This source file includes following definitions.
- set_one_prio_perm
- set_one_prio
- SYSCALL_DEFINE3
- SYSCALL_DEFINE2
- __sys_setregid
- SYSCALL_DEFINE2
- __sys_setgid
- SYSCALL_DEFINE1
- set_user
- __sys_setreuid
- SYSCALL_DEFINE2
- __sys_setuid
- SYSCALL_DEFINE1
- __sys_setresuid
- SYSCALL_DEFINE3
- SYSCALL_DEFINE3
- __sys_setresgid
- SYSCALL_DEFINE3
- SYSCALL_DEFINE3
- __sys_setfsuid
- SYSCALL_DEFINE1
- __sys_setfsgid
- SYSCALL_DEFINE1
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- SYSCALL_DEFINE0
- do_sys_times
- SYSCALL_DEFINE1
- clock_t_to_compat_clock_t
- COMPAT_SYSCALL_DEFINE1
- SYSCALL_DEFINE2
- do_getpgid
- SYSCALL_DEFINE1
- SYSCALL_DEFINE0
- SYSCALL_DEFINE1
- set_special_pids
- ksys_setsid
- SYSCALL_DEFINE0
- override_release
- SYSCALL_DEFINE1
- SYSCALL_DEFINE1
- SYSCALL_DEFINE1
- SYSCALL_DEFINE2
- SYSCALL_DEFINE2
- SYSCALL_DEFINE2
- SYSCALL_DEFINE2
- COMPAT_SYSCALL_DEFINE2
- COMPAT_SYSCALL_DEFINE2
- SYSCALL_DEFINE2
- COMPAT_SYSCALL_DEFINE2
- rlim64_is_infinity
- rlim_to_rlim64
- rlim64_to_rlim
- do_prlimit
- check_prlimit_permission
- SYSCALL_DEFINE4
- SYSCALL_DEFINE2
- accumulate_thread_rusage
- getrusage
- SYSCALL_DEFINE2
- COMPAT_SYSCALL_DEFINE2
- SYSCALL_DEFINE1
- prctl_set_mm_exe_file
- validate_prctl_map_addr
- prctl_set_mm_map
- prctl_set_auxv
- prctl_set_mm
- prctl_get_tid_address
- prctl_get_tid_address
- propagate_has_child_subreaper
- arch_prctl_spec_ctrl_get
- arch_prctl_spec_ctrl_set
- SYSCALL_DEFINE5
- SYSCALL_DEFINE3
- do_sysinfo
- SYSCALL_DEFINE1
- COMPAT_SYSCALL_DEFINE1
1
2
3
4
5
6
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
51
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
63
64 #include <linux/nospec.h>
65
66 #include <linux/kmsg_dump.h>
67
68 #include <generated/utsrelease.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/io.h>
72 #include <asm/unistd.h>
73
74 #include "uid16.h"
75
76 #ifndef SET_UNALIGN_CTL
77 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
78 #endif
79 #ifndef GET_UNALIGN_CTL
80 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
81 #endif
82 #ifndef SET_FPEMU_CTL
83 # define SET_FPEMU_CTL(a, b) (-EINVAL)
84 #endif
85 #ifndef GET_FPEMU_CTL
86 # define GET_FPEMU_CTL(a, b) (-EINVAL)
87 #endif
88 #ifndef SET_FPEXC_CTL
89 # define SET_FPEXC_CTL(a, b) (-EINVAL)
90 #endif
91 #ifndef GET_FPEXC_CTL
92 # define GET_FPEXC_CTL(a, b) (-EINVAL)
93 #endif
94 #ifndef GET_ENDIAN
95 # define GET_ENDIAN(a, b) (-EINVAL)
96 #endif
97 #ifndef SET_ENDIAN
98 # define SET_ENDIAN(a, b) (-EINVAL)
99 #endif
100 #ifndef GET_TSC_CTL
101 # define GET_TSC_CTL(a) (-EINVAL)
102 #endif
103 #ifndef SET_TSC_CTL
104 # define SET_TSC_CTL(a) (-EINVAL)
105 #endif
106 #ifndef GET_FP_MODE
107 # define GET_FP_MODE(a) (-EINVAL)
108 #endif
109 #ifndef SET_FP_MODE
110 # define SET_FP_MODE(a,b) (-EINVAL)
111 #endif
112 #ifndef SVE_SET_VL
113 # define SVE_SET_VL(a) (-EINVAL)
114 #endif
115 #ifndef SVE_GET_VL
116 # define SVE_GET_VL() (-EINVAL)
117 #endif
118 #ifndef PAC_RESET_KEYS
119 # define PAC_RESET_KEYS(a, b) (-EINVAL)
120 #endif
121 #ifndef SET_TAGGED_ADDR_CTRL
122 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
123 #endif
124 #ifndef GET_TAGGED_ADDR_CTRL
125 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
126 #endif
127
128
129
130
131
132
133 int overflowuid = DEFAULT_OVERFLOWUID;
134 int overflowgid = DEFAULT_OVERFLOWGID;
135
136 EXPORT_SYMBOL(overflowuid);
137 EXPORT_SYMBOL(overflowgid);
138
139
140
141
142
143
144 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
145 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
146
147 EXPORT_SYMBOL(fs_overflowuid);
148 EXPORT_SYMBOL(fs_overflowgid);
149
150
151
152
153
154
155
156 static bool set_one_prio_perm(struct task_struct *p)
157 {
158 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
159
160 if (uid_eq(pcred->uid, cred->euid) ||
161 uid_eq(pcred->euid, cred->euid))
162 return true;
163 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
164 return true;
165 return false;
166 }
167
168
169
170
171
172 static int set_one_prio(struct task_struct *p, int niceval, int error)
173 {
174 int no_nice;
175
176 if (!set_one_prio_perm(p)) {
177 error = -EPERM;
178 goto out;
179 }
180 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
181 error = -EACCES;
182 goto out;
183 }
184 no_nice = security_task_setnice(p, niceval);
185 if (no_nice) {
186 error = no_nice;
187 goto out;
188 }
189 if (error == -ESRCH)
190 error = 0;
191 set_user_nice(p, niceval);
192 out:
193 return error;
194 }
195
196 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
197 {
198 struct task_struct *g, *p;
199 struct user_struct *user;
200 const struct cred *cred = current_cred();
201 int error = -EINVAL;
202 struct pid *pgrp;
203 kuid_t uid;
204
205 if (which > PRIO_USER || which < PRIO_PROCESS)
206 goto out;
207
208
209 error = -ESRCH;
210 if (niceval < MIN_NICE)
211 niceval = MIN_NICE;
212 if (niceval > MAX_NICE)
213 niceval = MAX_NICE;
214
215 rcu_read_lock();
216 read_lock(&tasklist_lock);
217 switch (which) {
218 case PRIO_PROCESS:
219 if (who)
220 p = find_task_by_vpid(who);
221 else
222 p = current;
223 if (p)
224 error = set_one_prio(p, niceval, error);
225 break;
226 case PRIO_PGRP:
227 if (who)
228 pgrp = find_vpid(who);
229 else
230 pgrp = task_pgrp(current);
231 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
232 error = set_one_prio(p, niceval, error);
233 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
234 break;
235 case PRIO_USER:
236 uid = make_kuid(cred->user_ns, who);
237 user = cred->user;
238 if (!who)
239 uid = cred->uid;
240 else if (!uid_eq(uid, cred->uid)) {
241 user = find_user(uid);
242 if (!user)
243 goto out_unlock;
244 }
245 do_each_thread(g, p) {
246 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
247 error = set_one_prio(p, niceval, error);
248 } while_each_thread(g, p);
249 if (!uid_eq(uid, cred->uid))
250 free_uid(user);
251 break;
252 }
253 out_unlock:
254 read_unlock(&tasklist_lock);
255 rcu_read_unlock();
256 out:
257 return error;
258 }
259
260
261
262
263
264
265
266 SYSCALL_DEFINE2(getpriority, int, which, int, who)
267 {
268 struct task_struct *g, *p;
269 struct user_struct *user;
270 const struct cred *cred = current_cred();
271 long niceval, retval = -ESRCH;
272 struct pid *pgrp;
273 kuid_t uid;
274
275 if (which > PRIO_USER || which < PRIO_PROCESS)
276 return -EINVAL;
277
278 rcu_read_lock();
279 read_lock(&tasklist_lock);
280 switch (which) {
281 case PRIO_PROCESS:
282 if (who)
283 p = find_task_by_vpid(who);
284 else
285 p = current;
286 if (p) {
287 niceval = nice_to_rlimit(task_nice(p));
288 if (niceval > retval)
289 retval = niceval;
290 }
291 break;
292 case PRIO_PGRP:
293 if (who)
294 pgrp = find_vpid(who);
295 else
296 pgrp = task_pgrp(current);
297 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
302 break;
303 case PRIO_USER:
304 uid = make_kuid(cred->user_ns, who);
305 user = cred->user;
306 if (!who)
307 uid = cred->uid;
308 else if (!uid_eq(uid, cred->uid)) {
309 user = find_user(uid);
310 if (!user)
311 goto out_unlock;
312 }
313 do_each_thread(g, p) {
314 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
315 niceval = nice_to_rlimit(task_nice(p));
316 if (niceval > retval)
317 retval = niceval;
318 }
319 } while_each_thread(g, p);
320 if (!uid_eq(uid, cred->uid))
321 free_uid(user);
322 break;
323 }
324 out_unlock:
325 read_unlock(&tasklist_lock);
326 rcu_read_unlock();
327
328 return retval;
329 }
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349 #ifdef CONFIG_MULTIUSER
350 long __sys_setregid(gid_t rgid, gid_t egid)
351 {
352 struct user_namespace *ns = current_user_ns();
353 const struct cred *old;
354 struct cred *new;
355 int retval;
356 kgid_t krgid, kegid;
357
358 krgid = make_kgid(ns, rgid);
359 kegid = make_kgid(ns, egid);
360
361 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
362 return -EINVAL;
363 if ((egid != (gid_t) -1) && !gid_valid(kegid))
364 return -EINVAL;
365
366 new = prepare_creds();
367 if (!new)
368 return -ENOMEM;
369 old = current_cred();
370
371 retval = -EPERM;
372 if (rgid != (gid_t) -1) {
373 if (gid_eq(old->gid, krgid) ||
374 gid_eq(old->egid, krgid) ||
375 ns_capable(old->user_ns, CAP_SETGID))
376 new->gid = krgid;
377 else
378 goto error;
379 }
380 if (egid != (gid_t) -1) {
381 if (gid_eq(old->gid, kegid) ||
382 gid_eq(old->egid, kegid) ||
383 gid_eq(old->sgid, kegid) ||
384 ns_capable(old->user_ns, CAP_SETGID))
385 new->egid = kegid;
386 else
387 goto error;
388 }
389
390 if (rgid != (gid_t) -1 ||
391 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
392 new->sgid = new->egid;
393 new->fsgid = new->egid;
394
395 return commit_creds(new);
396
397 error:
398 abort_creds(new);
399 return retval;
400 }
401
402 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
403 {
404 return __sys_setregid(rgid, egid);
405 }
406
407
408
409
410
411
412 long __sys_setgid(gid_t gid)
413 {
414 struct user_namespace *ns = current_user_ns();
415 const struct cred *old;
416 struct cred *new;
417 int retval;
418 kgid_t kgid;
419
420 kgid = make_kgid(ns, gid);
421 if (!gid_valid(kgid))
422 return -EINVAL;
423
424 new = prepare_creds();
425 if (!new)
426 return -ENOMEM;
427 old = current_cred();
428
429 retval = -EPERM;
430 if (ns_capable(old->user_ns, CAP_SETGID))
431 new->gid = new->egid = new->sgid = new->fsgid = kgid;
432 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
433 new->egid = new->fsgid = kgid;
434 else
435 goto error;
436
437 return commit_creds(new);
438
439 error:
440 abort_creds(new);
441 return retval;
442 }
443
444 SYSCALL_DEFINE1(setgid, gid_t, gid)
445 {
446 return __sys_setgid(gid);
447 }
448
449
450
451
452 static int set_user(struct cred *new)
453 {
454 struct user_struct *new_user;
455
456 new_user = alloc_uid(new->uid);
457 if (!new_user)
458 return -EAGAIN;
459
460
461
462
463
464
465
466
467 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
468 new_user != INIT_USER)
469 current->flags |= PF_NPROC_EXCEEDED;
470 else
471 current->flags &= ~PF_NPROC_EXCEEDED;
472
473 free_uid(new->user);
474 new->user = new_user;
475 return 0;
476 }
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493 long __sys_setreuid(uid_t ruid, uid_t euid)
494 {
495 struct user_namespace *ns = current_user_ns();
496 const struct cred *old;
497 struct cred *new;
498 int retval;
499 kuid_t kruid, keuid;
500
501 kruid = make_kuid(ns, ruid);
502 keuid = make_kuid(ns, euid);
503
504 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
505 return -EINVAL;
506 if ((euid != (uid_t) -1) && !uid_valid(keuid))
507 return -EINVAL;
508
509 new = prepare_creds();
510 if (!new)
511 return -ENOMEM;
512 old = current_cred();
513
514 retval = -EPERM;
515 if (ruid != (uid_t) -1) {
516 new->uid = kruid;
517 if (!uid_eq(old->uid, kruid) &&
518 !uid_eq(old->euid, kruid) &&
519 !ns_capable_setid(old->user_ns, CAP_SETUID))
520 goto error;
521 }
522
523 if (euid != (uid_t) -1) {
524 new->euid = keuid;
525 if (!uid_eq(old->uid, keuid) &&
526 !uid_eq(old->euid, keuid) &&
527 !uid_eq(old->suid, keuid) &&
528 !ns_capable_setid(old->user_ns, CAP_SETUID))
529 goto error;
530 }
531
532 if (!uid_eq(new->uid, old->uid)) {
533 retval = set_user(new);
534 if (retval < 0)
535 goto error;
536 }
537 if (ruid != (uid_t) -1 ||
538 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
539 new->suid = new->euid;
540 new->fsuid = new->euid;
541
542 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
543 if (retval < 0)
544 goto error;
545
546 return commit_creds(new);
547
548 error:
549 abort_creds(new);
550 return retval;
551 }
552
553 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
554 {
555 return __sys_setreuid(ruid, euid);
556 }
557
558
559
560
561
562
563
564
565
566
567
568
569 long __sys_setuid(uid_t uid)
570 {
571 struct user_namespace *ns = current_user_ns();
572 const struct cred *old;
573 struct cred *new;
574 int retval;
575 kuid_t kuid;
576
577 kuid = make_kuid(ns, uid);
578 if (!uid_valid(kuid))
579 return -EINVAL;
580
581 new = prepare_creds();
582 if (!new)
583 return -ENOMEM;
584 old = current_cred();
585
586 retval = -EPERM;
587 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
588 new->suid = new->uid = kuid;
589 if (!uid_eq(kuid, old->uid)) {
590 retval = set_user(new);
591 if (retval < 0)
592 goto error;
593 }
594 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
595 goto error;
596 }
597
598 new->fsuid = new->euid = kuid;
599
600 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
601 if (retval < 0)
602 goto error;
603
604 return commit_creds(new);
605
606 error:
607 abort_creds(new);
608 return retval;
609 }
610
611 SYSCALL_DEFINE1(setuid, uid_t, uid)
612 {
613 return __sys_setuid(uid);
614 }
615
616
617
618
619
620
621 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
622 {
623 struct user_namespace *ns = current_user_ns();
624 const struct cred *old;
625 struct cred *new;
626 int retval;
627 kuid_t kruid, keuid, ksuid;
628
629 kruid = make_kuid(ns, ruid);
630 keuid = make_kuid(ns, euid);
631 ksuid = make_kuid(ns, suid);
632
633 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
634 return -EINVAL;
635
636 if ((euid != (uid_t) -1) && !uid_valid(keuid))
637 return -EINVAL;
638
639 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
640 return -EINVAL;
641
642 new = prepare_creds();
643 if (!new)
644 return -ENOMEM;
645
646 old = current_cred();
647
648 retval = -EPERM;
649 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
650 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
651 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
652 goto error;
653 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
654 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
655 goto error;
656 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
657 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
658 goto error;
659 }
660
661 if (ruid != (uid_t) -1) {
662 new->uid = kruid;
663 if (!uid_eq(kruid, old->uid)) {
664 retval = set_user(new);
665 if (retval < 0)
666 goto error;
667 }
668 }
669 if (euid != (uid_t) -1)
670 new->euid = keuid;
671 if (suid != (uid_t) -1)
672 new->suid = ksuid;
673 new->fsuid = new->euid;
674
675 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
676 if (retval < 0)
677 goto error;
678
679 return commit_creds(new);
680
681 error:
682 abort_creds(new);
683 return retval;
684 }
685
686 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
687 {
688 return __sys_setresuid(ruid, euid, suid);
689 }
690
691 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
692 {
693 const struct cred *cred = current_cred();
694 int retval;
695 uid_t ruid, euid, suid;
696
697 ruid = from_kuid_munged(cred->user_ns, cred->uid);
698 euid = from_kuid_munged(cred->user_ns, cred->euid);
699 suid = from_kuid_munged(cred->user_ns, cred->suid);
700
701 retval = put_user(ruid, ruidp);
702 if (!retval) {
703 retval = put_user(euid, euidp);
704 if (!retval)
705 return put_user(suid, suidp);
706 }
707 return retval;
708 }
709
710
711
712
713 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
714 {
715 struct user_namespace *ns = current_user_ns();
716 const struct cred *old;
717 struct cred *new;
718 int retval;
719 kgid_t krgid, kegid, ksgid;
720
721 krgid = make_kgid(ns, rgid);
722 kegid = make_kgid(ns, egid);
723 ksgid = make_kgid(ns, sgid);
724
725 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
726 return -EINVAL;
727 if ((egid != (gid_t) -1) && !gid_valid(kegid))
728 return -EINVAL;
729 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
730 return -EINVAL;
731
732 new = prepare_creds();
733 if (!new)
734 return -ENOMEM;
735 old = current_cred();
736
737 retval = -EPERM;
738 if (!ns_capable(old->user_ns, CAP_SETGID)) {
739 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
740 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
741 goto error;
742 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
743 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
744 goto error;
745 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
746 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
747 goto error;
748 }
749
750 if (rgid != (gid_t) -1)
751 new->gid = krgid;
752 if (egid != (gid_t) -1)
753 new->egid = kegid;
754 if (sgid != (gid_t) -1)
755 new->sgid = ksgid;
756 new->fsgid = new->egid;
757
758 return commit_creds(new);
759
760 error:
761 abort_creds(new);
762 return retval;
763 }
764
765 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
766 {
767 return __sys_setresgid(rgid, egid, sgid);
768 }
769
770 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
771 {
772 const struct cred *cred = current_cred();
773 int retval;
774 gid_t rgid, egid, sgid;
775
776 rgid = from_kgid_munged(cred->user_ns, cred->gid);
777 egid = from_kgid_munged(cred->user_ns, cred->egid);
778 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
779
780 retval = put_user(rgid, rgidp);
781 if (!retval) {
782 retval = put_user(egid, egidp);
783 if (!retval)
784 retval = put_user(sgid, sgidp);
785 }
786
787 return retval;
788 }
789
790
791
792
793
794
795
796
797 long __sys_setfsuid(uid_t uid)
798 {
799 const struct cred *old;
800 struct cred *new;
801 uid_t old_fsuid;
802 kuid_t kuid;
803
804 old = current_cred();
805 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
806
807 kuid = make_kuid(old->user_ns, uid);
808 if (!uid_valid(kuid))
809 return old_fsuid;
810
811 new = prepare_creds();
812 if (!new)
813 return old_fsuid;
814
815 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
816 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
817 ns_capable_setid(old->user_ns, CAP_SETUID)) {
818 if (!uid_eq(kuid, old->fsuid)) {
819 new->fsuid = kuid;
820 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
821 goto change_okay;
822 }
823 }
824
825 abort_creds(new);
826 return old_fsuid;
827
828 change_okay:
829 commit_creds(new);
830 return old_fsuid;
831 }
832
833 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
834 {
835 return __sys_setfsuid(uid);
836 }
837
838
839
840
841 long __sys_setfsgid(gid_t gid)
842 {
843 const struct cred *old;
844 struct cred *new;
845 gid_t old_fsgid;
846 kgid_t kgid;
847
848 old = current_cred();
849 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
850
851 kgid = make_kgid(old->user_ns, gid);
852 if (!gid_valid(kgid))
853 return old_fsgid;
854
855 new = prepare_creds();
856 if (!new)
857 return old_fsgid;
858
859 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
860 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
861 ns_capable(old->user_ns, CAP_SETGID)) {
862 if (!gid_eq(kgid, old->fsgid)) {
863 new->fsgid = kgid;
864 goto change_okay;
865 }
866 }
867
868 abort_creds(new);
869 return old_fsgid;
870
871 change_okay:
872 commit_creds(new);
873 return old_fsgid;
874 }
875
876 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
877 {
878 return __sys_setfsgid(gid);
879 }
880 #endif
881
882
883
884
885
886
887
888
889
890
891 SYSCALL_DEFINE0(getpid)
892 {
893 return task_tgid_vnr(current);
894 }
895
896
897 SYSCALL_DEFINE0(gettid)
898 {
899 return task_pid_vnr(current);
900 }
901
902
903
904
905
906
907
908 SYSCALL_DEFINE0(getppid)
909 {
910 int pid;
911
912 rcu_read_lock();
913 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
914 rcu_read_unlock();
915
916 return pid;
917 }
918
919 SYSCALL_DEFINE0(getuid)
920 {
921
922 return from_kuid_munged(current_user_ns(), current_uid());
923 }
924
925 SYSCALL_DEFINE0(geteuid)
926 {
927
928 return from_kuid_munged(current_user_ns(), current_euid());
929 }
930
931 SYSCALL_DEFINE0(getgid)
932 {
933
934 return from_kgid_munged(current_user_ns(), current_gid());
935 }
936
937 SYSCALL_DEFINE0(getegid)
938 {
939
940 return from_kgid_munged(current_user_ns(), current_egid());
941 }
942
943 static void do_sys_times(struct tms *tms)
944 {
945 u64 tgutime, tgstime, cutime, cstime;
946
947 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
948 cutime = current->signal->cutime;
949 cstime = current->signal->cstime;
950 tms->tms_utime = nsec_to_clock_t(tgutime);
951 tms->tms_stime = nsec_to_clock_t(tgstime);
952 tms->tms_cutime = nsec_to_clock_t(cutime);
953 tms->tms_cstime = nsec_to_clock_t(cstime);
954 }
955
956 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
957 {
958 if (tbuf) {
959 struct tms tmp;
960
961 do_sys_times(&tmp);
962 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
963 return -EFAULT;
964 }
965 force_successful_syscall_return();
966 return (long) jiffies_64_to_clock_t(get_jiffies_64());
967 }
968
969 #ifdef CONFIG_COMPAT
970 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
971 {
972 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
973 }
974
975 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
976 {
977 if (tbuf) {
978 struct tms tms;
979 struct compat_tms tmp;
980
981 do_sys_times(&tms);
982
983 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
984 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
985 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
986 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
987 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
988 return -EFAULT;
989 }
990 force_successful_syscall_return();
991 return compat_jiffies_to_clock_t(jiffies);
992 }
993 #endif
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007 {
1008 struct task_struct *p;
1009 struct task_struct *group_leader = current->group_leader;
1010 struct pid *pgrp;
1011 int err;
1012
1013 if (!pid)
1014 pid = task_pid_vnr(group_leader);
1015 if (!pgid)
1016 pgid = pid;
1017 if (pgid < 0)
1018 return -EINVAL;
1019 rcu_read_lock();
1020
1021
1022
1023
1024 write_lock_irq(&tasklist_lock);
1025
1026 err = -ESRCH;
1027 p = find_task_by_vpid(pid);
1028 if (!p)
1029 goto out;
1030
1031 err = -EINVAL;
1032 if (!thread_group_leader(p))
1033 goto out;
1034
1035 if (same_thread_group(p->real_parent, group_leader)) {
1036 err = -EPERM;
1037 if (task_session(p) != task_session(group_leader))
1038 goto out;
1039 err = -EACCES;
1040 if (!(p->flags & PF_FORKNOEXEC))
1041 goto out;
1042 } else {
1043 err = -ESRCH;
1044 if (p != group_leader)
1045 goto out;
1046 }
1047
1048 err = -EPERM;
1049 if (p->signal->leader)
1050 goto out;
1051
1052 pgrp = task_pid(p);
1053 if (pgid != pid) {
1054 struct task_struct *g;
1055
1056 pgrp = find_vpid(pgid);
1057 g = pid_task(pgrp, PIDTYPE_PGID);
1058 if (!g || task_session(g) != task_session(group_leader))
1059 goto out;
1060 }
1061
1062 err = security_task_setpgid(p, pgid);
1063 if (err)
1064 goto out;
1065
1066 if (task_pgrp(p) != pgrp)
1067 change_pid(p, PIDTYPE_PGID, pgrp);
1068
1069 err = 0;
1070 out:
1071
1072 write_unlock_irq(&tasklist_lock);
1073 rcu_read_unlock();
1074 return err;
1075 }
1076
1077 static int do_getpgid(pid_t pid)
1078 {
1079 struct task_struct *p;
1080 struct pid *grp;
1081 int retval;
1082
1083 rcu_read_lock();
1084 if (!pid)
1085 grp = task_pgrp(current);
1086 else {
1087 retval = -ESRCH;
1088 p = find_task_by_vpid(pid);
1089 if (!p)
1090 goto out;
1091 grp = task_pgrp(p);
1092 if (!grp)
1093 goto out;
1094
1095 retval = security_task_getpgid(p);
1096 if (retval)
1097 goto out;
1098 }
1099 retval = pid_vnr(grp);
1100 out:
1101 rcu_read_unlock();
1102 return retval;
1103 }
1104
1105 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106 {
1107 return do_getpgid(pid);
1108 }
1109
1110 #ifdef __ARCH_WANT_SYS_GETPGRP
1111
1112 SYSCALL_DEFINE0(getpgrp)
1113 {
1114 return do_getpgid(0);
1115 }
1116
1117 #endif
1118
1119 SYSCALL_DEFINE1(getsid, pid_t, pid)
1120 {
1121 struct task_struct *p;
1122 struct pid *sid;
1123 int retval;
1124
1125 rcu_read_lock();
1126 if (!pid)
1127 sid = task_session(current);
1128 else {
1129 retval = -ESRCH;
1130 p = find_task_by_vpid(pid);
1131 if (!p)
1132 goto out;
1133 sid = task_session(p);
1134 if (!sid)
1135 goto out;
1136
1137 retval = security_task_getsid(p);
1138 if (retval)
1139 goto out;
1140 }
1141 retval = pid_vnr(sid);
1142 out:
1143 rcu_read_unlock();
1144 return retval;
1145 }
1146
1147 static void set_special_pids(struct pid *pid)
1148 {
1149 struct task_struct *curr = current->group_leader;
1150
1151 if (task_session(curr) != pid)
1152 change_pid(curr, PIDTYPE_SID, pid);
1153
1154 if (task_pgrp(curr) != pid)
1155 change_pid(curr, PIDTYPE_PGID, pid);
1156 }
1157
1158 int ksys_setsid(void)
1159 {
1160 struct task_struct *group_leader = current->group_leader;
1161 struct pid *sid = task_pid(group_leader);
1162 pid_t session = pid_vnr(sid);
1163 int err = -EPERM;
1164
1165 write_lock_irq(&tasklist_lock);
1166
1167 if (group_leader->signal->leader)
1168 goto out;
1169
1170
1171
1172
1173 if (pid_task(sid, PIDTYPE_PGID))
1174 goto out;
1175
1176 group_leader->signal->leader = 1;
1177 set_special_pids(sid);
1178
1179 proc_clear_tty(group_leader);
1180
1181 err = session;
1182 out:
1183 write_unlock_irq(&tasklist_lock);
1184 if (err > 0) {
1185 proc_sid_connector(group_leader);
1186 sched_autogroup_create_attach(group_leader);
1187 }
1188 return err;
1189 }
1190
1191 SYSCALL_DEFINE0(setsid)
1192 {
1193 return ksys_setsid();
1194 }
1195
1196 DECLARE_RWSEM(uts_sem);
1197
1198 #ifdef COMPAT_UTS_MACHINE
1199 #define override_architecture(name) \
1200 (personality(current->personality) == PER_LINUX32 && \
1201 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202 sizeof(COMPAT_UTS_MACHINE)))
1203 #else
1204 #define override_architecture(name) 0
1205 #endif
1206
1207
1208
1209
1210
1211
1212
1213 static int override_release(char __user *release, size_t len)
1214 {
1215 int ret = 0;
1216
1217 if (current->personality & UNAME26) {
1218 const char *rest = UTS_RELEASE;
1219 char buf[65] = { 0 };
1220 int ndots = 0;
1221 unsigned v;
1222 size_t copy;
1223
1224 while (*rest) {
1225 if (*rest == '.' && ++ndots >= 3)
1226 break;
1227 if (!isdigit(*rest) && *rest != '.')
1228 break;
1229 rest++;
1230 }
1231 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1232 copy = clamp_t(size_t, len, 1, sizeof(buf));
1233 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1234 ret = copy_to_user(release, buf, copy + 1);
1235 }
1236 return ret;
1237 }
1238
1239 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1240 {
1241 struct new_utsname tmp;
1242
1243 down_read(&uts_sem);
1244 memcpy(&tmp, utsname(), sizeof(tmp));
1245 up_read(&uts_sem);
1246 if (copy_to_user(name, &tmp, sizeof(tmp)))
1247 return -EFAULT;
1248
1249 if (override_release(name->release, sizeof(name->release)))
1250 return -EFAULT;
1251 if (override_architecture(name))
1252 return -EFAULT;
1253 return 0;
1254 }
1255
1256 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1257
1258
1259
1260 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1261 {
1262 struct old_utsname tmp;
1263
1264 if (!name)
1265 return -EFAULT;
1266
1267 down_read(&uts_sem);
1268 memcpy(&tmp, utsname(), sizeof(tmp));
1269 up_read(&uts_sem);
1270 if (copy_to_user(name, &tmp, sizeof(tmp)))
1271 return -EFAULT;
1272
1273 if (override_release(name->release, sizeof(name->release)))
1274 return -EFAULT;
1275 if (override_architecture(name))
1276 return -EFAULT;
1277 return 0;
1278 }
1279
1280 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1281 {
1282 struct oldold_utsname tmp = {};
1283
1284 if (!name)
1285 return -EFAULT;
1286
1287 down_read(&uts_sem);
1288 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1289 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1290 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1291 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1292 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1293 up_read(&uts_sem);
1294 if (copy_to_user(name, &tmp, sizeof(tmp)))
1295 return -EFAULT;
1296
1297 if (override_architecture(name))
1298 return -EFAULT;
1299 if (override_release(name->release, sizeof(name->release)))
1300 return -EFAULT;
1301 return 0;
1302 }
1303 #endif
1304
1305 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1306 {
1307 int errno;
1308 char tmp[__NEW_UTS_LEN];
1309
1310 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1311 return -EPERM;
1312
1313 if (len < 0 || len > __NEW_UTS_LEN)
1314 return -EINVAL;
1315 errno = -EFAULT;
1316 if (!copy_from_user(tmp, name, len)) {
1317 struct new_utsname *u;
1318
1319 down_write(&uts_sem);
1320 u = utsname();
1321 memcpy(u->nodename, tmp, len);
1322 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1323 errno = 0;
1324 uts_proc_notify(UTS_PROC_HOSTNAME);
1325 up_write(&uts_sem);
1326 }
1327 return errno;
1328 }
1329
1330 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1331
1332 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1333 {
1334 int i;
1335 struct new_utsname *u;
1336 char tmp[__NEW_UTS_LEN + 1];
1337
1338 if (len < 0)
1339 return -EINVAL;
1340 down_read(&uts_sem);
1341 u = utsname();
1342 i = 1 + strlen(u->nodename);
1343 if (i > len)
1344 i = len;
1345 memcpy(tmp, u->nodename, i);
1346 up_read(&uts_sem);
1347 if (copy_to_user(name, tmp, i))
1348 return -EFAULT;
1349 return 0;
1350 }
1351
1352 #endif
1353
1354
1355
1356
1357
1358 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359 {
1360 int errno;
1361 char tmp[__NEW_UTS_LEN];
1362
1363 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364 return -EPERM;
1365 if (len < 0 || len > __NEW_UTS_LEN)
1366 return -EINVAL;
1367
1368 errno = -EFAULT;
1369 if (!copy_from_user(tmp, name, len)) {
1370 struct new_utsname *u;
1371
1372 down_write(&uts_sem);
1373 u = utsname();
1374 memcpy(u->domainname, tmp, len);
1375 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1376 errno = 0;
1377 uts_proc_notify(UTS_PROC_DOMAINNAME);
1378 up_write(&uts_sem);
1379 }
1380 return errno;
1381 }
1382
1383 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1384 {
1385 struct rlimit value;
1386 int ret;
1387
1388 ret = do_prlimit(current, resource, NULL, &value);
1389 if (!ret)
1390 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1391
1392 return ret;
1393 }
1394
1395 #ifdef CONFIG_COMPAT
1396
1397 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1398 struct compat_rlimit __user *, rlim)
1399 {
1400 struct rlimit r;
1401 struct compat_rlimit r32;
1402
1403 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1404 return -EFAULT;
1405
1406 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1407 r.rlim_cur = RLIM_INFINITY;
1408 else
1409 r.rlim_cur = r32.rlim_cur;
1410 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1411 r.rlim_max = RLIM_INFINITY;
1412 else
1413 r.rlim_max = r32.rlim_max;
1414 return do_prlimit(current, resource, &r, NULL);
1415 }
1416
1417 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1418 struct compat_rlimit __user *, rlim)
1419 {
1420 struct rlimit r;
1421 int ret;
1422
1423 ret = do_prlimit(current, resource, NULL, &r);
1424 if (!ret) {
1425 struct compat_rlimit r32;
1426 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1427 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1428 else
1429 r32.rlim_cur = r.rlim_cur;
1430 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1431 r32.rlim_max = COMPAT_RLIM_INFINITY;
1432 else
1433 r32.rlim_max = r.rlim_max;
1434
1435 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1436 return -EFAULT;
1437 }
1438 return ret;
1439 }
1440
1441 #endif
1442
1443 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1444
1445
1446
1447
1448 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1449 struct rlimit __user *, rlim)
1450 {
1451 struct rlimit x;
1452 if (resource >= RLIM_NLIMITS)
1453 return -EINVAL;
1454
1455 resource = array_index_nospec(resource, RLIM_NLIMITS);
1456 task_lock(current->group_leader);
1457 x = current->signal->rlim[resource];
1458 task_unlock(current->group_leader);
1459 if (x.rlim_cur > 0x7FFFFFFF)
1460 x.rlim_cur = 0x7FFFFFFF;
1461 if (x.rlim_max > 0x7FFFFFFF)
1462 x.rlim_max = 0x7FFFFFFF;
1463 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1464 }
1465
1466 #ifdef CONFIG_COMPAT
1467 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1468 struct compat_rlimit __user *, rlim)
1469 {
1470 struct rlimit r;
1471
1472 if (resource >= RLIM_NLIMITS)
1473 return -EINVAL;
1474
1475 resource = array_index_nospec(resource, RLIM_NLIMITS);
1476 task_lock(current->group_leader);
1477 r = current->signal->rlim[resource];
1478 task_unlock(current->group_leader);
1479 if (r.rlim_cur > 0x7FFFFFFF)
1480 r.rlim_cur = 0x7FFFFFFF;
1481 if (r.rlim_max > 0x7FFFFFFF)
1482 r.rlim_max = 0x7FFFFFFF;
1483
1484 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1485 put_user(r.rlim_max, &rlim->rlim_max))
1486 return -EFAULT;
1487 return 0;
1488 }
1489 #endif
1490
1491 #endif
1492
1493 static inline bool rlim64_is_infinity(__u64 rlim64)
1494 {
1495 #if BITS_PER_LONG < 64
1496 return rlim64 >= ULONG_MAX;
1497 #else
1498 return rlim64 == RLIM64_INFINITY;
1499 #endif
1500 }
1501
1502 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1503 {
1504 if (rlim->rlim_cur == RLIM_INFINITY)
1505 rlim64->rlim_cur = RLIM64_INFINITY;
1506 else
1507 rlim64->rlim_cur = rlim->rlim_cur;
1508 if (rlim->rlim_max == RLIM_INFINITY)
1509 rlim64->rlim_max = RLIM64_INFINITY;
1510 else
1511 rlim64->rlim_max = rlim->rlim_max;
1512 }
1513
1514 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1515 {
1516 if (rlim64_is_infinity(rlim64->rlim_cur))
1517 rlim->rlim_cur = RLIM_INFINITY;
1518 else
1519 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1520 if (rlim64_is_infinity(rlim64->rlim_max))
1521 rlim->rlim_max = RLIM_INFINITY;
1522 else
1523 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1524 }
1525
1526
1527 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1528 struct rlimit *new_rlim, struct rlimit *old_rlim)
1529 {
1530 struct rlimit *rlim;
1531 int retval = 0;
1532
1533 if (resource >= RLIM_NLIMITS)
1534 return -EINVAL;
1535 if (new_rlim) {
1536 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1537 return -EINVAL;
1538 if (resource == RLIMIT_NOFILE &&
1539 new_rlim->rlim_max > sysctl_nr_open)
1540 return -EPERM;
1541 }
1542
1543
1544 read_lock(&tasklist_lock);
1545 if (!tsk->sighand) {
1546 retval = -ESRCH;
1547 goto out;
1548 }
1549
1550 rlim = tsk->signal->rlim + resource;
1551 task_lock(tsk->group_leader);
1552 if (new_rlim) {
1553
1554
1555 if (new_rlim->rlim_max > rlim->rlim_max &&
1556 !capable(CAP_SYS_RESOURCE))
1557 retval = -EPERM;
1558 if (!retval)
1559 retval = security_task_setrlimit(tsk, resource, new_rlim);
1560 }
1561 if (!retval) {
1562 if (old_rlim)
1563 *old_rlim = *rlim;
1564 if (new_rlim)
1565 *rlim = *new_rlim;
1566 }
1567 task_unlock(tsk->group_leader);
1568
1569
1570
1571
1572
1573
1574 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1575 new_rlim->rlim_cur != RLIM_INFINITY &&
1576 IS_ENABLED(CONFIG_POSIX_TIMERS))
1577 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1578 out:
1579 read_unlock(&tasklist_lock);
1580 return retval;
1581 }
1582
1583
1584 static int check_prlimit_permission(struct task_struct *task,
1585 unsigned int flags)
1586 {
1587 const struct cred *cred = current_cred(), *tcred;
1588 bool id_match;
1589
1590 if (current == task)
1591 return 0;
1592
1593 tcred = __task_cred(task);
1594 id_match = (uid_eq(cred->uid, tcred->euid) &&
1595 uid_eq(cred->uid, tcred->suid) &&
1596 uid_eq(cred->uid, tcred->uid) &&
1597 gid_eq(cred->gid, tcred->egid) &&
1598 gid_eq(cred->gid, tcred->sgid) &&
1599 gid_eq(cred->gid, tcred->gid));
1600 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1601 return -EPERM;
1602
1603 return security_task_prlimit(cred, tcred, flags);
1604 }
1605
1606 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1607 const struct rlimit64 __user *, new_rlim,
1608 struct rlimit64 __user *, old_rlim)
1609 {
1610 struct rlimit64 old64, new64;
1611 struct rlimit old, new;
1612 struct task_struct *tsk;
1613 unsigned int checkflags = 0;
1614 int ret;
1615
1616 if (old_rlim)
1617 checkflags |= LSM_PRLIMIT_READ;
1618
1619 if (new_rlim) {
1620 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1621 return -EFAULT;
1622 rlim64_to_rlim(&new64, &new);
1623 checkflags |= LSM_PRLIMIT_WRITE;
1624 }
1625
1626 rcu_read_lock();
1627 tsk = pid ? find_task_by_vpid(pid) : current;
1628 if (!tsk) {
1629 rcu_read_unlock();
1630 return -ESRCH;
1631 }
1632 ret = check_prlimit_permission(tsk, checkflags);
1633 if (ret) {
1634 rcu_read_unlock();
1635 return ret;
1636 }
1637 get_task_struct(tsk);
1638 rcu_read_unlock();
1639
1640 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1641 old_rlim ? &old : NULL);
1642
1643 if (!ret && old_rlim) {
1644 rlim_to_rlim64(&old, &old64);
1645 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1646 ret = -EFAULT;
1647 }
1648
1649 put_task_struct(tsk);
1650 return ret;
1651 }
1652
1653 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1654 {
1655 struct rlimit new_rlim;
1656
1657 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1658 return -EFAULT;
1659 return do_prlimit(current, resource, &new_rlim, NULL);
1660 }
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1696 {
1697 r->ru_nvcsw += t->nvcsw;
1698 r->ru_nivcsw += t->nivcsw;
1699 r->ru_minflt += t->min_flt;
1700 r->ru_majflt += t->maj_flt;
1701 r->ru_inblock += task_io_get_inblock(t);
1702 r->ru_oublock += task_io_get_oublock(t);
1703 }
1704
1705 void getrusage(struct task_struct *p, int who, struct rusage *r)
1706 {
1707 struct task_struct *t;
1708 unsigned long flags;
1709 u64 tgutime, tgstime, utime, stime;
1710 unsigned long maxrss = 0;
1711
1712 memset((char *)r, 0, sizeof (*r));
1713 utime = stime = 0;
1714
1715 if (who == RUSAGE_THREAD) {
1716 task_cputime_adjusted(current, &utime, &stime);
1717 accumulate_thread_rusage(p, r);
1718 maxrss = p->signal->maxrss;
1719 goto out;
1720 }
1721
1722 if (!lock_task_sighand(p, &flags))
1723 return;
1724
1725 switch (who) {
1726 case RUSAGE_BOTH:
1727 case RUSAGE_CHILDREN:
1728 utime = p->signal->cutime;
1729 stime = p->signal->cstime;
1730 r->ru_nvcsw = p->signal->cnvcsw;
1731 r->ru_nivcsw = p->signal->cnivcsw;
1732 r->ru_minflt = p->signal->cmin_flt;
1733 r->ru_majflt = p->signal->cmaj_flt;
1734 r->ru_inblock = p->signal->cinblock;
1735 r->ru_oublock = p->signal->coublock;
1736 maxrss = p->signal->cmaxrss;
1737
1738 if (who == RUSAGE_CHILDREN)
1739 break;
1740
1741
1742 case RUSAGE_SELF:
1743 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1744 utime += tgutime;
1745 stime += tgstime;
1746 r->ru_nvcsw += p->signal->nvcsw;
1747 r->ru_nivcsw += p->signal->nivcsw;
1748 r->ru_minflt += p->signal->min_flt;
1749 r->ru_majflt += p->signal->maj_flt;
1750 r->ru_inblock += p->signal->inblock;
1751 r->ru_oublock += p->signal->oublock;
1752 if (maxrss < p->signal->maxrss)
1753 maxrss = p->signal->maxrss;
1754 t = p;
1755 do {
1756 accumulate_thread_rusage(t, r);
1757 } while_each_thread(p, t);
1758 break;
1759
1760 default:
1761 BUG();
1762 }
1763 unlock_task_sighand(p, &flags);
1764
1765 out:
1766 r->ru_utime = ns_to_timeval(utime);
1767 r->ru_stime = ns_to_timeval(stime);
1768
1769 if (who != RUSAGE_CHILDREN) {
1770 struct mm_struct *mm = get_task_mm(p);
1771
1772 if (mm) {
1773 setmax_mm_hiwater_rss(&maxrss, mm);
1774 mmput(mm);
1775 }
1776 }
1777 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024);
1778 }
1779
1780 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1781 {
1782 struct rusage r;
1783
1784 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1785 who != RUSAGE_THREAD)
1786 return -EINVAL;
1787
1788 getrusage(current, who, &r);
1789 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1790 }
1791
1792 #ifdef CONFIG_COMPAT
1793 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1794 {
1795 struct rusage r;
1796
1797 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1798 who != RUSAGE_THREAD)
1799 return -EINVAL;
1800
1801 getrusage(current, who, &r);
1802 return put_compat_rusage(&r, ru);
1803 }
1804 #endif
1805
1806 SYSCALL_DEFINE1(umask, int, mask)
1807 {
1808 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1809 return mask;
1810 }
1811
1812 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1813 {
1814 struct fd exe;
1815 struct file *old_exe, *exe_file;
1816 struct inode *inode;
1817 int err;
1818
1819 exe = fdget(fd);
1820 if (!exe.file)
1821 return -EBADF;
1822
1823 inode = file_inode(exe.file);
1824
1825
1826
1827
1828
1829
1830 err = -EACCES;
1831 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1832 goto exit;
1833
1834 err = inode_permission(inode, MAY_EXEC);
1835 if (err)
1836 goto exit;
1837
1838
1839
1840
1841 exe_file = get_mm_exe_file(mm);
1842 err = -EBUSY;
1843 if (exe_file) {
1844 struct vm_area_struct *vma;
1845
1846 down_read(&mm->mmap_sem);
1847 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1848 if (!vma->vm_file)
1849 continue;
1850 if (path_equal(&vma->vm_file->f_path,
1851 &exe_file->f_path))
1852 goto exit_err;
1853 }
1854
1855 up_read(&mm->mmap_sem);
1856 fput(exe_file);
1857 }
1858
1859 err = 0;
1860
1861 get_file(exe.file);
1862 old_exe = xchg(&mm->exe_file, exe.file);
1863 if (old_exe)
1864 fput(old_exe);
1865 exit:
1866 fdput(exe);
1867 return err;
1868 exit_err:
1869 up_read(&mm->mmap_sem);
1870 fput(exe_file);
1871 goto exit;
1872 }
1873
1874
1875
1876
1877
1878
1879
1880 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1881 {
1882 unsigned long mmap_max_addr = TASK_SIZE;
1883 int error = -EINVAL, i;
1884
1885 static const unsigned char offsets[] = {
1886 offsetof(struct prctl_mm_map, start_code),
1887 offsetof(struct prctl_mm_map, end_code),
1888 offsetof(struct prctl_mm_map, start_data),
1889 offsetof(struct prctl_mm_map, end_data),
1890 offsetof(struct prctl_mm_map, start_brk),
1891 offsetof(struct prctl_mm_map, brk),
1892 offsetof(struct prctl_mm_map, start_stack),
1893 offsetof(struct prctl_mm_map, arg_start),
1894 offsetof(struct prctl_mm_map, arg_end),
1895 offsetof(struct prctl_mm_map, env_start),
1896 offsetof(struct prctl_mm_map, env_end),
1897 };
1898
1899
1900
1901
1902
1903 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1904 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1905
1906 if ((unsigned long)val >= mmap_max_addr ||
1907 (unsigned long)val < mmap_min_addr)
1908 goto out;
1909 }
1910
1911
1912
1913
1914 #define __prctl_check_order(__m1, __op, __m2) \
1915 ((unsigned long)prctl_map->__m1 __op \
1916 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1917 error = __prctl_check_order(start_code, <, end_code);
1918 error |= __prctl_check_order(start_data,<=, end_data);
1919 error |= __prctl_check_order(start_brk, <=, brk);
1920 error |= __prctl_check_order(arg_start, <=, arg_end);
1921 error |= __prctl_check_order(env_start, <=, env_end);
1922 if (error)
1923 goto out;
1924 #undef __prctl_check_order
1925
1926 error = -EINVAL;
1927
1928
1929
1930
1931 if (prctl_map->start_brk <= prctl_map->end_data ||
1932 prctl_map->brk <= prctl_map->end_data)
1933 goto out;
1934
1935
1936
1937
1938 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1939 prctl_map->start_brk, prctl_map->end_data,
1940 prctl_map->start_data))
1941 goto out;
1942
1943 error = 0;
1944 out:
1945 return error;
1946 }
1947
1948 #ifdef CONFIG_CHECKPOINT_RESTORE
1949 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1950 {
1951 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1952 unsigned long user_auxv[AT_VECTOR_SIZE];
1953 struct mm_struct *mm = current->mm;
1954 int error;
1955
1956 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1957 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1958
1959 if (opt == PR_SET_MM_MAP_SIZE)
1960 return put_user((unsigned int)sizeof(prctl_map),
1961 (unsigned int __user *)addr);
1962
1963 if (data_size != sizeof(prctl_map))
1964 return -EINVAL;
1965
1966 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1967 return -EFAULT;
1968
1969 error = validate_prctl_map_addr(&prctl_map);
1970 if (error)
1971 return error;
1972
1973 if (prctl_map.auxv_size) {
1974
1975
1976
1977 if (!prctl_map.auxv ||
1978 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1979 return -EINVAL;
1980
1981 memset(user_auxv, 0, sizeof(user_auxv));
1982 if (copy_from_user(user_auxv,
1983 (const void __user *)prctl_map.auxv,
1984 prctl_map.auxv_size))
1985 return -EFAULT;
1986
1987
1988 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1989 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1990 }
1991
1992 if (prctl_map.exe_fd != (u32)-1) {
1993
1994
1995
1996
1997
1998 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1999 return -EINVAL;
2000
2001 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2002 if (error)
2003 return error;
2004 }
2005
2006
2007
2008
2009
2010 down_read(&mm->mmap_sem);
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024 spin_lock(&mm->arg_lock);
2025 mm->start_code = prctl_map.start_code;
2026 mm->end_code = prctl_map.end_code;
2027 mm->start_data = prctl_map.start_data;
2028 mm->end_data = prctl_map.end_data;
2029 mm->start_brk = prctl_map.start_brk;
2030 mm->brk = prctl_map.brk;
2031 mm->start_stack = prctl_map.start_stack;
2032 mm->arg_start = prctl_map.arg_start;
2033 mm->arg_end = prctl_map.arg_end;
2034 mm->env_start = prctl_map.env_start;
2035 mm->env_end = prctl_map.env_end;
2036 spin_unlock(&mm->arg_lock);
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046 if (prctl_map.auxv_size)
2047 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2048
2049 up_read(&mm->mmap_sem);
2050 return 0;
2051 }
2052 #endif
2053
2054 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2055 unsigned long len)
2056 {
2057
2058
2059
2060
2061
2062
2063 unsigned long user_auxv[AT_VECTOR_SIZE];
2064
2065 if (len > sizeof(user_auxv))
2066 return -EINVAL;
2067
2068 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2069 return -EFAULT;
2070
2071
2072 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2073 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2074
2075 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2076
2077 task_lock(current);
2078 memcpy(mm->saved_auxv, user_auxv, len);
2079 task_unlock(current);
2080
2081 return 0;
2082 }
2083
2084 static int prctl_set_mm(int opt, unsigned long addr,
2085 unsigned long arg4, unsigned long arg5)
2086 {
2087 struct mm_struct *mm = current->mm;
2088 struct prctl_mm_map prctl_map = {
2089 .auxv = NULL,
2090 .auxv_size = 0,
2091 .exe_fd = -1,
2092 };
2093 struct vm_area_struct *vma;
2094 int error;
2095
2096 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2097 opt != PR_SET_MM_MAP &&
2098 opt != PR_SET_MM_MAP_SIZE)))
2099 return -EINVAL;
2100
2101 #ifdef CONFIG_CHECKPOINT_RESTORE
2102 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2103 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2104 #endif
2105
2106 if (!capable(CAP_SYS_RESOURCE))
2107 return -EPERM;
2108
2109 if (opt == PR_SET_MM_EXE_FILE)
2110 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2111
2112 if (opt == PR_SET_MM_AUXV)
2113 return prctl_set_auxv(mm, addr, arg4);
2114
2115 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2116 return -EINVAL;
2117
2118 error = -EINVAL;
2119
2120
2121
2122
2123
2124
2125 down_read(&mm->mmap_sem);
2126 vma = find_vma(mm, addr);
2127
2128 spin_lock(&mm->arg_lock);
2129 prctl_map.start_code = mm->start_code;
2130 prctl_map.end_code = mm->end_code;
2131 prctl_map.start_data = mm->start_data;
2132 prctl_map.end_data = mm->end_data;
2133 prctl_map.start_brk = mm->start_brk;
2134 prctl_map.brk = mm->brk;
2135 prctl_map.start_stack = mm->start_stack;
2136 prctl_map.arg_start = mm->arg_start;
2137 prctl_map.arg_end = mm->arg_end;
2138 prctl_map.env_start = mm->env_start;
2139 prctl_map.env_end = mm->env_end;
2140
2141 switch (opt) {
2142 case PR_SET_MM_START_CODE:
2143 prctl_map.start_code = addr;
2144 break;
2145 case PR_SET_MM_END_CODE:
2146 prctl_map.end_code = addr;
2147 break;
2148 case PR_SET_MM_START_DATA:
2149 prctl_map.start_data = addr;
2150 break;
2151 case PR_SET_MM_END_DATA:
2152 prctl_map.end_data = addr;
2153 break;
2154 case PR_SET_MM_START_STACK:
2155 prctl_map.start_stack = addr;
2156 break;
2157 case PR_SET_MM_START_BRK:
2158 prctl_map.start_brk = addr;
2159 break;
2160 case PR_SET_MM_BRK:
2161 prctl_map.brk = addr;
2162 break;
2163 case PR_SET_MM_ARG_START:
2164 prctl_map.arg_start = addr;
2165 break;
2166 case PR_SET_MM_ARG_END:
2167 prctl_map.arg_end = addr;
2168 break;
2169 case PR_SET_MM_ENV_START:
2170 prctl_map.env_start = addr;
2171 break;
2172 case PR_SET_MM_ENV_END:
2173 prctl_map.env_end = addr;
2174 break;
2175 default:
2176 goto out;
2177 }
2178
2179 error = validate_prctl_map_addr(&prctl_map);
2180 if (error)
2181 goto out;
2182
2183 switch (opt) {
2184
2185
2186
2187
2188
2189
2190
2191 case PR_SET_MM_START_STACK:
2192 case PR_SET_MM_ARG_START:
2193 case PR_SET_MM_ARG_END:
2194 case PR_SET_MM_ENV_START:
2195 case PR_SET_MM_ENV_END:
2196 if (!vma) {
2197 error = -EFAULT;
2198 goto out;
2199 }
2200 }
2201
2202 mm->start_code = prctl_map.start_code;
2203 mm->end_code = prctl_map.end_code;
2204 mm->start_data = prctl_map.start_data;
2205 mm->end_data = prctl_map.end_data;
2206 mm->start_brk = prctl_map.start_brk;
2207 mm->brk = prctl_map.brk;
2208 mm->start_stack = prctl_map.start_stack;
2209 mm->arg_start = prctl_map.arg_start;
2210 mm->arg_end = prctl_map.arg_end;
2211 mm->env_start = prctl_map.env_start;
2212 mm->env_end = prctl_map.env_end;
2213
2214 error = 0;
2215 out:
2216 spin_unlock(&mm->arg_lock);
2217 up_read(&mm->mmap_sem);
2218 return error;
2219 }
2220
2221 #ifdef CONFIG_CHECKPOINT_RESTORE
2222 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2223 {
2224 return put_user(me->clear_child_tid, tid_addr);
2225 }
2226 #else
2227 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2228 {
2229 return -EINVAL;
2230 }
2231 #endif
2232
2233 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2234 {
2235
2236
2237
2238
2239
2240
2241
2242
2243 if (p->signal->has_child_subreaper ||
2244 is_child_reaper(task_pid(p)))
2245 return 0;
2246
2247 p->signal->has_child_subreaper = 1;
2248 return 1;
2249 }
2250
2251 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2252 {
2253 return -EINVAL;
2254 }
2255
2256 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2257 unsigned long ctrl)
2258 {
2259 return -EINVAL;
2260 }
2261
2262 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2263 unsigned long, arg4, unsigned long, arg5)
2264 {
2265 struct task_struct *me = current;
2266 unsigned char comm[sizeof(me->comm)];
2267 long error;
2268
2269 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2270 if (error != -ENOSYS)
2271 return error;
2272
2273 error = 0;
2274 switch (option) {
2275 case PR_SET_PDEATHSIG:
2276 if (!valid_signal(arg2)) {
2277 error = -EINVAL;
2278 break;
2279 }
2280 me->pdeath_signal = arg2;
2281 break;
2282 case PR_GET_PDEATHSIG:
2283 error = put_user(me->pdeath_signal, (int __user *)arg2);
2284 break;
2285 case PR_GET_DUMPABLE:
2286 error = get_dumpable(me->mm);
2287 break;
2288 case PR_SET_DUMPABLE:
2289 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2290 error = -EINVAL;
2291 break;
2292 }
2293 set_dumpable(me->mm, arg2);
2294 break;
2295
2296 case PR_SET_UNALIGN:
2297 error = SET_UNALIGN_CTL(me, arg2);
2298 break;
2299 case PR_GET_UNALIGN:
2300 error = GET_UNALIGN_CTL(me, arg2);
2301 break;
2302 case PR_SET_FPEMU:
2303 error = SET_FPEMU_CTL(me, arg2);
2304 break;
2305 case PR_GET_FPEMU:
2306 error = GET_FPEMU_CTL(me, arg2);
2307 break;
2308 case PR_SET_FPEXC:
2309 error = SET_FPEXC_CTL(me, arg2);
2310 break;
2311 case PR_GET_FPEXC:
2312 error = GET_FPEXC_CTL(me, arg2);
2313 break;
2314 case PR_GET_TIMING:
2315 error = PR_TIMING_STATISTICAL;
2316 break;
2317 case PR_SET_TIMING:
2318 if (arg2 != PR_TIMING_STATISTICAL)
2319 error = -EINVAL;
2320 break;
2321 case PR_SET_NAME:
2322 comm[sizeof(me->comm) - 1] = 0;
2323 if (strncpy_from_user(comm, (char __user *)arg2,
2324 sizeof(me->comm) - 1) < 0)
2325 return -EFAULT;
2326 set_task_comm(me, comm);
2327 proc_comm_connector(me);
2328 break;
2329 case PR_GET_NAME:
2330 get_task_comm(comm, me);
2331 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2332 return -EFAULT;
2333 break;
2334 case PR_GET_ENDIAN:
2335 error = GET_ENDIAN(me, arg2);
2336 break;
2337 case PR_SET_ENDIAN:
2338 error = SET_ENDIAN(me, arg2);
2339 break;
2340 case PR_GET_SECCOMP:
2341 error = prctl_get_seccomp();
2342 break;
2343 case PR_SET_SECCOMP:
2344 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2345 break;
2346 case PR_GET_TSC:
2347 error = GET_TSC_CTL(arg2);
2348 break;
2349 case PR_SET_TSC:
2350 error = SET_TSC_CTL(arg2);
2351 break;
2352 case PR_TASK_PERF_EVENTS_DISABLE:
2353 error = perf_event_task_disable();
2354 break;
2355 case PR_TASK_PERF_EVENTS_ENABLE:
2356 error = perf_event_task_enable();
2357 break;
2358 case PR_GET_TIMERSLACK:
2359 if (current->timer_slack_ns > ULONG_MAX)
2360 error = ULONG_MAX;
2361 else
2362 error = current->timer_slack_ns;
2363 break;
2364 case PR_SET_TIMERSLACK:
2365 if (arg2 <= 0)
2366 current->timer_slack_ns =
2367 current->default_timer_slack_ns;
2368 else
2369 current->timer_slack_ns = arg2;
2370 break;
2371 case PR_MCE_KILL:
2372 if (arg4 | arg5)
2373 return -EINVAL;
2374 switch (arg2) {
2375 case PR_MCE_KILL_CLEAR:
2376 if (arg3 != 0)
2377 return -EINVAL;
2378 current->flags &= ~PF_MCE_PROCESS;
2379 break;
2380 case PR_MCE_KILL_SET:
2381 current->flags |= PF_MCE_PROCESS;
2382 if (arg3 == PR_MCE_KILL_EARLY)
2383 current->flags |= PF_MCE_EARLY;
2384 else if (arg3 == PR_MCE_KILL_LATE)
2385 current->flags &= ~PF_MCE_EARLY;
2386 else if (arg3 == PR_MCE_KILL_DEFAULT)
2387 current->flags &=
2388 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2389 else
2390 return -EINVAL;
2391 break;
2392 default:
2393 return -EINVAL;
2394 }
2395 break;
2396 case PR_MCE_KILL_GET:
2397 if (arg2 | arg3 | arg4 | arg5)
2398 return -EINVAL;
2399 if (current->flags & PF_MCE_PROCESS)
2400 error = (current->flags & PF_MCE_EARLY) ?
2401 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2402 else
2403 error = PR_MCE_KILL_DEFAULT;
2404 break;
2405 case PR_SET_MM:
2406 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2407 break;
2408 case PR_GET_TID_ADDRESS:
2409 error = prctl_get_tid_address(me, (int __user **)arg2);
2410 break;
2411 case PR_SET_CHILD_SUBREAPER:
2412 me->signal->is_child_subreaper = !!arg2;
2413 if (!arg2)
2414 break;
2415
2416 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2417 break;
2418 case PR_GET_CHILD_SUBREAPER:
2419 error = put_user(me->signal->is_child_subreaper,
2420 (int __user *)arg2);
2421 break;
2422 case PR_SET_NO_NEW_PRIVS:
2423 if (arg2 != 1 || arg3 || arg4 || arg5)
2424 return -EINVAL;
2425
2426 task_set_no_new_privs(current);
2427 break;
2428 case PR_GET_NO_NEW_PRIVS:
2429 if (arg2 || arg3 || arg4 || arg5)
2430 return -EINVAL;
2431 return task_no_new_privs(current) ? 1 : 0;
2432 case PR_GET_THP_DISABLE:
2433 if (arg2 || arg3 || arg4 || arg5)
2434 return -EINVAL;
2435 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2436 break;
2437 case PR_SET_THP_DISABLE:
2438 if (arg3 || arg4 || arg5)
2439 return -EINVAL;
2440 if (down_write_killable(&me->mm->mmap_sem))
2441 return -EINTR;
2442 if (arg2)
2443 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2444 else
2445 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2446 up_write(&me->mm->mmap_sem);
2447 break;
2448 case PR_MPX_ENABLE_MANAGEMENT:
2449 case PR_MPX_DISABLE_MANAGEMENT:
2450
2451 return -EINVAL;
2452 case PR_SET_FP_MODE:
2453 error = SET_FP_MODE(me, arg2);
2454 break;
2455 case PR_GET_FP_MODE:
2456 error = GET_FP_MODE(me);
2457 break;
2458 case PR_SVE_SET_VL:
2459 error = SVE_SET_VL(arg2);
2460 break;
2461 case PR_SVE_GET_VL:
2462 error = SVE_GET_VL();
2463 break;
2464 case PR_GET_SPECULATION_CTRL:
2465 if (arg3 || arg4 || arg5)
2466 return -EINVAL;
2467 error = arch_prctl_spec_ctrl_get(me, arg2);
2468 break;
2469 case PR_SET_SPECULATION_CTRL:
2470 if (arg4 || arg5)
2471 return -EINVAL;
2472 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2473 break;
2474 case PR_PAC_RESET_KEYS:
2475 if (arg3 || arg4 || arg5)
2476 return -EINVAL;
2477 error = PAC_RESET_KEYS(me, arg2);
2478 break;
2479 case PR_SET_TAGGED_ADDR_CTRL:
2480 if (arg3 || arg4 || arg5)
2481 return -EINVAL;
2482 error = SET_TAGGED_ADDR_CTRL(arg2);
2483 break;
2484 case PR_GET_TAGGED_ADDR_CTRL:
2485 if (arg2 || arg3 || arg4 || arg5)
2486 return -EINVAL;
2487 error = GET_TAGGED_ADDR_CTRL();
2488 break;
2489 default:
2490 error = -EINVAL;
2491 break;
2492 }
2493 return error;
2494 }
2495
2496 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2497 struct getcpu_cache __user *, unused)
2498 {
2499 int err = 0;
2500 int cpu = raw_smp_processor_id();
2501
2502 if (cpup)
2503 err |= put_user(cpu, cpup);
2504 if (nodep)
2505 err |= put_user(cpu_to_node(cpu), nodep);
2506 return err ? -EFAULT : 0;
2507 }
2508
2509
2510
2511
2512
2513 static int do_sysinfo(struct sysinfo *info)
2514 {
2515 unsigned long mem_total, sav_total;
2516 unsigned int mem_unit, bitcount;
2517 struct timespec64 tp;
2518
2519 memset(info, 0, sizeof(struct sysinfo));
2520
2521 ktime_get_boottime_ts64(&tp);
2522 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2523
2524 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2525
2526 info->procs = nr_threads;
2527
2528 si_meminfo(info);
2529 si_swapinfo(info);
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540 mem_total = info->totalram + info->totalswap;
2541 if (mem_total < info->totalram || mem_total < info->totalswap)
2542 goto out;
2543 bitcount = 0;
2544 mem_unit = info->mem_unit;
2545 while (mem_unit > 1) {
2546 bitcount++;
2547 mem_unit >>= 1;
2548 sav_total = mem_total;
2549 mem_total <<= 1;
2550 if (mem_total < sav_total)
2551 goto out;
2552 }
2553
2554
2555
2556
2557
2558
2559
2560
2561 info->mem_unit = 1;
2562 info->totalram <<= bitcount;
2563 info->freeram <<= bitcount;
2564 info->sharedram <<= bitcount;
2565 info->bufferram <<= bitcount;
2566 info->totalswap <<= bitcount;
2567 info->freeswap <<= bitcount;
2568 info->totalhigh <<= bitcount;
2569 info->freehigh <<= bitcount;
2570
2571 out:
2572 return 0;
2573 }
2574
2575 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2576 {
2577 struct sysinfo val;
2578
2579 do_sysinfo(&val);
2580
2581 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2582 return -EFAULT;
2583
2584 return 0;
2585 }
2586
2587 #ifdef CONFIG_COMPAT
2588 struct compat_sysinfo {
2589 s32 uptime;
2590 u32 loads[3];
2591 u32 totalram;
2592 u32 freeram;
2593 u32 sharedram;
2594 u32 bufferram;
2595 u32 totalswap;
2596 u32 freeswap;
2597 u16 procs;
2598 u16 pad;
2599 u32 totalhigh;
2600 u32 freehigh;
2601 u32 mem_unit;
2602 char _f[20-2*sizeof(u32)-sizeof(int)];
2603 };
2604
2605 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2606 {
2607 struct sysinfo s;
2608
2609 do_sysinfo(&s);
2610
2611
2612
2613
2614 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2615 int bitcount = 0;
2616
2617 while (s.mem_unit < PAGE_SIZE) {
2618 s.mem_unit <<= 1;
2619 bitcount++;
2620 }
2621
2622 s.totalram >>= bitcount;
2623 s.freeram >>= bitcount;
2624 s.sharedram >>= bitcount;
2625 s.bufferram >>= bitcount;
2626 s.totalswap >>= bitcount;
2627 s.freeswap >>= bitcount;
2628 s.totalhigh >>= bitcount;
2629 s.freehigh >>= bitcount;
2630 }
2631
2632 if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2633 __put_user(s.uptime, &info->uptime) ||
2634 __put_user(s.loads[0], &info->loads[0]) ||
2635 __put_user(s.loads[1], &info->loads[1]) ||
2636 __put_user(s.loads[2], &info->loads[2]) ||
2637 __put_user(s.totalram, &info->totalram) ||
2638 __put_user(s.freeram, &info->freeram) ||
2639 __put_user(s.sharedram, &info->sharedram) ||
2640 __put_user(s.bufferram, &info->bufferram) ||
2641 __put_user(s.totalswap, &info->totalswap) ||
2642 __put_user(s.freeswap, &info->freeswap) ||
2643 __put_user(s.procs, &info->procs) ||
2644 __put_user(s.totalhigh, &info->totalhigh) ||
2645 __put_user(s.freehigh, &info->freehigh) ||
2646 __put_user(s.mem_unit, &info->mem_unit))
2647 return -EFAULT;
2648
2649 return 0;
2650 }
2651 #endif