record_disabled)))
2974                 goto out;
2975 
2976         cpu = raw_smp_processor_id();
2977 
2978         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2979                 goto out;
2980 
2981         cpu_buffer = buffer->buffers[cpu];
2982 
2983         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2984                 goto out;
2985 
2986         if (unlikely(length > BUF_MAX_DATA_SIZE))
2987                 goto out;
2988 
2989         if (unlikely(trace_recursive_lock(cpu_buffer)))
2990                 goto out;
2991 
2992         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2993         if (!event)
2994                 goto out_unlock;
2995 
2996         return event;
2997 
2998  out_unlock:
2999         trace_recursive_unlock(cpu_buffer);
3000  out:
3001         preempt_enable_notrace();
3002         return NULL;
3003 }
3004 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3005 
3006 /*
3007  * Decrement the entries to the page that an event is on.
3008  * The event does not even need to exist, only the pointer
3009  * to the page it is on. This may only be called before the commit
3010  * takes place.
3011  */
3012 static inline void
3013 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3014                    struct ring_buffer_event *event)
3015 {
3016         unsigned long addr = (unsigned long)event;
3017         struct buffer_page *bpage = cpu_buffer->commit_page;
3018         struct buffer_page *start;
3019 
3020         addr &= PAGE_MASK;
3021 
3022         /* Do the likely case first */
3023         if (likely(bpage->page == (void *)addr)) {
3024                 local_dec(&bpage->entries);
3025                 return;
3026         }
3027 
3028         /*
3029          * Because the commit page may be on the reader page we
3030          * start with the next page and check the end loop there.
3031          */
3032         rb_inc_page(cpu_buffer, &bpage);
3033         start = bpage;
3034         do {
3035                 if (bpage->page == (void *)addr) {
3036                         local_dec(&bpage->entries);
3037                         return;
3038                 }
3039                 rb_inc_page(cpu_buffer, &bpage);
3040         } while (bpage != start);
3041 
3042         /* commit not part of this buffer?? */
3043         RB_WARN_ON(cpu_buffer, 1);
3044 }
3045 
3046 /**
3047  * ring_buffer_commit_discard - discard an event that has not been committed
3048  * @buffer: the ring buffer
3049  * @event: non committed event to discard
3050  *
3051  * Sometimes an event that is in the ring buffer needs to be ignored.
3052  * This function lets the user discard an event in the ring buffer
3053  * and then that event will not be read later.
3054  *
3055  * This function only works if it is called before the item has been
3056  * committed. It will try to free the event from the ring buffer
3057  * if another event has not been added behind it.
3058  *
3059  * If another event has been added behind it, it will set the event
3060  * up as discarded, and perform the commit.
3061  *
3062  * If this function is called, do not call ring_buffer_unlock_commit on
3063  * the event.
3064  */
3065 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3066                                 struct ring_buffer_event *event)
3067 {
3068         struct ring_buffer_per_cpu *cpu_buffer;
3069         int cpu;
3070 
3071         /* The event is discarded regardless */
3072         rb_event_discard(event);
3073 
3074         cpu = smp_processor_id();
3075         cpu_buffer = buffer->buffers[cpu];
3076 
3077         /*
3078          * This must only be called if the event has not been
3079          * committed yet. Thus we can assume that preemption
3080          * is still disabled.
3081          */
3082         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3083 
3084         rb_decrement_entry(cpu_buffer, event);
3085         if (rb_try_to_discard(cpu_buffer, event))
3086                 goto out;
3087 
3088         /*
3089          * The commit is still visible by the reader, so we
3090          * must still update the timestamp.
3091          */
3092         rb_update_write_stamp(cpu_buffer, event);
3093  out:
3094         rb_end_commit(cpu_buffer);
3095 
3096         trace_recursive_unlock(cpu_buffer);
3097 
3098         preempt_enable_notrace();
3099 
3100 }
3101 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3102 
3103 /**
3104  * ring_buffer_write - write data to the buffer without reserving
3105  * @buffer: The ring buffer to write to.
3106  * @length: The length of the data being written (excluding the event header)
3107  * @data: The data to write to the buffer.
3108  *
3109  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3110  * one function. If you already have the data to write to the buffer, it
3111  * may be easier to simply call this function.
3112  *
3113  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3114  * and not the length of the event which would hold the header.
3115  */
3116 int ring_buffer_write(struct ring_buffer *buffer,
3117                       unsigned long length,
3118                       void *data)
3119 {
3120         struct ring_buffer_per_cpu *cpu_buffer;
3121         struct ring_buffer_event *event;
3122         void *body;
3123         int ret = -EBUSY;
3124         int cpu;
3125 
3126         preempt_disable_notrace();
3127 
3128         if (atomic_read(&buffer->record_disabled))
3129                 goto out;
3130 
3131         cpu = raw_smp_processor_id();
3132 
3133         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3134                 goto out;
3135 
3136         cpu_buffer = buffer->buffers[cpu];
3137 
3138         if (atomic_read(&cpu_buffer->record_disabled))
3139                 goto out;
3140 
3141         if (length > BUF_MAX_DATA_SIZE)
3142                 goto out;
3143 
3144         if (unlikely(trace_recursive_lock(cpu_buffer)))
3145                 goto out;
3146 
3147         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3148         if (!event)
3149                 goto out_unlock;
3150 
3151         body = rb_event_data(event);
3152 
3153         memcpy(body, data, length);
3154 
3155         rb_commit(cpu_buffer, event);
3156 
3157         rb_wakeups(buffer, cpu_buffer);
3158 
3159         ret = 0;
3160 
3161  out_unlock:
3162         trace_recursive_unlock(cpu_buffer);
3163 
3164  out:
3165         preempt_enable_notrace();
3166 
3167         return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(ring_buffer_write);
3170 
3171 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3172 {
3173         struct buffer_page *reader = cpu_buffer->reader_page;
3174         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3175         struct buffer_page *commit = cpu_buffer->commit_page;
3176 
3177         /* In case of error, head will be NULL */
3178         if (unlikely(!head))
3179                 return true;
3180 
3181         return reader->read == rb_page_commit(reader) &&
3182                 (commit == reader ||
3183                  (commit == head &&
3184                   head->read == rb_page_commit(commit)));
3185 }
3186 
3187 /**
3188  * ring_buffer_record_disable - stop all writes into the buffer
3189  * @buffer: The ring buffer to stop writes to.
3190  *
3191  * This prevents all writes to the buffer. Any attempt to write
3192  * to the buffer after this will fail and return NULL.
3193  *
3194  * The caller should call synchronize_rcu() after this.
3195  */
3196 void ring_buffer_record_disable(struct ring_buffer *buffer)
3197 {
3198         atomic_inc(&buffer->record_disabled);
3199 }
3200 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3201 
3202 /**
3203  * ring_buffer_record_enable - enable writes to the buffer
3204  * @buffer: The ring buffer to enable writes
3205  *
3206  * Note, multiple disables will need the same number of enables
3207  * to truly enable the writing (much like preempt_disable).
3208  */
3209 void ring_buffer_record_enable(struct ring_buffer *buffer)
3210 {
3211         atomic_dec(&buffer->record_disabled);
3212 }
3213 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3214 
3215 /**
3216  * ring_buffer_record_off - stop all writes into the buffer
3217  * @buffer: The ring buffer to stop writes to.
3218  *
3219  * This prevents all writes to the buffer. Any attempt to write
3220  * to the buffer after this will fail and return NULL.
3221  *
3222  * This is different than ring_buffer_record_disable() as
3223  * it works like an on/off switch, where as the disable() version
3224  * must be paired with a enable().
3225  */
3226 void ring_buffer_record_off(struct ring_buffer *buffer)
3227 {
3228         unsigned int rd;
3229         unsigned int new_rd;
3230 
3231         do {
3232                 rd = atomic_read(&buffer->record_disabled);
3233                 new_rd = rd | RB_BUFFER_OFF;
3234         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3235 }
3236 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3237 
3238 /**
3239  * ring_buffer_record_on - restart writes into the buffer
3240  * @buffer: The ring buffer to start writes to.
3241  *
3242  * This enables all writes to the buffer that was disabled by
3243  * ring_buffer_record_off().
3244  *
3245  * This is different than ring_buffer_record_enable() as
3246  * it works like an on/off switch, where as the enable() version
3247  * must be paired with a disable().
3248  */
3249 void ring_buffer_record_on(struct ring_buffer *buffer)
3250 {
3251         unsigned int rd;
3252         unsigned int new_rd;
3253 
3254         do {
3255                 rd = atomic_read(&buffer->record_disabled);
3256                 new_rd = rd & ~RB_BUFFER_OFF;
3257         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3258 }
3259 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3260 
3261 /**
3262  * ring_buffer_record_is_on - return true if the ring buffer can write
3263  * @buffer: The ring buffer to see if write is enabled
3264  *
3265  * Returns true if the ring buffer is in a state that it accepts writes.
3266  */
3267 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3268 {
3269         return !atomic_read(&buffer->record_disabled);
3270 }
3271 
3272 /**
3273  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3274  * @buffer: The ring buffer to see if write is set enabled
3275  *
3276  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3277  * Note that this does NOT mean it is in a writable state.
3278  *
3279  * It may return true when the ring buffer has been disabled by
3280  * ring_buffer_record_disable(), as that is a temporary disabling of
3281  * the ring buffer.
3282  */
3283 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3284 {
3285         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3286 }
3287 
3288 /**
3289  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3290  * @buffer: The ring buffer to stop writes to.
3291  * @cpu: The CPU buffer to stop
3292  *
3293  * This prevents all writes to the buffer. Any attempt to write
3294  * to the buffer after this will fail and return NULL.
3295  *
3296  * The caller should call synchronize_rcu() after this.
3297  */
3298 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300         struct ring_buffer_per_cpu *cpu_buffer;
3301 
3302         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303                 return;
3304 
3305         cpu_buffer = buffer->buffers[cpu];
3306         atomic_inc(&cpu_buffer->record_disabled);
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3309 
3310 /**
3311  * ring_buffer_record_enable_cpu - enable writes to the buffer
3312  * @buffer: The ring buffer to enable writes
3313  * @cpu: The CPU to enable.
3314  *
3315  * Note, multiple disables will need the same number of enables
3316  * to truly enable the writing (much like preempt_disable).
3317  */
3318 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3319 {
3320         struct ring_buffer_per_cpu *cpu_buffer;
3321 
3322         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3323                 return;
3324 
3325         cpu_buffer = buffer->buffers[cpu];
3326         atomic_dec(&cpu_buffer->record_disabled);
3327 }
3328 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3329 
3330 /*
3331  * The total entries in the ring buffer is the running counter
3332  * of entries entered into the ring buffer, minus the sum of
3333  * the entries read from the ring buffer and the number of
3334  * entries that were overwritten.
3335  */
3336 static inline unsigned long
3337 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3338 {
3339         return local_read(&cpu_buffer->entries) -
3340                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3341 }
3342 
3343 /**
3344  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3345  * @buffer: The ring buffer
3346  * @cpu: The per CPU buffer to read from.
3347  */
3348 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3349 {
3350         unsigned long flags;
3351         struct ring_buffer_per_cpu *cpu_buffer;
3352         struct buffer_page *bpage;
3353         u64 ret = 0;
3354 
3355         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3356                 return 0;
3357 
3358         cpu_buffer = buffer->buffers[cpu];
3359         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3360         /*
3361          * if the tail is on reader_page, oldest time stamp is on the reader
3362          * page
3363          */
3364         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3365                 bpage = cpu_buffer->reader_page;
3366         else
3367                 bpage = rb_set_head_page(cpu_buffer);
3368         if (bpage)
3369                 ret = bpage->page->time_stamp;
3370         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3371 
3372         return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3375 
3376 /**
3377  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3378  * @buffer: The ring buffer
3379  * @cpu: The per CPU buffer to read from.
3380  */
3381 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3382 {
3383         struct ring_buffer_per_cpu *cpu_buffer;
3384         unsigned long ret;
3385 
3386         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3387                 return 0;
3388 
3389         cpu_buffer = buffer->buffers[cpu];
3390         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3391 
3392         return ret;
3393 }
3394 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3395 
3396 /**
3397  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3398  * @buffer: The ring buffer
3399  * @cpu: The per CPU buffer to get the entries from.
3400  */
3401 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3402 {
3403         struct ring_buffer_per_cpu *cpu_buffer;
3404 
3405         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3406                 return 0;
3407 
3408         cpu_buffer = buffer->buffers[cpu];
3409 
3410         return rb_num_of_entries(cpu_buffer);
3411 }
3412 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3413 
3414 /**
3415  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3416  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3417  * @buffer: The ring buffer
3418  * @cpu: The per CPU buffer to get the number of overruns from
3419  */
3420 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3421 {
3422         struct ring_buffer_per_cpu *cpu_buffer;
3423         unsigned long ret;
3424 
3425         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3426                 return 0;
3427 
3428         cpu_buffer = buffer->buffers[cpu];
3429         ret = local_read(&cpu_buffer->overrun);
3430 
3431         return ret;
3432 }
3433 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3434 
3435 /**
3436  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3437  * commits failing due to the buffer wrapping around while there are uncommitted
3438  * events, such as during an interrupt storm.
3439  * @buffer: The ring buffer
3440  * @cpu: The per CPU buffer to get the number of overruns from
3441  */
3442 unsigned long
3443 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3444 {
3445         struct ring_buffer_per_cpu *cpu_buffer;
3446         unsigned long ret;
3447 
3448         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3449                 return 0;
3450 
3451         cpu_buffer = buffer->buffers[cpu];
3452         ret = local_read(&cpu_buffer->commit_overrun);
3453 
3454         return ret;
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3457 
3458 /**
3459  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3460  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3461  * @buffer: The ring buffer
3462  * @cpu: The per CPU buffer to get the number of overruns from
3463  */
3464 unsigned long
3465 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3466 {
3467         struct ring_buffer_per_cpu *cpu_buffer;
3468         unsigned long ret;
3469 
3470         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3471                 return 0;
3472 
3473         cpu_buffer = buffer->buffers[cpu];
3474         ret = local_read(&cpu_buffer->dropped_events);
3475 
3476         return ret;
3477 }
3478 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3479 
3480 /**
3481  * ring_buffer_read_events_cpu - get the number of events successfully read
3482  * @buffer: The ring buffer
3483  * @cpu: The per CPU buffer to get the number of events read
3484  */
3485 unsigned long
3486 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3487 {
3488         struct ring_buffer_per_cpu *cpu_buffer;
3489 
3490         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3491                 return 0;
3492 
3493         cpu_buffer = buffer->buffers[cpu];
3494         return cpu_buffer->read;
3495 }
3496 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3497 
3498 /**
3499  * ring_buffer_entries - get the number of entries in a buffer
3500  * @buffer: The ring buffer
3501  *
3502  * Returns the total number of entries in the ring buffer
3503  * (all CPU entries)
3504  */
3505 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3506 {
3507         struct ring_buffer_per_cpu *cpu_buffer;
3508         unsigned long entries = 0;
3509         int cpu;
3510 
3511         /* if you care about this being correct, lock the buffer */
3512         for_each_buffer_cpu(buffer, cpu) {
3513                 cpu_buffer = buffer->buffers[cpu];
3514                 entries += rb_num_of_entries(cpu_buffer);
3515         }
3516 
3517         return entries;
3518 }
3519 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3520 
3521 /**
3522  * ring_buffer_overruns - get the number of overruns in buffer
3523  * @buffer: The ring buffer
3524  *
3525  * Returns the total number of overruns in the ring buffer
3526  * (all CPU entries)
3527  */
3528 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3529 {
3530         struct ring_buffer_per_cpu *cpu_buffer;
3531         unsigned long overruns = 0;
3532         int cpu;
3533 
3534         /* if you care about this being correct, lock the buffer */
3535         for_each_buffer_cpu(buffer, cpu) {
3536                 cpu_buffer = buffer->buffers[cpu];
3537                 overruns += local_read(&cpu_buffer->overrun);
3538         }
3539 
3540         return overruns;
3541 }
3542 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3543 
3544 static void rb_iter_reset(struct ring_buffer_iter *iter)
3545 {
3546         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3547 
3548         /* Iterator usage is expected to have record disabled */
3549         iter->head_page = cpu_buffer->reader_page;
3550         iter->head = cpu_buffer->reader_page->read;
3551 
3552         iter->cache_reader_page = iter->head_page;
3553         iter->cache_read = cpu_buffer->read;
3554 
3555         if (iter->head)
3556                 iter->read_stamp = cpu_buffer->read_stamp;
3557         else
3558                 iter->read_stamp = iter->head_page->page->time_stamp;
3559 }
3560 
3561 /**
3562  * ring_buffer_iter_reset - reset an iterator
3563  * @iter: The iterator to reset
3564  *
3565  * Resets the iterator, so that it will start from the beginning
3566  * again.
3567  */
3568 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3569 {
3570         struct ring_buffer_per_cpu *cpu_buffer;
3571         unsigned long flags;
3572 
3573         if (!iter)
3574                 return;
3575 
3576         cpu_buffer = iter->cpu_buffer;
3577 
3578         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3579         rb_iter_reset(iter);
3580         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3581 }
3582 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3583 
3584 /**
3585  * ring_buffer_iter_empty - check if an iterator has no more to read
3586  * @iter: The iterator to check
3587  */
3588 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3589 {
3590         struct ring_buffer_per_cpu *cpu_buffer;
3591         struct buffer_page *reader;
3592         struct buffer_page *head_page;
3593         struct buffer_page *commit_page;
3594         unsigned commit;
3595 
3596         cpu_buffer = iter->cpu_buffer;
3597 
3598         /* Remember, trace recording is off when iterator is in use */
3599         reader = cpu_buffer->reader_page;
3600         head_page = cpu_buffer->head_page;
3601         commit_page = cpu_buffer->commit_page;
3602         commit = rb_page_commit(commit_page);
3603 
3604         return ((iter->head_page == commit_page && iter->head == commit) ||
3605                 (iter->head_page == reader && commit_page == head_page &&
3606                  head_page->read == commit &&
3607                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3608 }
3609 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3610 
3611 static void
3612 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3613                      struct ring_buffer_event *event)
3614 {
3615         u64 delta;
3616 
3617         switch (event->type_len) {
3618         case RINGBUF_TYPE_PADDING:
3619                 return;
3620 
3621         case RINGBUF_TYPE_TIME_EXTEND:
3622                 delta = ring_buffer_event_time_stamp(event);
3623                 cpu_buffer->read_stamp += delta;
3624                 return;
3625 
3626         case RINGBUF_TYPE_TIME_STAMP:
3627                 delta = ring_buffer_event_time_stamp(event);
3628                 cpu_buffer->read_stamp = delta;
3629                 return;
3630 
3631         case RINGBUF_TYPE_DATA:
3632                 cpu_buffer->read_stamp += event->time_delta;
3633                 return;
3634 
3635         default:
3636                 BUG();
3637         }
3638         return;
3639 }
3640 
3641 static void
3642 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3643                           struct ring_buffer_event *event)
3644 {
3645         u64 delta;
3646 
3647         switch (event->type_len) {
3648         case RINGBUF_TYPE_PADDING:
3649                 return;
3650 
3651         case RINGBUF_TYPE_TIME_EXTEND:
3652                 delta = ring_buffer_event_time_stamp(event);
3653                 iter->read_stamp += delta;
3654                 return;
3655 
3656         case RINGBUF_TYPE_TIME_STAMP:
3657                 delta = ring_buffer_event_time_stamp(event);
3658                 iter->read_stamp = delta;
3659                 return;
3660 
3661         case RINGBUF_TYPE_DATA:
3662                 iter->read_stamp += event->time_delta;
3663                 return;
3664 
3665         default:
3666                 BUG();
3667         }
3668         return;
3669 }
3670 
3671 static struct buffer_page *
3672 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3673 {
3674         struct buffer_page *reader = NULL;
3675         unsigned long overwrite;
3676         unsigned long flags;
3677         int nr_loops = 0;
3678         int ret;
3679 
3680         local_irq_save(flags);
3681         arch_spin_lock(&cpu_buffer->lock);
3682 
3683  again:
3684         /*
3685          * This should normally only loop twice. But because the
3686          * start of the reader inserts an empty page, it causes
3687          * a case where we will loop three times. There should be no
3688          * reason to loop four times (that I know of).
3689          */
3690         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3691                 reader = NULL;
3692                 goto out;
3693         }
3694 
3695         reader = cpu_buffer->reader_page;
3696 
3697         /* If there's more to read, return this page */
3698         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3699                 goto out;
3700 
3701         /* Never should we have an index greater than the size */
3702         if (RB_WARN_ON(cpu_buffer,
3703                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3704                 goto out;
3705 
3706         /* check if we caught up to the tail */
3707         reader = NULL;
3708         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3709                 goto out;
3710 
3711         /* Don't bother swapping if the ring buffer is empty */
3712         if (rb_num_of_entries(cpu_buffer) == 0)
3713                 goto out;
3714 
3715         /*
3716          * Reset the reader page to size zero.
3717          */
3718         local_set(&cpu_buffer->reader_page->write, 0);
3719         local_set(&cpu_buffer->reader_page->entries, 0);
3720         local_set(&cpu_buffer->reader_page->page->commit, 0);
3721         cpu_buffer->reader_page->real_end = 0;
3722 
3723  spin:
3724         /*
3725          * Splice the empty reader page into the list around the head.
3726          */
3727         reader = rb_set_head_page(cpu_buffer);
3728         if (!reader)
3729                 goto out;
3730         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3731         cpu_buffer->reader_page->list.prev = reader->list.prev;
3732 
3733         /*
3734          * cpu_buffer->pages just needs to point to the buffer, it
3735          *  has no specific buffer page to point to. Lets move it out
3736          *  of our way so we don't accidentally swap it.
3737          */
3738         cpu_buffer->pages = reader->list.prev;
3739 
3740         /* The reader page will be pointing to the new head */
3741         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3742 
3743         /*
3744          * We want to make sure we read the overruns after we set up our
3745          * pointers to the next object. The writer side does a
3746          * cmpxchg to cross pages which acts as the mb on the writer
3747          * side. Note, the reader will constantly fail the swap
3748          * while the writer is updating the pointers, so this
3749          * guarantees that the overwrite recorded here is the one we
3750          * want to compare with the last_overrun.
3751          */
3752         smp_mb();
3753         overwrite = local_read(&(cpu_buffer->overrun));
3754 
3755         /*
3756          * Here's the tricky part.
3757          *
3758          * We need to move the pointer past the header page.
3759          * But we can only do that if a writer is not currently
3760          * moving it. The page before the header page has the
3761          * flag bit '1' set if it is pointing to the page we want.
3762          * but if the writer is in the process of moving it
3763          * than it will be '2' or already moved '0'.
3764          */
3765 
3766         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3767 
3768         /*
3769          * If we did not convert it, then we must try again.
3770          */
3771         if (!ret)
3772                 goto spin;
3773 
3774         /*
3775          * Yay! We succeeded in replacing the page.
3776          *
3777          * Now make the new head point back to the reader page.
3778          */
3779         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3780         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3781 
3782         local_inc(&cpu_buffer->pages_read);
3783 
3784         /* Finally update the reader page to the new head */
3785         cpu_buffer->reader_page = reader;
3786         cpu_buffer->reader_page->read = 0;
3787 
3788         if (overwrite != cpu_buffer->last_overrun) {
3789                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3790                 cpu_buffer->last_overrun = overwrite;
3791         }
3792 
3793         goto again;
3794 
3795  out:
3796         /* Update the read_stamp on the first event */
3797         if (reader && reader->read == 0)
3798                 cpu_buffer->read_stamp = reader->page->time_stamp;
3799 
3800         arch_spin_unlock(&cpu_buffer->lock);
3801         local_irq_restore(flags);
3802 
3803         return reader;
3804 }
3805 
3806 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3807 {
3808         struct ring_buffer_event *event;
3809         struct buffer_page *reader;
3810         unsigned length;
3811 
3812         reader = rb_get_reader_page(cpu_buffer);
3813 
3814         /* This function should not be called when buffer is empty */
3815         if (RB_WARN_ON(cpu_buffer, !reader))
3816                 return;
3817 
3818         event = rb_reader_event(cpu_buffer);
3819 
3820         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3821                 cpu_buffer->read++;
3822 
3823         rb_update_read_stamp(cpu_buffer, event);
3824 
3825         length = rb_event_length(event);
3826         cpu_buffer->reader_page->read += length;
3827 }
3828 
3829 static void rb_advance_iter(struct ring_buffer_iter *iter)
3830 {
3831         struct ring_buffer_per_cpu *cpu_buffer;
3832         struct ring_buffer_event *event;
3833         unsigned length;
3834 
3835         cpu_buffer = iter->cpu_buffer;
3836 
3837         /*
3838          * Check if we are at the end of the buffer.
3839          */
3840         if (iter->head >= rb_page_size(iter->head_page)) {
3841                 /* discarded commits can make the page empty */
3842                 if (iter->head_page == cpu_buffer->commit_page)
3843                         return;
3844                 rb_inc_iter(iter);
3845                 return;
3846         }
3847 
3848         event = rb_iter_head_event(iter);
3849 
3850         length = rb_event_length(event);
3851 
3852         /*
3853          * This should not be called to advance the header if we are
3854          * at the tail of the buffer.
3855          */
3856         if (RB_WARN_ON(cpu_buffer,
3857                        (iter->head_page == cpu_buffer->commit_page) &&
3858                        (iter->head + length > rb_commit_index(cpu_buffer))))
3859                 return;
3860 
3861         rb_update_iter_read_stamp(iter, event);
3862 
3863         iter->head += length;
3864 
3865         /* check for end of page padding */
3866         if ((iter->head >= rb_page_size(iter->head_page)) &&
3867             (iter->head_page != cpu_buffer->commit_page))
3868                 rb_inc_iter(iter);
3869 }
3870 
3871 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3872 {
3873         return cpu_buffer->lost_events;
3874 }
3875 
3876 static struct ring_buffer_event *
3877 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3878                unsigned long *lost_events)
3879 {
3880         struct ring_buffer_event *event;
3881         struct buffer_page *reader;
3882         int nr_loops = 0;
3883 
3884         if (ts)
3885                 *ts = 0;
3886  again:
3887         /*
3888          * We repeat when a time extend is encountered.
3889          * Since the time extend is always attached to a data event,
3890          * we should never loop more than once.
3891          * (We never hit the following condition more than twice).
3892          */
3893         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3894                 return NULL;
3895 
3896         reader = rb_get_reader_page(cpu_buffer);
3897         if (!reader)
3898                 return NULL;
3899 
3900         event = rb_reader_event(cpu_buffer);
3901 
3902         switch (event->type_len) {
3903         case RINGBUF_TYPE_PADDING:
3904                 if (rb_null_event(event))
3905                         RB_WARN_ON(cpu_buffer, 1);
3906                 /*
3907                  * Because the writer could be discarding every
3908                  * event it creates (which would probably be bad)
3909                  * if we were to go back to "again" then we may never
3910                  * catch up, and will trigger the warn on, or lock
3911                  * the box. Return the padding, and we will release
3912                  * the current locks, and try again.
3913                  */
3914                 return event;
3915 
3916         case RINGBUF_TYPE_TIME_EXTEND:
3917                 /* Internal data, OK to advance */
3918                 rb_advance_reader(cpu_buffer);
3919                 goto again;
3920 
3921         case RINGBUF_TYPE_TIME_STAMP:
3922                 if (ts) {
3923                         *ts = ring_buffer_event_time_stamp(event);
3924                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3925                                                          cpu_buffer->cpu, ts);
3926                 }
3927                 /* Internal data, OK to advance */
3928                 rb_advance_reader(cpu_buffer);
3929                 goto again;
3930 
3931         case RINGBUF_TYPE_DATA:
3932                 if (ts && !(*ts)) {
3933                         *ts = cpu_buffer->read_stamp + event->time_delta;
3934                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3935                                                          cpu_buffer->cpu, ts);
3936                 }
3937                 if (lost_events)
3938                         *lost_events = rb_lost_events(cpu_buffer);
3939                 return event;
3940 
3941         default:
3942                 BUG();
3943         }
3944 
3945         return NULL;
3946 }
3947 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3948 
3949 static struct ring_buffer_event *
3950 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3951 {
3952         struct ring_buffer *buffer;
3953         struct ring_buffer_per_cpu *cpu_buffer;
3954         struct ring_buffer_event *event;
3955         int nr_loops = 0;
3956 
3957         if (ts)
3958                 *ts = 0;
3959 
3960         cpu_buffer = iter->cpu_buffer;
3961         buffer = cpu_buffer->buffer;
3962 
3963         /*
3964          * Check if someone performed a consuming read to
3965          * the buffer. A consuming read invalidates the iterator
3966          * and we need to reset the iterator in this case.
3967          */
3968         if (unlikely(iter->cache_read != cpu_buffer->read ||
3969                      iter->cache_reader_page != cpu_buffer->reader_page))
3970                 rb_iter_reset(iter);
3971 
3972  again:
3973         if (ring_buffer_iter_empty(iter))
3974                 return NULL;
3975 
3976         /*
3977          * We repeat when a time extend is encountered or we hit
3978          * the end of the page. Since the time extend is always attached
3979          * to a data event, we should never loop more than three times.
3980          * Once for going to next page, once on time extend, and
3981          * finally once to get the event.
3982          * (We never hit the following condition more than thrice).
3983          */
3984         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3985                 return NULL;
3986 
3987         if (rb_per_cpu_empty(cpu_buffer))
3988                 return NULL;
3989 
3990         if (iter->head >= rb_page_size(iter->head_page)) {
3991                 rb_inc_iter(iter);
3992                 goto again;
3993         }
3994 
3995         event = rb_iter_head_event(iter);
3996 
3997         switch (event->type_len) {
3998         case RINGBUF_TYPE_PADDING:
3999                 if (rb_null_event(event)) {
4000                         rb_inc_iter(iter);
4001                         goto again;
4002                 }
4003                 rb_advance_iter(iter);
4004                 return event;
4005 
4006         case RINGBUF_TYPE_TIME_EXTEND:
4007                 /* Internal data, OK to advance */
4008                 rb_advance_iter(iter);
4009                 goto again;
4010 
4011         case RINGBUF_TYPE_TIME_STAMP:
4012                 if (ts) {
4013                         *ts = ring_buffer_event_time_stamp(event);
4014                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4015                                                          cpu_buffer->cpu, ts);
4016                 }
4017                 /* Internal data, OK to advance */
4018                 rb_advance_iter(iter);
4019                 goto again;
4020 
4021         case RINGBUF_TYPE_DATA:
4022                 if (ts && !(*ts)) {
4023                         *ts = iter->read_stamp + event->time_delta;
4024                         ring_buffer_normalize_time_stamp(buffer,
4025                                                          cpu_buffer->cpu, ts);
4026                 }
4027                 return event;
4028 
4029         default:
4030                 BUG();
4031         }
4032 
4033         return NULL;
4034 }
4035 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4036 
4037 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4038 {
4039         if (likely(!in_nmi())) {
4040                 raw_spin_lock(&cpu_buffer->reader_lock);
4041                 return true;
4042         }
4043 
4044         /*
4045          * If an NMI die dumps out the content of the ring buffer
4046          * trylock must be used to prevent a deadlock if the NMI
4047          * preempted a task that holds the ring buffer locks. If
4048          * we get the lock then all is fine, if not, then continue
4049          * to do the read, but this can corrupt the ring buffer,
4050          * so it must be permanently disabled from future writes.
4051          * Reading from NMI is a oneshot deal.
4052          */
4053         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4054                 return true;
4055 
4056         /* Continue without locking, but disable the ring buffer */
4057         atomic_inc(&cpu_buffer->record_disabled);
4058         return false;
4059 }
4060 
4061 static inline void
4062 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4063 {
4064         if (likely(locked))
4065                 raw_spin_unlock(&cpu_buffer->reader_lock);
4066         return;
4067 }
4068 
4069 /**
4070  * ring_buffer_peek - peek at the next event to be read
4071  * @buffer: The ring buffer to read
4072  * @cpu: The cpu to peak at
4073  * @ts: The timestamp counter of this event.
4074  * @lost_events: a variable to store if events were lost (may be NULL)
4075  *
4076  * This will return the event that will be read next, but does
4077  * not consume the data.
4078  */
4079 struct ring_buffer_event *
4080 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4081                  unsigned long *lost_events)
4082 {
4083         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4084         struct ring_buffer_event *event;
4085         unsigned long flags;
4086         bool dolock;
4087 
4088         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4089                 return NULL;
4090 
4091  again:
4092         local_irq_save(flags);
4093         dolock = rb_reader_lock(cpu_buffer);
4094         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4095         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4096                 rb_advance_reader(cpu_buffer);
4097         rb_reader_unlock(cpu_buffer, dolock);
4098         local_irq_restore(flags);
4099 
4100         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4101                 goto again;
4102 
4103         return event;
4104 }
4105 
4106 /**
4107  * ring_buffer_iter_peek - peek at the next event to be read
4108  * @iter: The ring buffer iterator
4109  * @ts: The timestamp counter of this event.
4110  *
4111  * This will return the event that will be read next, but does
4112  * not increment the iterator.
4113  */
4114 struct ring_buffer_event *
4115 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4116 {
4117         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4118         struct ring_buffer_event *event;
4119         unsigned long flags;
4120 
4121  again:
4122         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4123         event = rb_iter_peek(iter, ts);
4124         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4125 
4126         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4127                 goto again;
4128 
4129         return event;
4130 }
4131 
4132 /**
4133  * ring_buffer_consume - return an event and consume it
4134  * @buffer: The ring buffer to get the next event from
4135  * @cpu: the cpu to read the buffer from
4136  * @ts: a variable to store the timestamp (may be NULL)
4137  * @lost_events: a variable to store if events were lost (may be NULL)
4138  *
4139  * Returns the next event in the ring buffer, and that event is consumed.
4140  * Meaning, that sequential reads will keep returning a different event,
4141  * and eventually empty the ring buffer if the producer is slower.
4142  */
4143 struct ring_buffer_event *
4144 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4145                     unsigned long *lost_events)
4146 {
4147         struct ring_buffer_per_cpu *cpu_buffer;
4148         struct ring_buffer_event *event = NULL;
4149         unsigned long flags;
4150         bool dolock;
4151 
4152  again:
4153         /* might be called in atomic */
4154         preempt_disable();
4155 
4156         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4157                 goto out;
4158 
4159         cpu_buffer = buffer->buffers[cpu];
4160         local_irq_save(flags);
4161         dolock = rb_reader_lock(cpu_buffer);
4162 
4163         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4164         if (event) {
4165                 cpu_buffer->lost_events = 0;
4166                 rb_advance_reader(cpu_buffer);
4167         }
4168 
4169         rb_reader_unlock(cpu_buffer, dolock);
4170         local_irq_restore(flags);
4171 
4172  out:
4173         preempt_enable();
4174 
4175         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4176                 goto again;
4177 
4178         return event;
4179 }
4180 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4181 
4182 /**
4183  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4184  * @buffer: The ring buffer to read from
4185  * @cpu: The cpu buffer to iterate over
4186  * @flags: gfp flags to use for memory allocation
4187  *
4188  * This performs the initial preparations necessary to iterate
4189  * through the buffer.  Memory is allocated, buffer recording
4190  * is disabled, and the iterator pointer is returned to the caller.
4191  *
4192  * Disabling buffer recording prevents the reading from being
4193  * corrupted. This is not a consuming read, so a producer is not
4194  * expected.
4195  *
4196  * After a sequence of ring_buffer_read_prepare calls, the user is
4197  * expected to make at least one call to ring_buffer_read_prepare_sync.
4198  * Afterwards, ring_buffer_read_start is invoked to get things going
4199  * for real.
4200  *
4201  * This overall must be paired with ring_buffer_read_finish.
4202  */
4203 struct ring_buffer_iter *
4204 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4205 {
4206         struct ring_buffer_per_cpu *cpu_buffer;
4207         struct ring_buffer_iter *iter;
4208 
4209         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4210                 return NULL;
4211 
4212         iter = kmalloc(sizeof(*iter), flags);
4213         if (!iter)
4214                 return NULL;
4215 
4216         cpu_buffer = buffer->buffers[cpu];
4217 
4218         iter->cpu_buffer = cpu_buffer;
4219 
4220         atomic_inc(&buffer->resize_disabled);
4221         atomic_inc(&cpu_buffer->record_disabled);
4222 
4223         return iter;
4224 }
4225 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4226 
4227 /**
4228  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4229  *
4230  * All previously invoked ring_buffer_read_prepare calls to prepare
4231  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4232  * calls on those iterators are allowed.
4233  */
4234 void
4235 ring_buffer_read_prepare_sync(void)
4236 {
4237         synchronize_rcu();
4238 }
4239 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4240 
4241 /**
4242  * ring_buffer_read_start - start a non consuming read of the buffer
4243  * @iter: The iterator returned by ring_buffer_read_prepare
4244  *
4245  * This finalizes the startup of an iteration through the buffer.
4246  * The iterator comes from a call to ring_buffer_read_prepare and
4247  * an intervening ring_buffer_read_prepare_sync must have been
4248  * performed.
4249  *
4250  * Must be paired with ring_buffer_read_finish.
4251  */
4252 void
4253 ring_buffer_read_start(struct ring_buffer_iter *iter)
4254 {
4255         struct ring_buffer_per_cpu *cpu_buffer;
4256         unsigned long flags;
4257 
4258         if (!iter)
4259                 return;
4260 
4261         cpu_buffer = iter->cpu_buffer;
4262 
4263         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4264         arch_spin_lock(&cpu_buffer->lock);
4265         rb_iter_reset(iter);
4266         arch_spin_unlock(&cpu_buffer->lock);
4267         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4268 }
4269 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4270 
4271 /**
4272  * ring_buffer_read_finish - finish reading the iterator of the buffer
4273  * @iter: The iterator retrieved by ring_buffer_start
4274  *
4275  * This re-enables the recording to the buffer, and frees the
4276  * iterator.
4277  */
4278 void
4279 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4280 {
4281         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4282         unsigned long flags;
4283 
4284         /*
4285          * Ring buffer is disabled from recording, here's a good place
4286          * to check the integrity of the ring buffer.
4287          * Must prevent readers from trying to read, as the check
4288          * clears the HEAD page and readers require it.
4289          */
4290         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4291         rb_check_pages(cpu_buffer);
4292         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4293 
4294         atomic_dec(&cpu_buffer->record_disabled);
4295         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4296         kfree(iter);
4297 }
4298 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4299 
4300 /**
4301  * ring_buffer_read - read the next item in the ring buffer by the iterator
4302  * @iter: The ring buffer iterator
4303  * @ts: The time stamp of the event read.
4304  *
4305  * This reads the next event in the ring buffer and increments the iterator.
4306  */
4307 struct ring_buffer_event *
4308 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4309 {
4310         struct ring_buffer_event *event;
4311         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4312         unsigned long flags;
4313 
4314         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4315  again:
4316         event = rb_iter_peek(iter, ts);
4317         if (!event)
4318                 goto out;
4319 
4320         if (event->type_len == RINGBUF_TYPE_PADDING)
4321                 goto again;
4322 
4323         rb_advance_iter(iter);
4324  out:
4325         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4326 
4327         return event;
4328 }
4329 EXPORT_SYMBOL_GPL(ring_buffer_read);
4330 
4331 /**
4332  * ring_buffer_size - return the size of the ring buffer (in bytes)
4333  * @buffer: The ring buffer.
4334  */
4335 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4336 {
4337         /*
4338          * Earlier, this method returned
4339          *      BUF_PAGE_SIZE * buffer->nr_pages
4340          * Since the nr_pages field is now removed, we have converted this to
4341          * return the per cpu buffer value.
4342          */
4343         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4344                 return 0;
4345 
4346         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4347 }
4348 EXPORT_SYMBOL_GPL(ring_buffer_size);
4349 
4350 static void
4351 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4352 {
4353         rb_head_page_deactivate(cpu_buffer);
4354 
4355         cpu_buffer->head_page
4356                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4357         local_set(&cpu_buffer->head_page->write, 0);
4358         local_set(&cpu_buffer->head_page->entries, 0);
4359         local_set(&cpu_buffer->head_page->page->commit, 0);
4360 
4361         cpu_buffer->head_page->read = 0;
4362 
4363         cpu_buffer->tail_page = cpu_buffer->head_page;
4364         cpu_buffer->commit_page = cpu_buffer->head_page;
4365 
4366         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4367         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4368         local_set(&cpu_buffer->reader_page->write, 0);
4369         local_set(&cpu_buffer->reader_page->entries, 0);
4370         local_set(&cpu_buffer->reader_page->page->commit, 0);
4371         cpu_buffer->reader_page->read = 0;
4372 
4373         local_set(&cpu_buffer->entries_bytes, 0);
4374         local_set(&cpu_buffer->overrun, 0);
4375         local_set(&cpu_buffer->commit_overrun, 0);
4376         local_set(&cpu_buffer->dropped_events, 0);
4377         local_set(&cpu_buffer->entries, 0);
4378         local_set(&cpu_buffer->committing, 0);
4379         local_set(&cpu_buffer->commits, 0);
4380         local_set(&cpu_buffer->pages_touched, 0);
4381         local_set(&cpu_buffer->pages_read, 0);
4382         cpu_buffer->last_pages_touch = 0;
4383         cpu_buffer->shortest_full = 0;
4384         cpu_buffer->read = 0;
4385         cpu_buffer->read_bytes = 0;
4386 
4387         cpu_buffer->write_stamp = 0;
4388         cpu_buffer->read_stamp = 0;
4389 
4390         cpu_buffer->lost_events = 0;
4391         cpu_buffer->last_overrun = 0;
4392 
4393         rb_head_page_activate(cpu_buffer);
4394 }
4395 
4396 /**
4397  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4398  * @buffer: The ring buffer to reset a per cpu buffer of
4399  * @cpu: The CPU buffer to be reset
4400  */
4401 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4402 {
4403         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4404         unsigned long flags;
4405 
4406         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4407                 return;
4408 
4409         atomic_inc(&buffer->resize_disabled);
4410         atomic_inc(&cpu_buffer->record_disabled);
4411 
4412         /* Make sure all commits have finished */
4413         synchronize_rcu();
4414 
4415         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4416 
4417         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4418                 goto out;
4419 
4420         arch_spin_lock(&cpu_buffer->lock);
4421 
4422         rb_reset_cpu(cpu_buffer);
4423 
4424         arch_spin_unlock(&cpu_buffer->lock);
4425 
4426  out:
4427         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4428 
4429         atomic_dec(&cpu_buffer->record_disabled);
4430         atomic_dec(&buffer->resize_disabled);
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4433 
4434 /**
4435  * ring_buffer_reset - reset a ring buffer
4436  * @buffer: The ring buffer to reset all cpu buffers
4437  */
4438 void ring_buffer_reset(struct ring_buffer *buffer)
4439 {
4440         int cpu;
4441 
4442         for_each_buffer_cpu(buffer, cpu)
4443                 ring_buffer_reset_cpu(buffer, cpu);
4444 }
4445 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4446 
4447 /**
4448  * rind_buffer_empty - is the ring buffer empty?
4449  * @buffer: The ring buffer to test
4450  */
4451 bool ring_buffer_empty(struct ring_buffer *buffer)
4452 {
4453         struct ring_buffer_per_cpu *cpu_buffer;
4454         unsigned long flags;
4455         bool dolock;
4456         int cpu;
4457         int ret;
4458 
4459         /* yes this is racy, but if you don't like the race, lock the buffer */
4460         for_each_buffer_cpu(buffer, cpu) {
4461                 cpu_buffer = buffer->buffers[cpu];
4462                 local_irq_save(flags);
4463                 dolock = rb_reader_lock(cpu_buffer);
4464                 ret = rb_per_cpu_empty(cpu_buffer);
4465                 rb_reader_unlock(cpu_buffer, dolock);
4466                 local_irq_restore(flags);
4467 
4468                 if (!ret)
4469                         return false;
4470         }
4471 
4472         return true;
4473 }
4474 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4475 
4476 /**
4477  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4478  * @buffer: The ring buffer
4479  * @cpu: The CPU buffer to test
4480  */
4481 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4482 {
4483         struct ring_buffer_per_cpu *cpu_buffer;
4484         unsigned long flags;
4485         bool dolock;
4486         int ret;
4487 
4488         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4489                 return true;
4490 
4491         cpu_buffer = buffer->buffers[cpu];
4492         local_irq_save(flags);
4493         dolock = rb_reader_lock(cpu_buffer);
4494         ret = rb_per_cpu_empty(cpu_buffer);
4495         rb_reader_unlock(cpu_buffer, dolock);
4496         local_irq_restore(flags);
4497 
4498         return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4501 
4502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4503 /**
4504  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4505  * @buffer_a: One buffer to swap with
4506  * @buffer_b: The other buffer to swap with
4507  *
4508  * This function is useful for tracers that want to take a "snapshot"
4509  * of a CPU buffer and has another back up buffer lying around.
4510  * it is expected that the tracer handles the cpu buffer not being
4511  * used at the moment.
4512  */
4513 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4514                          struct ring_buffer *buffer_b, int cpu)
4515 {
4516         struct ring_buffer_per_cpu *cpu_buffer_a;
4517         struct ring_buffer_per_cpu *cpu_buffer_b;
4518         int ret = -EINVAL;
4519 
4520         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4521             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4522                 goto out;
4523 
4524         cpu_buffer_a = buffer_a->buffers[cpu];
4525         cpu_buffer_b = buffer_b->buffers[cpu];
4526 
4527         /* At least make sure the two buffers are somewhat the same */
4528         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4529                 goto out;
4530 
4531         ret = -EAGAIN;
4532 
4533         if (atomic_read(&buffer_a->record_disabled))
4534                 goto out;
4535 
4536         if (atomic_read(&buffer_b->record_disabled))
4537                 goto out;
4538 
4539         if (atomic_read(&cpu_buffer_a->record_disabled))
4540                 goto out;
4541 
4542         if (atomic_read(&cpu_buffer_b->record_disabled))
4543                 goto out;
4544 
4545         /*
4546          * We can't do a synchronize_rcu here because this
4547          * function can be called in atomic context.
4548          * Normally this will be called from the same CPU as cpu.
4549          * If not it's up to the caller to protect this.
4550          */
4551         atomic_inc(&cpu_buffer_a->record_disabled);
4552         atomic_inc(&cpu_buffer_b->record_disabled);
4553 
4554         ret = -EBUSY;
4555         if (local_read(&cpu_buffer_a->committing))
4556                 goto out_dec;
4557         if (local_read(&cpu_buffer_b->committing))
4558                 goto out_dec;
4559 
4560         buffer_a->buffers[cpu] = cpu_buffer_b;
4561         buffer_b->buffers[cpu] = cpu_buffer_a;
4562 
4563         cpu_buffer_b->buffer = buffer_a;
4564         cpu_buffer_a->buffer = buffer_b;
4565 
4566         ret = 0;
4567 
4568 out_dec:
4569         atomic_dec(&cpu_buffer_a->record_disabled);
4570         atomic_dec(&cpu_buffer_b->record_disabled);
4571 out:
4572         return ret;
4573 }
4574 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4575 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4576 
4577 /**
4578  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4579  * @buffer: the buffer to allocate for.
4580  * @cpu: the cpu buffer to allocate.
4581  *
4582  * This function is used in conjunction with ring_buffer_read_page.
4583  * When reading a full page from the ring buffer, these functions
4584  * can be used to speed up the process. The calling function should
4585  * allocate a few pages first with this function. Then when it
4586  * needs to get pages from the ring buffer, it passes the result
4587  * of this function into ring_buffer_read_page, which will swap
4588  * the page that was allocated, with the read page of the buffer.
4589  *
4590  * Returns:
4591  *  The page allocated, or ERR_PTR
4592  */
4593 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4594 {
4595         struct ring_buffer_per_cpu *cpu_buffer;
4596         struct buffer_data_page *bpage = NULL;
4597         unsigned long flags;
4598         struct page *page;
4599 
4600         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4601                 return ERR_PTR(-ENODEV);
4602 
4603         cpu_buffer = buffer->buffers[cpu];
4604         local_irq_save(flags);
4605         arch_spin_lock(&cpu_buffer->lock);
4606 
4607         if (cpu_buffer->free_page) {
4608                 bpage = cpu_buffer->free_page;
4609                 cpu_buffer->free_page = NULL;
4610         }
4611 
4612         arch_spin_unlock(&cpu_buffer->lock);
4613         local_irq_restore(flags);
4614 
4615         if (bpage)
4616                 goto out;
4617 
4618         page = alloc_pages_node(cpu_to_node(cpu),
4619                                 GFP_KERNEL | __GFP_NORETRY, 0);
4620         if (!page)
4621                 return ERR_PTR(-ENOMEM);
4622 
4623         bpage = page_address(page);
4624 
4625  out:
4626         rb_init_page(bpage);
4627 
4628         return bpage;
4629 }
4630 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4631 
4632 /**
4633  * ring_buffer_free_read_page - free an allocated read page
4634  * @buffer: the buffer the page was allocate for
4635  * @cpu: the cpu buffer the page came from
4636  * @data: the page to free
4637  *
4638  * Free a page allocated from ring_buffer_alloc_read_page.
4639  */
4640 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4641 {
4642         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4643         struct buffer_data_page *bpage = data;
4644         struct page *page = virt_to_page(bpage);
4645         unsigned long flags;
4646 
4647         /* If the page is still in use someplace else, we can't reuse it */
4648         if (page_ref_count(page) > 1)
4649                 goto out;
4650 
4651         local_irq_save(flags);
4652         arch_spin_lock(&cpu_buffer->lock);
4653 
4654         if (!cpu_buffer->free_page) {
4655                 cpu_buffer->free_page = bpage;
4656                 bpage = NULL;
4657         }
4658 
4659         arch_spin_unlock(&cpu_buffer->lock);
4660         local_irq_restore(flags);
4661 
4662  out:
4663         free_page((unsigned long)bpage);
4664 }
4665 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4666 
4667 /**
4668  * ring_buffer_read_page - extract a page from the ring buffer
4669  * @buffer: buffer to extract from
4670  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4671  * @len: amount to extract
4672  * @cpu: the cpu of the buffer to extract
4673  * @full: should the extraction only happen when the page is full.
4674  *
4675  * This function will pull out a page from the ring buffer and consume it.
4676  * @data_page must be the address of the variable that was returned
4677  * from ring_buffer_alloc_read_page. This is because the page might be used
4678  * to swap with a page in the ring buffer.
4679  *
4680  * for example:
4681  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4682  *      if (IS_ERR(rpage))
4683  *              return PTR_ERR(rpage);
4684  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4685  *      if (ret >= 0)
4686  *              process_page(rpage, ret);
4687  *
4688  * When @full is set, the function will not return true unless
4689  * the writer is off the reader page.
4690  *
4691  * Note: it is up to the calling functions to handle sleeps and wakeups.
4692  *  The ring buffer can be used anywhere in the kernel and can not
4693  *  blindly call wake_up. The layer that uses the ring buffer must be
4694  *  responsible for that.
4695  *
4696  * Returns:
4697  *  >=0 if data has been transferred, returns the offset of consumed data.
4698  *  <0 if no data has been transferred.
4699  */
4700 int ring_buffer_read_page(struct ring_buffer *buffer,
4701                           void **data_page, size_t len, int cpu, int full)
4702 {
4703         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4704         struct ring_buffer_event *event;
4705         struct buffer_data_page *bpage;
4706         struct buffer_page *reader;
4707         unsigned long missed_events;
4708         unsigned long flags;
4709         unsigned int commit;
4710         unsigned int read;
4711         u64 save_timestamp;
4712         int ret = -1;
4713 
4714         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4715                 goto out;
4716 
4717         /*
4718          * If len is not big enough to hold the page header, then
4719          * we can not copy anything.
4720          */
4721         if (len <= BUF_PAGE_HDR_SIZE)
4722                 goto out;
4723 
4724         len -= BUF_PAGE_HDR_SIZE;
4725 
4726         if (!data_page)
4727                 goto out;
4728 
4729         bpage = *data_page;
4730         if (!bpage)
4731                 goto out;
4732 
4733         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4734 
4735         reader = rb_get_reader_page(cpu_buffer);
4736         if (!reader)
4737                 goto out_unlock;
4738 
4739         event = rb_reader_event(cpu_buffer);
4740 
4741         read = reader->read;
4742         commit = rb_page_commit(reader);
4743 
4744         /* Check if any events were dropped */
4745         missed_events = cpu_buffer->lost_events;
4746 
4747         /*
4748          * If this page has been partially read or
4749          * if len is not big enough to read the rest of the page or
4750          * a writer is still on the page, then
4751          * we must copy the data from the page to the buffer.
4752          * Otherwise, we can simply swap the page with the one passed in.
4753          */
4754         if (read || (len < (commit - read)) ||
4755             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4756                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4757                 unsigned int rpos = read;
4758                 unsigned int pos = 0;
4759                 unsigned int size;
4760 
4761                 if (full)
4762                         goto out_unlock;
4763 
4764                 if (len > (commit - read))
4765                         len = (commit - read);
4766 
4767                 /* Always keep the time extend and data together */
4768                 size = rb_event_ts_length(event);
4769 
4770                 if (len < size)
4771                         goto out_unlock;
4772 
4773                 /* save the current timestamp, since the user will need it */
4774                 save_timestamp = cpu_buffer->read_stamp;
4775 
4776                 /* Need to copy one event at a time */
4777                 do {
4778                         /* We need the size of one event, because
4779                          * rb_advance_reader only advances by one event,
4780                          * whereas rb_event_ts_length may include the size of
4781                          * one or two events.
4782                          * We have already ensured there's enough space if this
4783                          * is a time extend. */
4784                         size = rb_event_length(event);
4785                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4786 
4787                         len -= size;
4788 
4789                         rb_advance_reader(cpu_buffer);
4790                         rpos = reader->read;
4791                         pos += size;
4792 
4793                         if (rpos >= commit)
4794                                 break;
4795 
4796                         event = rb_reader_event(cpu_buffer);
4797                         /* Always keep the time extend and data together */
4798                         size = rb_event_ts_length(event);
4799                 } while (len >= size);
4800 
4801                 /* update bpage */
4802                 local_set(&bpage->commit, pos);
4803                 bpage->time_stamp = save_timestamp;
4804 
4805                 /* we copied everything to the beginning */
4806                 read = 0;
4807         } else {
4808                 /* update the entry counter */
4809                 cpu_buffer->read += rb_page_entries(reader);
4810                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4811 
4812                 /* swap the pages */
4813                 rb_init_page(bpage);
4814                 bpage = reader->page;
4815                 reader->page = *data_page;
4816                 local_set(&reader->write, 0);
4817                 local_set(&reader->entries, 0);
4818                 reader->read = 0;
4819                 *data_page = bpage;
4820 
4821                 /*
4822                  * Use the real_end for the data size,
4823                  * This gives us a chance to store the lost events
4824                  * on the page.
4825                  */
4826                 if (reader->real_end)
4827                         local_set(&bpage->commit, reader->real_end);
4828         }
4829         ret = read;
4830 
4831         cpu_buffer->lost_events = 0;
4832 
4833         commit = local_read(&bpage->commit);
4834         /*
4835          * Set a flag in the commit field if we lost events
4836          */
4837         if (missed_events) {
4838                 /* If there is room at the end of the page to save the
4839                  * missed events, then record it there.
4840                  */
4841                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4842                         memcpy(&bpage->data[commit], &missed_events,
4843                                sizeof(missed_events));
4844                         local_add(RB_MISSED_STORED, &bpage->commit);
4845                         commit += sizeof(missed_events);
4846                 }
4847                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4848         }
4849 
4850         /*
4851          * This page may be off to user land. Zero it out here.
4852          */
4853         if (commit < BUF_PAGE_SIZE)
4854                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4855 
4856  out_unlock:
4857         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4858 
4859  out:
4860         return ret;
4861 }
4862 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4863 
4864 /*
4865  * We only allocate new buffers, never free them if the CPU goes down.
4866  * If we were to free the buffer, then the user would lose any trace that was in
4867  * the buffer.
4868  */
4869 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4870 {
4871         struct ring_buffer *buffer;
4872         long nr_pages_same;
4873         int cpu_i;
4874         unsigned long nr_pages;
4875 
4876         buffer = container_of(node, struct ring_buffer, node);
4877         if (cpumask_test_cpu(cpu, buffer->cpumask))
4878                 return 0;
4879 
4880         nr_pages = 0;
4881         nr_pages_same = 1;
4882         /* check if all cpu sizes are same */
4883         for_each_buffer_cpu(buffer, cpu_i) {
4884                 /* fill in the size from first enabled cpu */
4885                 if (nr_pages == 0)
4886                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4887                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4888                         nr_pages_same = 0;
4889                         break;
4890                 }
4891         }
4892         /* allocate minimum pages, user can later expand it */
4893         if (!nr_pages_same)
4894                 nr_pages = 2;
4895         buffer->buffers[cpu] =
4896                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4897         if (!buffer->buffers[cpu]) {
4898                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4899                      cpu);
4900                 return -ENOMEM;
4901         }
4902         smp_wmb();
4903         cpumask_set_cpu(cpu, buffer->cpumask);
4904         return 0;
4905 }
4906 
4907 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4908 /*
4909  * This is a basic integrity check of the ring buffer.
4910  * Late in the boot cycle this test will run when configured in.
4911  * It will kick off a thread per CPU that will go into a loop
4912  * writing to the per cpu ring buffer various sizes of data.
4913  * Some of the data will be large items, some small.
4914  *
4915  * Another thread is created that goes into a spin, sending out
4916  * IPIs to the other CPUs to also write into the ring buffer.
4917  * this is to test the nesting ability of the buffer.
4918  *
4919  * Basic stats are recorded and reported. If something in the
4920  * ring buffer should happen that's not expected, a big warning
4921  * is displayed and all ring buffers are disabled.
4922  */
4923 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4924 
4925 struct rb_test_data {
4926         struct ring_buffer      *buffer;
4927         unsigned long           events;
4928         unsigned long           bytes_written;
4929         unsigned long           bytes_alloc;
4930         unsigned long           bytes_dropped;
4931         unsigned long           events_nested;
4932         unsigned long           bytes_written_nested;
4933         unsigned long           bytes_alloc_nested;
4934         unsigned long           bytes_dropped_nested;
4935         int                     min_size_nested;
4936         int                     max_size_nested;
4937         int                     max_size;
4938         int                     min_size;
4939         int                     cpu;
4940         int                     cnt;
4941 };
4942 
4943 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4944 
4945 /* 1 meg per cpu */
4946 #define RB_TEST_BUFFER_SIZE     1048576
4947 
4948 static char rb_string[] __initdata =
4949         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4950         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4951         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4952 
4953 static bool rb_test_started __initdata;
4954 
4955 struct rb_item {
4956         int size;
4957         char str[];
4958 };
4959 
4960 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4961 {
4962         struct ring_buffer_event *event;
4963         struct rb_item *item;
4964         bool started;
4965         int event_len;
4966         int size;
4967         int len;
4968         int cnt;
4969 
4970         /* Have nested writes different that what is written */
4971         cnt = data->cnt + (nested ? 27 : 0);
4972 
4973         /* Multiply cnt by ~e, to make some unique increment */
4974         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4975 
4976         len = size + sizeof(struct rb_item);
4977 
4978         started = rb_test_started;
4979         /* read rb_test_started before checking buffer enabled */
4980         smp_rmb();
4981 
4982         event = ring_buffer_lock_reserve(data->buffer, len);
4983         if (!event) {
4984                 /* Ignore dropped events before test starts. */
4985                 if (started) {
4986                         if (nested)
4987                                 data->bytes_dropped += len;
4988                         else
4989                                 data->bytes_dropped_nested += len;
4990                 }
4991                 return len;
4992         }
4993 
4994         event_len = ring_buffer_event_length(event);
4995 
4996         if (RB_WARN_ON(data->buffer, event_len < len))
4997                 goto out;
4998 
4999         item = ring_buffer_event_data(event);
5000         item->size = size;
5001         memcpy(item->str, rb_string, size);
5002 
5003         if (nested) {
5004                 data->bytes_alloc_nested += event_len;
5005                 data->bytes_written_nested += len;
5006                 data->events_nested++;
5007                 if (!data->min_size_nested || len < data->min_size_nested)
5008                         data->min_size_nested = len;
5009                 if (len > data->max_size_nested)
5010                         data->max_size_nested = len;
5011         } else {
5012                 data->bytes_alloc += event_len;
5013                 data->bytes_written += len;
5014                 data->events++;
5015                 if (!data->min_size || len < data->min_size)
5016                         data->max_size = len;
5017                 if (len > data->max_size)
5018                         data->max_size = len;
5019         }
5020 
5021  out:
5022         ring_buffer_unlock_commit(data->buffer, event);
5023 
5024         return 0;
5025 }
5026 
5027 static __init int rb_test(void *arg)
5028 {
5029         struct rb_test_data *data = arg;
5030 
5031         while (!kthread_should_stop()) {
5032                 rb_write_something(data, false);
5033                 data->cnt++;
5034 
5035                 set_current_state(TASK_INTERRUPTIBLE);
5036                 /* Now sleep between a min of 100-300us and a max of 1ms */
5037                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5038         }
5039 
5040         return 0;
5041 }
5042 
5043 static __init void rb_ipi(void *ignore)
5044 {
5045         struct rb_test_data *data;
5046         int cpu = smp_processor_id();
5047 
5048         data = &rb_data[cpu];
5049         rb_write_something(data, true);
5050 }
5051 
5052 static __init int rb_hammer_test(void *arg)
5053 {
5054         while (!kthread_should_stop()) {
5055 
5056                 /* Send an IPI to all cpus to write data! */
5057                 smp_call_function(rb_ipi, NULL, 1);
5058                 /* No sleep, but for non preempt, let others run */
5059                 schedule();
5060         }
5061 
5062         return 0;
5063 }
5064 
5065 static __init int test_ringbuffer(void)
5066 {
5067         struct task_struct *rb_hammer;
5068         struct ring_buffer *buffer;
5069         int cpu;
5070         int ret = 0;
5071 
5072         if (security_locked_down(LOCKDOWN_TRACEFS)) {
5073                 pr_warning("Lockdown is enabled, skipping ring buffer tests\n");
5074                 return 0;
5075         }
5076 
5077         pr_info("Running ring buffer tests...\n");
5078 
5079         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5080         if (WARN_ON(!buffer))
5081                 return 0;
5082 
5083         /* Disable buffer so that threads can't write to it yet */
5084         ring_buffer_record_off(buffer);
5085 
5086         for_each_online_cpu(cpu) {
5087                 rb_data[cpu].buffer = buffer;
5088                 rb_data[cpu].cpu = cpu;
5089                 rb_data[cpu].cnt = cpu;
5090                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5091                                                  "rbtester/%d", cpu);
5092                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5093                         pr_cont("FAILED\n");
5094                         ret = PTR_ERR(rb_threads[cpu]);
5095                         goto out_free;
5096                 }
5097 
5098                 kthread_bind(rb_threads[cpu], cpu);
5099                 wake_up_process(rb_threads[cpu]);
5100         }
5101 
5102         /* Now create the rb hammer! */
5103         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5104         if (WARN_ON(IS_ERR(rb_hammer))) {
5105                 pr_cont("FAILED\n");
5106                 ret = PTR_ERR(rb_hammer);
5107                 goto out_free;
5108         }
5109 
5110         ring_buffer_record_on(buffer);
5111         /*
5112          * Show buffer is enabled before setting rb_test_started.
5113          * Yes there's a small race window where events could be
5114          * dropped and the thread wont catch it. But when a ring
5115          * buffer gets enabled, there will always be some kind of
5116          * delay before other CPUs see it. Thus, we don't care about
5117          * those dropped events. We care about events dropped after
5118          * the threads see that the buffer is active.
5119          */
5120         smp_wmb();
5121         rb_test_started = true;
5122 
5123         set_current_state(TASK_INTERRUPTIBLE);
5124         /* Just run for 10 seconds */;
5125         schedule_timeout(10 * HZ);
5126 
5127         kthread_stop(rb_hammer);
5128 
5129  out_free:
5130         for_each_online_cpu(cpu) {
5131                 if (!rb_threads[cpu])
5132                         break;
5133                 kthread_stop(rb_threads[cpu]);
5134         }
5135         if (ret) {
5136                 ring_buffer_free(buffer);
5137                 return ret;
5138         }
5139 
5140         /* Report! */
5141         pr_info("finished\n");
5142         for_each_online_cpu(cpu) {
5143                 struct ring_buffer_event *event;
5144                 struct rb_test_data *data = &rb_data[cpu];
5145                 struct rb_item *item;
5146                 unsigned long total_events;
5147                 unsigned long total_dropped;
5148                 unsigned long total_written;
5149                 unsigned long total_alloc;
5150                 unsigned long total_read = 0;
5151                 unsigned long total_size = 0;
5152                 unsigned long total_len = 0;
5153                 unsigned long total_lost = 0;
5154                 unsigned long lost;
5155                 int big_event_size;
5156                 int small_event_size;
5157 
5158                 ret = -1;
5159 
5160                 total_events = data->events + data->events_nested;
5161                 total_written = data->bytes_written + data->bytes_written_nested;
5162                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5163                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5164 
5165                 big_event_size = data->max_size + data->max_size_nested;
5166                 small_event_size = data->min_size + data->min_size_nested;
5167 
5168                 pr_info("CPU %d:\n", cpu);
5169                 pr_info("              events:    %ld\n", total_events);
5170                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5171                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5172                 pr_info("       written bytes:    %ld\n", total_written);
5173                 pr_info("       biggest event:    %d\n", big_event_size);
5174                 pr_info("      smallest event:    %d\n", small_event_size);
5175 
5176                 if (RB_WARN_ON(buffer, total_dropped))
5177                         break;
5178 
5179                 ret = 0;
5180 
5181                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5182                         total_lost += lost;
5183                         item = ring_buffer_event_data(event);
5184                         total_len += ring_buffer_event_length(event);
5185                         total_size += item->size + sizeof(struct rb_item);
5186                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5187                                 pr_info("FAILED!\n");
5188                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5189                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5190                                 RB_WARN_ON(buffer, 1);
5191                                 ret = -1;
5192                                 break;
5193                         }
5194                         total_read++;
5195                 }
5196                 if (ret)
5197                         break;
5198 
5199                 ret = -1;
5200 
5201                 pr_info("         read events:   %ld\n", total_read);
5202                 pr_info("         lost events:   %ld\n", total_lost);
5203                 pr_info("        total events:   %ld\n", total_lost + total_read);
5204                 pr_info("  recorded len bytes:   %ld\n", total_len);
5205                 pr_info(" recorded size bytes:   %ld\n", total_size);
5206                 if (total_lost)
5207                         pr_info(" With dropped events, record len and size may not match\n"
5208                                 " alloced and written from above\n");
5209                 if (!total_lost) {
5210                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5211                                        total_size != total_written))
5212                                 break;
5213                 }
5214                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5215                         break;
5216 
5217                 ret = 0;
5218         }
5219         if (!ret)
5220                 pr_info("Ring buffer PASSED!\n");
5221 
5222         ring_buffer_free(buffer);
5223         return 0;
5224 }
5225 
5226 late_initcall(test_ringbuffer);
5227 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */

/* [<][>][^][v][top][bottom][index][help] */