This source file includes following definitions.
- parent
- left_child
- right_child
- cpudl_heapify_down
- cpudl_heapify_up
- cpudl_heapify
- cpudl_maximum
- cpudl_find
- cpudl_clear
- cpudl_set
- cpudl_set_freecpu
- cpudl_clear_freecpu
- cpudl_init
- cpudl_cleanup
1
2
3
4
5
6
7
8
9 #include "sched.h"
10
11 static inline int parent(int i)
12 {
13 return (i - 1) >> 1;
14 }
15
16 static inline int left_child(int i)
17 {
18 return (i << 1) + 1;
19 }
20
21 static inline int right_child(int i)
22 {
23 return (i << 1) + 2;
24 }
25
26 static void cpudl_heapify_down(struct cpudl *cp, int idx)
27 {
28 int l, r, largest;
29
30 int orig_cpu = cp->elements[idx].cpu;
31 u64 orig_dl = cp->elements[idx].dl;
32
33 if (left_child(idx) >= cp->size)
34 return;
35
36
37 while (1) {
38 u64 largest_dl;
39
40 l = left_child(idx);
41 r = right_child(idx);
42 largest = idx;
43 largest_dl = orig_dl;
44
45 if ((l < cp->size) && dl_time_before(orig_dl,
46 cp->elements[l].dl)) {
47 largest = l;
48 largest_dl = cp->elements[l].dl;
49 }
50 if ((r < cp->size) && dl_time_before(largest_dl,
51 cp->elements[r].dl))
52 largest = r;
53
54 if (largest == idx)
55 break;
56
57
58 cp->elements[idx].cpu = cp->elements[largest].cpu;
59 cp->elements[idx].dl = cp->elements[largest].dl;
60 cp->elements[cp->elements[idx].cpu].idx = idx;
61 idx = largest;
62 }
63
64 cp->elements[idx].cpu = orig_cpu;
65 cp->elements[idx].dl = orig_dl;
66 cp->elements[cp->elements[idx].cpu].idx = idx;
67 }
68
69 static void cpudl_heapify_up(struct cpudl *cp, int idx)
70 {
71 int p;
72
73 int orig_cpu = cp->elements[idx].cpu;
74 u64 orig_dl = cp->elements[idx].dl;
75
76 if (idx == 0)
77 return;
78
79 do {
80 p = parent(idx);
81 if (dl_time_before(orig_dl, cp->elements[p].dl))
82 break;
83
84 cp->elements[idx].cpu = cp->elements[p].cpu;
85 cp->elements[idx].dl = cp->elements[p].dl;
86 cp->elements[cp->elements[idx].cpu].idx = idx;
87 idx = p;
88 } while (idx != 0);
89
90 cp->elements[idx].cpu = orig_cpu;
91 cp->elements[idx].dl = orig_dl;
92 cp->elements[cp->elements[idx].cpu].idx = idx;
93 }
94
95 static void cpudl_heapify(struct cpudl *cp, int idx)
96 {
97 if (idx > 0 && dl_time_before(cp->elements[parent(idx)].dl,
98 cp->elements[idx].dl))
99 cpudl_heapify_up(cp, idx);
100 else
101 cpudl_heapify_down(cp, idx);
102 }
103
104 static inline int cpudl_maximum(struct cpudl *cp)
105 {
106 return cp->elements[0].cpu;
107 }
108
109
110
111
112
113
114
115
116
117 int cpudl_find(struct cpudl *cp, struct task_struct *p,
118 struct cpumask *later_mask)
119 {
120 const struct sched_dl_entity *dl_se = &p->dl;
121
122 if (later_mask &&
123 cpumask_and(later_mask, cp->free_cpus, p->cpus_ptr)) {
124 return 1;
125 } else {
126 int best_cpu = cpudl_maximum(cp);
127
128 WARN_ON(best_cpu != -1 && !cpu_present(best_cpu));
129
130 if (cpumask_test_cpu(best_cpu, p->cpus_ptr) &&
131 dl_time_before(dl_se->deadline, cp->elements[0].dl)) {
132 if (later_mask)
133 cpumask_set_cpu(best_cpu, later_mask);
134
135 return 1;
136 }
137 }
138 return 0;
139 }
140
141
142
143
144
145
146
147
148
149
150 void cpudl_clear(struct cpudl *cp, int cpu)
151 {
152 int old_idx, new_cpu;
153 unsigned long flags;
154
155 WARN_ON(!cpu_present(cpu));
156
157 raw_spin_lock_irqsave(&cp->lock, flags);
158
159 old_idx = cp->elements[cpu].idx;
160 if (old_idx == IDX_INVALID) {
161
162
163
164
165
166 } else {
167 new_cpu = cp->elements[cp->size - 1].cpu;
168 cp->elements[old_idx].dl = cp->elements[cp->size - 1].dl;
169 cp->elements[old_idx].cpu = new_cpu;
170 cp->size--;
171 cp->elements[new_cpu].idx = old_idx;
172 cp->elements[cpu].idx = IDX_INVALID;
173 cpudl_heapify(cp, old_idx);
174
175 cpumask_set_cpu(cpu, cp->free_cpus);
176 }
177 raw_spin_unlock_irqrestore(&cp->lock, flags);
178 }
179
180
181
182
183
184
185
186
187
188
189
190 void cpudl_set(struct cpudl *cp, int cpu, u64 dl)
191 {
192 int old_idx;
193 unsigned long flags;
194
195 WARN_ON(!cpu_present(cpu));
196
197 raw_spin_lock_irqsave(&cp->lock, flags);
198
199 old_idx = cp->elements[cpu].idx;
200 if (old_idx == IDX_INVALID) {
201 int new_idx = cp->size++;
202
203 cp->elements[new_idx].dl = dl;
204 cp->elements[new_idx].cpu = cpu;
205 cp->elements[cpu].idx = new_idx;
206 cpudl_heapify_up(cp, new_idx);
207 cpumask_clear_cpu(cpu, cp->free_cpus);
208 } else {
209 cp->elements[old_idx].dl = dl;
210 cpudl_heapify(cp, old_idx);
211 }
212
213 raw_spin_unlock_irqrestore(&cp->lock, flags);
214 }
215
216
217
218
219
220
221 void cpudl_set_freecpu(struct cpudl *cp, int cpu)
222 {
223 cpumask_set_cpu(cpu, cp->free_cpus);
224 }
225
226
227
228
229
230
231 void cpudl_clear_freecpu(struct cpudl *cp, int cpu)
232 {
233 cpumask_clear_cpu(cpu, cp->free_cpus);
234 }
235
236
237
238
239
240 int cpudl_init(struct cpudl *cp)
241 {
242 int i;
243
244 raw_spin_lock_init(&cp->lock);
245 cp->size = 0;
246
247 cp->elements = kcalloc(nr_cpu_ids,
248 sizeof(struct cpudl_item),
249 GFP_KERNEL);
250 if (!cp->elements)
251 return -ENOMEM;
252
253 if (!zalloc_cpumask_var(&cp->free_cpus, GFP_KERNEL)) {
254 kfree(cp->elements);
255 return -ENOMEM;
256 }
257
258 for_each_possible_cpu(i)
259 cp->elements[i].idx = IDX_INVALID;
260
261 return 0;
262 }
263
264
265
266
267
268 void cpudl_cleanup(struct cpudl *cp)
269 {
270 free_cpumask_var(cp->free_cpus);
271 kfree(cp->elements);
272 }