root/kernel/sched/loadavg.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_avenrun
  2. calc_load_fold_active
  3. fixed_power_int
  4. calc_load_n
  5. calc_load_write_idx
  6. calc_load_read_idx
  7. calc_load_nohz_fold
  8. calc_load_nohz_start
  9. calc_load_nohz_remote
  10. calc_load_nohz_stop
  11. calc_load_nohz_read
  12. calc_global_nohz
  13. calc_load_nohz_read
  14. calc_global_nohz
  15. calc_global_load
  16. calc_global_load_tick

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * kernel/sched/loadavg.c
   4  *
   5  * This file contains the magic bits required to compute the global loadavg
   6  * figure. Its a silly number but people think its important. We go through
   7  * great pains to make it work on big machines and tickless kernels.
   8  */
   9 #include "sched.h"
  10 
  11 /*
  12  * Global load-average calculations
  13  *
  14  * We take a distributed and async approach to calculating the global load-avg
  15  * in order to minimize overhead.
  16  *
  17  * The global load average is an exponentially decaying average of nr_running +
  18  * nr_uninterruptible.
  19  *
  20  * Once every LOAD_FREQ:
  21  *
  22  *   nr_active = 0;
  23  *   for_each_possible_cpu(cpu)
  24  *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  25  *
  26  *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  27  *
  28  * Due to a number of reasons the above turns in the mess below:
  29  *
  30  *  - for_each_possible_cpu() is prohibitively expensive on machines with
  31  *    serious number of CPUs, therefore we need to take a distributed approach
  32  *    to calculating nr_active.
  33  *
  34  *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  35  *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  36  *
  37  *    So assuming nr_active := 0 when we start out -- true per definition, we
  38  *    can simply take per-CPU deltas and fold those into a global accumulate
  39  *    to obtain the same result. See calc_load_fold_active().
  40  *
  41  *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
  42  *    across the machine, we assume 10 ticks is sufficient time for every
  43  *    CPU to have completed this task.
  44  *
  45  *    This places an upper-bound on the IRQ-off latency of the machine. Then
  46  *    again, being late doesn't loose the delta, just wrecks the sample.
  47  *
  48  *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
  49  *    this would add another cross-CPU cacheline miss and atomic operation
  50  *    to the wakeup path. Instead we increment on whatever CPU the task ran
  51  *    when it went into uninterruptible state and decrement on whatever CPU
  52  *    did the wakeup. This means that only the sum of nr_uninterruptible over
  53  *    all CPUs yields the correct result.
  54  *
  55  *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  56  */
  57 
  58 /* Variables and functions for calc_load */
  59 atomic_long_t calc_load_tasks;
  60 unsigned long calc_load_update;
  61 unsigned long avenrun[3];
  62 EXPORT_SYMBOL(avenrun); /* should be removed */
  63 
  64 /**
  65  * get_avenrun - get the load average array
  66  * @loads:      pointer to dest load array
  67  * @offset:     offset to add
  68  * @shift:      shift count to shift the result left
  69  *
  70  * These values are estimates at best, so no need for locking.
  71  */
  72 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  73 {
  74         loads[0] = (avenrun[0] + offset) << shift;
  75         loads[1] = (avenrun[1] + offset) << shift;
  76         loads[2] = (avenrun[2] + offset) << shift;
  77 }
  78 
  79 long calc_load_fold_active(struct rq *this_rq, long adjust)
  80 {
  81         long nr_active, delta = 0;
  82 
  83         nr_active = this_rq->nr_running - adjust;
  84         nr_active += (long)this_rq->nr_uninterruptible;
  85 
  86         if (nr_active != this_rq->calc_load_active) {
  87                 delta = nr_active - this_rq->calc_load_active;
  88                 this_rq->calc_load_active = nr_active;
  89         }
  90 
  91         return delta;
  92 }
  93 
  94 /**
  95  * fixed_power_int - compute: x^n, in O(log n) time
  96  *
  97  * @x:         base of the power
  98  * @frac_bits: fractional bits of @x
  99  * @n:         power to raise @x to.
 100  *
 101  * By exploiting the relation between the definition of the natural power
 102  * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 103  * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 104  * (where: n_i \elem {0, 1}, the binary vector representing n),
 105  * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 106  * of course trivially computable in O(log_2 n), the length of our binary
 107  * vector.
 108  */
 109 static unsigned long
 110 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
 111 {
 112         unsigned long result = 1UL << frac_bits;
 113 
 114         if (n) {
 115                 for (;;) {
 116                         if (n & 1) {
 117                                 result *= x;
 118                                 result += 1UL << (frac_bits - 1);
 119                                 result >>= frac_bits;
 120                         }
 121                         n >>= 1;
 122                         if (!n)
 123                                 break;
 124                         x *= x;
 125                         x += 1UL << (frac_bits - 1);
 126                         x >>= frac_bits;
 127                 }
 128         }
 129 
 130         return result;
 131 }
 132 
 133 /*
 134  * a1 = a0 * e + a * (1 - e)
 135  *
 136  * a2 = a1 * e + a * (1 - e)
 137  *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 138  *    = a0 * e^2 + a * (1 - e) * (1 + e)
 139  *
 140  * a3 = a2 * e + a * (1 - e)
 141  *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 142  *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 143  *
 144  *  ...
 145  *
 146  * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 147  *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 148  *    = a0 * e^n + a * (1 - e^n)
 149  *
 150  * [1] application of the geometric series:
 151  *
 152  *              n         1 - x^(n+1)
 153  *     S_n := \Sum x^i = -------------
 154  *             i=0          1 - x
 155  */
 156 unsigned long
 157 calc_load_n(unsigned long load, unsigned long exp,
 158             unsigned long active, unsigned int n)
 159 {
 160         return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
 161 }
 162 
 163 #ifdef CONFIG_NO_HZ_COMMON
 164 /*
 165  * Handle NO_HZ for the global load-average.
 166  *
 167  * Since the above described distributed algorithm to compute the global
 168  * load-average relies on per-CPU sampling from the tick, it is affected by
 169  * NO_HZ.
 170  *
 171  * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
 172  * entering NO_HZ state such that we can include this as an 'extra' CPU delta
 173  * when we read the global state.
 174  *
 175  * Obviously reality has to ruin such a delightfully simple scheme:
 176  *
 177  *  - When we go NO_HZ idle during the window, we can negate our sample
 178  *    contribution, causing under-accounting.
 179  *
 180  *    We avoid this by keeping two NO_HZ-delta counters and flipping them
 181  *    when the window starts, thus separating old and new NO_HZ load.
 182  *
 183  *    The only trick is the slight shift in index flip for read vs write.
 184  *
 185  *        0s            5s            10s           15s
 186  *          +10           +10           +10           +10
 187  *        |-|-----------|-|-----------|-|-----------|-|
 188  *    r:0 0 1           1 0           0 1           1 0
 189  *    w:0 1 1           0 0           1 1           0 0
 190  *
 191  *    This ensures we'll fold the old NO_HZ contribution in this window while
 192  *    accumlating the new one.
 193  *
 194  *  - When we wake up from NO_HZ during the window, we push up our
 195  *    contribution, since we effectively move our sample point to a known
 196  *    busy state.
 197  *
 198  *    This is solved by pushing the window forward, and thus skipping the
 199  *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
 200  *    was in effect at the time the window opened). This also solves the issue
 201  *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
 202  *    intervals.
 203  *
 204  * When making the ILB scale, we should try to pull this in as well.
 205  */
 206 static atomic_long_t calc_load_nohz[2];
 207 static int calc_load_idx;
 208 
 209 static inline int calc_load_write_idx(void)
 210 {
 211         int idx = calc_load_idx;
 212 
 213         /*
 214          * See calc_global_nohz(), if we observe the new index, we also
 215          * need to observe the new update time.
 216          */
 217         smp_rmb();
 218 
 219         /*
 220          * If the folding window started, make sure we start writing in the
 221          * next NO_HZ-delta.
 222          */
 223         if (!time_before(jiffies, READ_ONCE(calc_load_update)))
 224                 idx++;
 225 
 226         return idx & 1;
 227 }
 228 
 229 static inline int calc_load_read_idx(void)
 230 {
 231         return calc_load_idx & 1;
 232 }
 233 
 234 static void calc_load_nohz_fold(struct rq *rq)
 235 {
 236         long delta;
 237 
 238         delta = calc_load_fold_active(rq, 0);
 239         if (delta) {
 240                 int idx = calc_load_write_idx();
 241 
 242                 atomic_long_add(delta, &calc_load_nohz[idx]);
 243         }
 244 }
 245 
 246 void calc_load_nohz_start(void)
 247 {
 248         /*
 249          * We're going into NO_HZ mode, if there's any pending delta, fold it
 250          * into the pending NO_HZ delta.
 251          */
 252         calc_load_nohz_fold(this_rq());
 253 }
 254 
 255 /*
 256  * Keep track of the load for NOHZ_FULL, must be called between
 257  * calc_load_nohz_{start,stop}().
 258  */
 259 void calc_load_nohz_remote(struct rq *rq)
 260 {
 261         calc_load_nohz_fold(rq);
 262 }
 263 
 264 void calc_load_nohz_stop(void)
 265 {
 266         struct rq *this_rq = this_rq();
 267 
 268         /*
 269          * If we're still before the pending sample window, we're done.
 270          */
 271         this_rq->calc_load_update = READ_ONCE(calc_load_update);
 272         if (time_before(jiffies, this_rq->calc_load_update))
 273                 return;
 274 
 275         /*
 276          * We woke inside or after the sample window, this means we're already
 277          * accounted through the nohz accounting, so skip the entire deal and
 278          * sync up for the next window.
 279          */
 280         if (time_before(jiffies, this_rq->calc_load_update + 10))
 281                 this_rq->calc_load_update += LOAD_FREQ;
 282 }
 283 
 284 static long calc_load_nohz_read(void)
 285 {
 286         int idx = calc_load_read_idx();
 287         long delta = 0;
 288 
 289         if (atomic_long_read(&calc_load_nohz[idx]))
 290                 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
 291 
 292         return delta;
 293 }
 294 
 295 /*
 296  * NO_HZ can leave us missing all per-CPU ticks calling
 297  * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
 298  * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
 299  * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
 300  *
 301  * Once we've updated the global active value, we need to apply the exponential
 302  * weights adjusted to the number of cycles missed.
 303  */
 304 static void calc_global_nohz(void)
 305 {
 306         unsigned long sample_window;
 307         long delta, active, n;
 308 
 309         sample_window = READ_ONCE(calc_load_update);
 310         if (!time_before(jiffies, sample_window + 10)) {
 311                 /*
 312                  * Catch-up, fold however many we are behind still
 313                  */
 314                 delta = jiffies - sample_window - 10;
 315                 n = 1 + (delta / LOAD_FREQ);
 316 
 317                 active = atomic_long_read(&calc_load_tasks);
 318                 active = active > 0 ? active * FIXED_1 : 0;
 319 
 320                 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
 321                 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
 322                 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
 323 
 324                 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
 325         }
 326 
 327         /*
 328          * Flip the NO_HZ index...
 329          *
 330          * Make sure we first write the new time then flip the index, so that
 331          * calc_load_write_idx() will see the new time when it reads the new
 332          * index, this avoids a double flip messing things up.
 333          */
 334         smp_wmb();
 335         calc_load_idx++;
 336 }
 337 #else /* !CONFIG_NO_HZ_COMMON */
 338 
 339 static inline long calc_load_nohz_read(void) { return 0; }
 340 static inline void calc_global_nohz(void) { }
 341 
 342 #endif /* CONFIG_NO_HZ_COMMON */
 343 
 344 /*
 345  * calc_load - update the avenrun load estimates 10 ticks after the
 346  * CPUs have updated calc_load_tasks.
 347  *
 348  * Called from the global timer code.
 349  */
 350 void calc_global_load(unsigned long ticks)
 351 {
 352         unsigned long sample_window;
 353         long active, delta;
 354 
 355         sample_window = READ_ONCE(calc_load_update);
 356         if (time_before(jiffies, sample_window + 10))
 357                 return;
 358 
 359         /*
 360          * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
 361          */
 362         delta = calc_load_nohz_read();
 363         if (delta)
 364                 atomic_long_add(delta, &calc_load_tasks);
 365 
 366         active = atomic_long_read(&calc_load_tasks);
 367         active = active > 0 ? active * FIXED_1 : 0;
 368 
 369         avenrun[0] = calc_load(avenrun[0], EXP_1, active);
 370         avenrun[1] = calc_load(avenrun[1], EXP_5, active);
 371         avenrun[2] = calc_load(avenrun[2], EXP_15, active);
 372 
 373         WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
 374 
 375         /*
 376          * In case we went to NO_HZ for multiple LOAD_FREQ intervals
 377          * catch up in bulk.
 378          */
 379         calc_global_nohz();
 380 }
 381 
 382 /*
 383  * Called from scheduler_tick() to periodically update this CPU's
 384  * active count.
 385  */
 386 void calc_global_load_tick(struct rq *this_rq)
 387 {
 388         long delta;
 389 
 390         if (time_before(jiffies, this_rq->calc_load_update))
 391                 return;
 392 
 393         delta  = calc_load_fold_active(this_rq, 0);
 394         if (delta)
 395                 atomic_long_add(delta, &calc_load_tasks);
 396 
 397         this_rq->calc_load_update += LOAD_FREQ;
 398 }

/* [<][>][^][v][top][bottom][index][help] */