This source file includes following definitions.
- __task_rq_lock
- task_rq_lock
- update_rq_clock_task
- update_rq_clock
- hrtick_clear
- hrtick
- __hrtick_restart
- __hrtick_start
- hrtick_start
- hrtick_start
- hrtick_rq_init
- hrtick_clear
- hrtick_rq_init
- set_nr_and_not_polling
- set_nr_if_polling
- set_nr_and_not_polling
- set_nr_if_polling
- __wake_q_add
- wake_q_add
- wake_q_add_safe
- wake_up_q
- resched_curr
- resched_cpu
- get_nohz_timer_target
- wake_up_idle_cpu
- wake_up_full_nohz_cpu
- wake_up_nohz_cpu
- got_nohz_idle_kick
- got_nohz_idle_kick
- sched_can_stop_tick
- walk_tg_tree_from
- tg_nop
- set_load_weight
- uclamp_bucket_id
- uclamp_bucket_base_value
- uclamp_none
- uclamp_se_set
- uclamp_idle_value
- uclamp_idle_reset
- uclamp_rq_max_value
- uclamp_tg_restrict
- uclamp_eff_get
- uclamp_eff_value
- uclamp_rq_inc_id
- uclamp_rq_dec_id
- uclamp_rq_inc
- uclamp_rq_dec
- uclamp_update_active
- uclamp_update_active_tasks
- uclamp_update_root_tg
- uclamp_update_root_tg
- sysctl_sched_uclamp_handler
- uclamp_validate
- __setscheduler_uclamp
- uclamp_fork
- init_uclamp
- uclamp_rq_inc
- uclamp_rq_dec
- uclamp_validate
- __setscheduler_uclamp
- uclamp_fork
- init_uclamp
- enqueue_task
- dequeue_task
- activate_task
- deactivate_task
- __normal_prio
- normal_prio
- effective_prio
- task_curr
- check_class_changed
- check_preempt_curr
- is_per_cpu_kthread
- is_cpu_allowed
- move_queued_task
- __migrate_task
- migration_cpu_stop
- set_cpus_allowed_common
- do_set_cpus_allowed
- __set_cpus_allowed_ptr
- set_cpus_allowed_ptr
- set_task_cpu
- __migrate_swap_task
- migrate_swap_stop
- migrate_swap
- wait_task_inactive
- kick_process
- select_fallback_rq
- select_task_rq
- update_avg
- sched_set_stop_task
- __set_cpus_allowed_ptr
- ttwu_stat
- ttwu_do_wakeup
- ttwu_do_activate
- ttwu_remote
- sched_ttwu_pending
- scheduler_ipi
- ttwu_queue_remote
- wake_up_if_idle
- cpus_share_cache
- ttwu_queue
- try_to_wake_up
- wake_up_process
- wake_up_state
- __sched_fork
- set_numabalancing_state
- sysctl_numa_balancing
- set_schedstats
- force_schedstat_enabled
- setup_schedstats
- init_schedstats
- sysctl_schedstats
- init_schedstats
- sched_fork
- to_ratio
- wake_up_new_task
- preempt_notifier_inc
- preempt_notifier_dec
- preempt_notifier_register
- preempt_notifier_unregister
- __fire_sched_in_preempt_notifiers
- fire_sched_in_preempt_notifiers
- __fire_sched_out_preempt_notifiers
- fire_sched_out_preempt_notifiers
- fire_sched_in_preempt_notifiers
- fire_sched_out_preempt_notifiers
- prepare_task
- finish_task
- prepare_lock_switch
- finish_lock_switch
- prepare_task_switch
- finish_task_switch
- __balance_callback
- balance_callback
- balance_callback
- schedule_tail
- context_switch
- nr_running
- single_task_running
- nr_context_switches
- nr_iowait_cpu
- nr_iowait
- sched_exec
- prefetch_curr_exec_start
- task_sched_runtime
- scheduler_tick
- sched_tick_remote
- sched_tick_start
- sched_tick_stop
- sched_tick_offload_init
- sched_tick_start
- sched_tick_stop
- preempt_latency_start
- preempt_count_add
- preempt_latency_stop
- preempt_count_sub
- preempt_latency_start
- preempt_latency_stop
- get_preempt_disable_ip
- __schedule_bug
- schedule_debug
- pick_next_task
- __schedule
- do_task_dead
- sched_submit_work
- sched_update_worker
- schedule
- schedule_idle
- schedule_user
- schedule_preempt_disabled
- preempt_schedule_common
- preempt_schedule
- preempt_schedule_notrace
- preempt_schedule_irq
- default_wake_function
- __rt_effective_prio
- rt_effective_prio
- rt_mutex_setprio
- rt_effective_prio
- set_user_nice
- can_nice
- SYSCALL_DEFINE1
- task_prio
- idle_cpu
- available_idle_cpu
- idle_task
- find_process_by_pid
- __setscheduler_params
- __setscheduler
- check_same_owner
- __sched_setscheduler
- _sched_setscheduler
- sched_setscheduler
- sched_setattr
- sched_setattr_nocheck
- sched_setscheduler_nocheck
- do_sched_setscheduler
- sched_copy_attr
- SYSCALL_DEFINE3
- SYSCALL_DEFINE2
- SYSCALL_DEFINE3
- SYSCALL_DEFINE1
- SYSCALL_DEFINE2
- sched_attr_copy_to_user
- SYSCALL_DEFINE4
- sched_setaffinity
- get_user_cpu_mask
- SYSCALL_DEFINE3
- sched_getaffinity
- SYSCALL_DEFINE3
- do_sched_yield
- SYSCALL_DEFINE0
- _cond_resched
- __cond_resched_lock
- yield
- yield_to
- io_schedule_prepare
- io_schedule_finish
- io_schedule_timeout
- io_schedule
- SYSCALL_DEFINE1
- SYSCALL_DEFINE1
- sched_rr_get_interval
- SYSCALL_DEFINE2
- SYSCALL_DEFINE2
- sched_show_task
- state_filter_match
- show_state_filter
- init_idle
- cpuset_cpumask_can_shrink
- task_can_attach
- migrate_task_to
- sched_setnuma
- idle_task_exit
- calc_load_migrate
- __pick_migrate_task
- migrate_tasks
- set_rq_online
- set_rq_offline
- cpuset_cpu_active
- cpuset_cpu_inactive
- sched_cpu_activate
- sched_cpu_deactivate
- sched_rq_cpu_starting
- sched_cpu_starting
- sched_cpu_dying
- sched_init_smp
- migration_init
- sched_init_smp
- in_sched_functions
- sched_init
- preempt_count_equals
- __might_sleep
- ___might_sleep
- __cant_sleep
- normalize_rt_tasks
- curr_task
- ia64_set_curr_task
- alloc_uclamp_sched_group
- sched_free_group
- sched_create_group
- sched_online_group
- sched_free_group_rcu
- sched_destroy_group
- sched_offline_group
- sched_change_group
- sched_move_task
- css_tg
- cpu_cgroup_css_alloc
- cpu_cgroup_css_online
- cpu_cgroup_css_released
- cpu_cgroup_css_free
- cpu_cgroup_fork
- cpu_cgroup_can_attach
- cpu_cgroup_attach
- cpu_util_update_eff
- capacity_from_percent
- cpu_uclamp_write
- cpu_uclamp_min_write
- cpu_uclamp_max_write
- cpu_uclamp_print
- cpu_uclamp_min_show
- cpu_uclamp_max_show
- cpu_shares_write_u64
- cpu_shares_read_u64
- tg_set_cfs_bandwidth
- tg_set_cfs_quota
- tg_get_cfs_quota
- tg_set_cfs_period
- tg_get_cfs_period
- cpu_cfs_quota_read_s64
- cpu_cfs_quota_write_s64
- cpu_cfs_period_read_u64
- cpu_cfs_period_write_u64
- normalize_cfs_quota
- tg_cfs_schedulable_down
- __cfs_schedulable
- cpu_cfs_stat_show
- cpu_rt_runtime_write
- cpu_rt_runtime_read
- cpu_rt_period_write_uint
- cpu_rt_period_read_uint
- cpu_extra_stat_show
- cpu_weight_read_u64
- cpu_weight_write_u64
- cpu_weight_nice_read_s64
- cpu_weight_nice_write_s64
- cpu_period_quota_print
- cpu_period_quota_parse
- cpu_max_show
- cpu_max_write
- dump_cpu_task
1
2
3
4
5
6
7
8
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20
21 #include "pelt.h"
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25
26
27
28
29
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40
41
42
43
44
45
46
47 #define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 0;
52 #undef SCHED_FEAT
53 #endif
54
55
56
57
58
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
61
62
63
64
65 unsigned int sysctl_sched_rt_period = 1000000;
66
67 __read_mostly int scheduler_running;
68
69
70
71
72
73 int sysctl_sched_rt_runtime = 950000;
74
75
76
77
78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 __acquires(rq->lock)
80 {
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 rq_pin_lock(rq, rf);
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97 }
98
99
100
101
102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105 {
106 struct rq *rq;
107
108 for (;;) {
109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 rq_pin_lock(rq, rf);
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139 }
140
141
142
143
144
145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147
148
149
150
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((¶virt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188 #endif
189
190 rq->clock_task += delta;
191
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 update_rq_clock_pelt(rq, delta);
197 }
198
199 void update_rq_clock(struct rq *rq)
200 {
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208 #ifdef CONFIG_SCHED_DEBUG
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219 }
220
221
222 #ifdef CONFIG_SCHED_HRTICK
223
224
225
226
227 static void hrtick_clear(struct rq *rq)
228 {
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231 }
232
233
234
235
236
237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 struct rq_flags rf;
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
244 rq_lock(rq, &rf);
245 update_rq_clock(rq);
246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 rq_unlock(rq, &rf);
248
249 return HRTIMER_NORESTART;
250 }
251
252 #ifdef CONFIG_SMP
253
254 static void __hrtick_restart(struct rq *rq)
255 {
256 struct hrtimer *timer = &rq->hrtick_timer;
257
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259 }
260
261
262
263
264 static void __hrtick_start(void *arg)
265 {
266 struct rq *rq = arg;
267 struct rq_flags rf;
268
269 rq_lock(rq, &rf);
270 __hrtick_restart(rq);
271 rq->hrtick_csd_pending = 0;
272 rq_unlock(rq, &rf);
273 }
274
275
276
277
278
279
280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
285
286
287
288
289
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
292
293 hrtimer_set_expires(timer, time);
294
295 if (rq == this_rq()) {
296 __hrtick_restart(rq);
297 } else if (!rq->hrtick_csd_pending) {
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 rq->hrtick_csd_pending = 1;
300 }
301 }
302
303 #else
304
305
306
307
308
309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311
312
313
314
315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED_HARD);
318 }
319 #endif
320
321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
325
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329 #endif
330
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 rq->hrtick_timer.function = hrtick;
333 }
334 #else
335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338
339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif
343
344
345
346
347 #define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360 })
361
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363
364
365
366
367
368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373
374
375
376
377
378
379
380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 struct thread_info *ti = task_thread_info(p);
383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396 }
397
398 #else
399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 set_tsk_need_resched(p);
402 return true;
403 }
404
405 #ifdef CONFIG_SMP
406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 return false;
409 }
410 #endif
411 #endif
412
413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 struct wake_q_node *node = &task->wake_q;
416
417
418
419
420
421
422
423
424
425 smp_mb__before_atomic();
426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 return false;
428
429
430
431
432 *head->lastp = node;
433 head->lastp = &node->next;
434 return true;
435 }
436
437
438
439
440
441
442
443
444
445
446
447
448
449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453 }
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
476 }
477
478 void wake_up_q(struct wake_q_head *head)
479 {
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
487
488 node = node->next;
489 task->wake_q.next = NULL;
490
491
492
493
494
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498 }
499
500
501
502
503
504
505
506
507 void resched_curr(struct rq *rq)
508 {
509 struct task_struct *curr = rq->curr;
510 int cpu;
511
512 lockdep_assert_held(&rq->lock);
513
514 if (test_tsk_need_resched(curr))
515 return;
516
517 cpu = cpu_of(rq);
518
519 if (cpu == smp_processor_id()) {
520 set_tsk_need_resched(curr);
521 set_preempt_need_resched();
522 return;
523 }
524
525 if (set_nr_and_not_polling(curr))
526 smp_send_reschedule(cpu);
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
529 }
530
531 void resched_cpu(int cpu)
532 {
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
536 raw_spin_lock_irqsave(&rq->lock, flags);
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544
545
546
547
548
549
550
551
552 int get_nohz_timer_target(void)
553 {
554 int i, cpu = smp_processor_id();
555 struct sched_domain *sd;
556
557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 return cpu;
559
560 rcu_read_lock();
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
563 if (cpu == i)
564 continue;
565
566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 cpu = i;
568 goto unlock;
569 }
570 }
571 }
572
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 rcu_read_unlock();
577 return cpu;
578 }
579
580
581
582
583
584
585
586
587
588
589
590 static void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
601 }
602
603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605
606
607
608
609
610
611 if (cpu_is_offline(cpu))
612 return true;
613 if (tick_nohz_full_cpu(cpu)) {
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
616 tick_nohz_full_kick_cpu(cpu);
617 return true;
618 }
619
620 return false;
621 }
622
623
624
625
626
627
628 void wake_up_nohz_cpu(int cpu)
629 {
630 if (!wake_up_full_nohz_cpu(cpu))
631 wake_up_idle_cpu(cpu);
632 }
633
634 static inline bool got_nohz_idle_kick(void)
635 {
636 int cpu = smp_processor_id();
637
638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644
645
646
647
648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 return false;
650 }
651
652 #else
653
654 static inline bool got_nohz_idle_kick(void)
655 {
656 return false;
657 }
658
659 #endif
660
661 #ifdef CONFIG_NO_HZ_FULL
662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 int fifo_nr_running;
665
666
667 if (rq->dl.dl_nr_running)
668 return false;
669
670
671
672
673
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
679 }
680
681
682
683
684
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689
690
691
692
693
694 if (rq->nr_running > 1)
695 return false;
696
697 return true;
698 }
699 #endif
700 #endif
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704
705
706
707
708
709
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752
753
754
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 p->se.runnable_weight = load->weight;
759 return;
760 }
761
762
763
764
765
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 p->se.runnable_weight = load->weight;
772 }
773 }
774
775 #ifdef CONFIG_UCLAMP_TASK
776
777
778
779
780
781
782
783
784
785
786 static DEFINE_MUTEX(uclamp_mutex);
787
788
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796
797
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800 #define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818 }
819
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
822 {
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
826 }
827
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
831 {
832
833
834
835
836
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843 }
844
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
847 {
848
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
858 {
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862
863
864
865
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883
884
885
886
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895 #endif
896
897 return uc_req;
898 }
899
900
901
902
903
904
905
906
907
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919 }
920
921 unsigned int uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 struct uclamp_se uc_eff;
924
925
926 if (p->uclamp[clamp_id].active)
927 return p->uclamp[clamp_id].value;
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
931 return uc_eff.value;
932 }
933
934
935
936
937
938
939
940
941
942
943
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
946 {
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
953
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
959
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
962
963
964
965
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972
973
974
975
976
977
978
979
980
981
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
984 {
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
998
999
1000
1001
1002
1003
1004
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009
1010
1011
1012
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
1018 }
1019
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 enum uclamp_id clamp_id;
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 enum uclamp_id clamp_id;
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060 rq = task_rq_lock(p, &rf);
1061
1062
1063
1064
1065
1066
1067
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074 }
1075
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1080 {
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1084
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1090 }
1091 }
1092 css_task_iter_end(&it);
1093 }
1094
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116 {
1117 bool update_root_tg = false;
1118 int old_min, old_max;
1119 int result;
1120
1121 mutex_lock(&uclamp_mutex);
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 sysctl_sched_uclamp_util_min, false);
1140 update_root_tg = true;
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 sysctl_sched_uclamp_util_max, false);
1145 update_root_tg = true;
1146 }
1147
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
1151
1152
1153
1154
1155
1156
1157 goto done;
1158
1159 undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162 done:
1163 mutex_unlock(&uclamp_mutex);
1164
1165 return result;
1166 }
1167
1168 static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170 {
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185 }
1186
1187 static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189 {
1190 enum uclamp_id clamp_id;
1191
1192
1193
1194
1195
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200
1201 if (uc_se->user_defined)
1202 continue;
1203
1204
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223 }
1224
1225 static void uclamp_fork(struct task_struct *p)
1226 {
1227 enum uclamp_id clamp_id;
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
1236 uclamp_se_set(&p->uclamp_req[clamp_id],
1237 uclamp_none(clamp_id), false);
1238 }
1239 }
1240
1241 static void __init init_uclamp(void)
1242 {
1243 struct uclamp_se uc_max = {};
1244 enum uclamp_id clamp_id;
1245 int cpu;
1246
1247 mutex_init(&uclamp_mutex);
1248
1249 for_each_possible_cpu(cpu) {
1250 memset(&cpu_rq(cpu)->uclamp, 0,
1251 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1252 cpu_rq(cpu)->uclamp_flags = 0;
1253 }
1254
1255 for_each_clamp_id(clamp_id) {
1256 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1257 uclamp_none(clamp_id), false);
1258 }
1259
1260
1261 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1262 for_each_clamp_id(clamp_id) {
1263 uclamp_default[clamp_id] = uc_max;
1264 #ifdef CONFIG_UCLAMP_TASK_GROUP
1265 root_task_group.uclamp_req[clamp_id] = uc_max;
1266 root_task_group.uclamp[clamp_id] = uc_max;
1267 #endif
1268 }
1269 }
1270
1271 #else
1272 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1273 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1274 static inline int uclamp_validate(struct task_struct *p,
1275 const struct sched_attr *attr)
1276 {
1277 return -EOPNOTSUPP;
1278 }
1279 static void __setscheduler_uclamp(struct task_struct *p,
1280 const struct sched_attr *attr) { }
1281 static inline void uclamp_fork(struct task_struct *p) { }
1282 static inline void init_uclamp(void) { }
1283 #endif
1284
1285 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1286 {
1287 if (!(flags & ENQUEUE_NOCLOCK))
1288 update_rq_clock(rq);
1289
1290 if (!(flags & ENQUEUE_RESTORE)) {
1291 sched_info_queued(rq, p);
1292 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1293 }
1294
1295 uclamp_rq_inc(rq, p);
1296 p->sched_class->enqueue_task(rq, p, flags);
1297 }
1298
1299 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1300 {
1301 if (!(flags & DEQUEUE_NOCLOCK))
1302 update_rq_clock(rq);
1303
1304 if (!(flags & DEQUEUE_SAVE)) {
1305 sched_info_dequeued(rq, p);
1306 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1307 }
1308
1309 uclamp_rq_dec(rq, p);
1310 p->sched_class->dequeue_task(rq, p, flags);
1311 }
1312
1313 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1314 {
1315 if (task_contributes_to_load(p))
1316 rq->nr_uninterruptible--;
1317
1318 enqueue_task(rq, p, flags);
1319
1320 p->on_rq = TASK_ON_RQ_QUEUED;
1321 }
1322
1323 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1324 {
1325 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326
1327 if (task_contributes_to_load(p))
1328 rq->nr_uninterruptible++;
1329
1330 dequeue_task(rq, p, flags);
1331 }
1332
1333
1334
1335
1336 static inline int __normal_prio(struct task_struct *p)
1337 {
1338 return p->static_prio;
1339 }
1340
1341
1342
1343
1344
1345
1346
1347
1348 static inline int normal_prio(struct task_struct *p)
1349 {
1350 int prio;
1351
1352 if (task_has_dl_policy(p))
1353 prio = MAX_DL_PRIO-1;
1354 else if (task_has_rt_policy(p))
1355 prio = MAX_RT_PRIO-1 - p->rt_priority;
1356 else
1357 prio = __normal_prio(p);
1358 return prio;
1359 }
1360
1361
1362
1363
1364
1365
1366
1367
1368 static int effective_prio(struct task_struct *p)
1369 {
1370 p->normal_prio = normal_prio(p);
1371
1372
1373
1374
1375
1376 if (!rt_prio(p->prio))
1377 return p->normal_prio;
1378 return p->prio;
1379 }
1380
1381
1382
1383
1384
1385
1386
1387 inline int task_curr(const struct task_struct *p)
1388 {
1389 return cpu_curr(task_cpu(p)) == p;
1390 }
1391
1392
1393
1394
1395
1396
1397
1398
1399 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1400 const struct sched_class *prev_class,
1401 int oldprio)
1402 {
1403 if (prev_class != p->sched_class) {
1404 if (prev_class->switched_from)
1405 prev_class->switched_from(rq, p);
1406
1407 p->sched_class->switched_to(rq, p);
1408 } else if (oldprio != p->prio || dl_task(p))
1409 p->sched_class->prio_changed(rq, p, oldprio);
1410 }
1411
1412 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1413 {
1414 const struct sched_class *class;
1415
1416 if (p->sched_class == rq->curr->sched_class) {
1417 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1418 } else {
1419 for_each_class(class) {
1420 if (class == rq->curr->sched_class)
1421 break;
1422 if (class == p->sched_class) {
1423 resched_curr(rq);
1424 break;
1425 }
1426 }
1427 }
1428
1429
1430
1431
1432
1433 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1434 rq_clock_skip_update(rq);
1435 }
1436
1437 #ifdef CONFIG_SMP
1438
1439 static inline bool is_per_cpu_kthread(struct task_struct *p)
1440 {
1441 if (!(p->flags & PF_KTHREAD))
1442 return false;
1443
1444 if (p->nr_cpus_allowed != 1)
1445 return false;
1446
1447 return true;
1448 }
1449
1450
1451
1452
1453
1454 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1455 {
1456 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1457 return false;
1458
1459 if (is_per_cpu_kthread(p))
1460 return cpu_online(cpu);
1461
1462 return cpu_active(cpu);
1463 }
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1485 struct task_struct *p, int new_cpu)
1486 {
1487 lockdep_assert_held(&rq->lock);
1488
1489 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1490 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1491 set_task_cpu(p, new_cpu);
1492 rq_unlock(rq, rf);
1493
1494 rq = cpu_rq(new_cpu);
1495
1496 rq_lock(rq, rf);
1497 BUG_ON(task_cpu(p) != new_cpu);
1498 enqueue_task(rq, p, 0);
1499 p->on_rq = TASK_ON_RQ_QUEUED;
1500 check_preempt_curr(rq, p, 0);
1501
1502 return rq;
1503 }
1504
1505 struct migration_arg {
1506 struct task_struct *task;
1507 int dest_cpu;
1508 };
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1520 struct task_struct *p, int dest_cpu)
1521 {
1522
1523 if (!is_cpu_allowed(p, dest_cpu))
1524 return rq;
1525
1526 update_rq_clock(rq);
1527 rq = move_queued_task(rq, rf, p, dest_cpu);
1528
1529 return rq;
1530 }
1531
1532
1533
1534
1535
1536
1537 static int migration_cpu_stop(void *data)
1538 {
1539 struct migration_arg *arg = data;
1540 struct task_struct *p = arg->task;
1541 struct rq *rq = this_rq();
1542 struct rq_flags rf;
1543
1544
1545
1546
1547
1548 local_irq_disable();
1549
1550
1551
1552
1553
1554 sched_ttwu_pending();
1555
1556 raw_spin_lock(&p->pi_lock);
1557 rq_lock(rq, &rf);
1558
1559
1560
1561
1562
1563 if (task_rq(p) == rq) {
1564 if (task_on_rq_queued(p))
1565 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1566 else
1567 p->wake_cpu = arg->dest_cpu;
1568 }
1569 rq_unlock(rq, &rf);
1570 raw_spin_unlock(&p->pi_lock);
1571
1572 local_irq_enable();
1573 return 0;
1574 }
1575
1576
1577
1578
1579
1580 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1581 {
1582 cpumask_copy(&p->cpus_mask, new_mask);
1583 p->nr_cpus_allowed = cpumask_weight(new_mask);
1584 }
1585
1586 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1587 {
1588 struct rq *rq = task_rq(p);
1589 bool queued, running;
1590
1591 lockdep_assert_held(&p->pi_lock);
1592
1593 queued = task_on_rq_queued(p);
1594 running = task_current(rq, p);
1595
1596 if (queued) {
1597
1598
1599
1600
1601 lockdep_assert_held(&rq->lock);
1602 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1603 }
1604 if (running)
1605 put_prev_task(rq, p);
1606
1607 p->sched_class->set_cpus_allowed(p, new_mask);
1608
1609 if (queued)
1610 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1611 if (running)
1612 set_next_task(rq, p);
1613 }
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624 static int __set_cpus_allowed_ptr(struct task_struct *p,
1625 const struct cpumask *new_mask, bool check)
1626 {
1627 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1628 unsigned int dest_cpu;
1629 struct rq_flags rf;
1630 struct rq *rq;
1631 int ret = 0;
1632
1633 rq = task_rq_lock(p, &rf);
1634 update_rq_clock(rq);
1635
1636 if (p->flags & PF_KTHREAD) {
1637
1638
1639
1640 cpu_valid_mask = cpu_online_mask;
1641 }
1642
1643
1644
1645
1646
1647 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1648 ret = -EINVAL;
1649 goto out;
1650 }
1651
1652 if (cpumask_equal(p->cpus_ptr, new_mask))
1653 goto out;
1654
1655 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1656 if (dest_cpu >= nr_cpu_ids) {
1657 ret = -EINVAL;
1658 goto out;
1659 }
1660
1661 do_set_cpus_allowed(p, new_mask);
1662
1663 if (p->flags & PF_KTHREAD) {
1664
1665
1666
1667
1668 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1669 !cpumask_intersects(new_mask, cpu_active_mask) &&
1670 p->nr_cpus_allowed != 1);
1671 }
1672
1673
1674 if (cpumask_test_cpu(task_cpu(p), new_mask))
1675 goto out;
1676
1677 if (task_running(rq, p) || p->state == TASK_WAKING) {
1678 struct migration_arg arg = { p, dest_cpu };
1679
1680 task_rq_unlock(rq, p, &rf);
1681 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1682 return 0;
1683 } else if (task_on_rq_queued(p)) {
1684
1685
1686
1687
1688 rq = move_queued_task(rq, &rf, p, dest_cpu);
1689 }
1690 out:
1691 task_rq_unlock(rq, p, &rf);
1692
1693 return ret;
1694 }
1695
1696 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1697 {
1698 return __set_cpus_allowed_ptr(p, new_mask, false);
1699 }
1700 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1701
1702 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1703 {
1704 #ifdef CONFIG_SCHED_DEBUG
1705
1706
1707
1708
1709 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1710 !p->on_rq);
1711
1712
1713
1714
1715
1716
1717 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1718 p->sched_class == &fair_sched_class &&
1719 (p->on_rq && !task_on_rq_migrating(p)));
1720
1721 #ifdef CONFIG_LOCKDEP
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1733 lockdep_is_held(&task_rq(p)->lock)));
1734 #endif
1735
1736
1737
1738 WARN_ON_ONCE(!cpu_online(new_cpu));
1739 #endif
1740
1741 trace_sched_migrate_task(p, new_cpu);
1742
1743 if (task_cpu(p) != new_cpu) {
1744 if (p->sched_class->migrate_task_rq)
1745 p->sched_class->migrate_task_rq(p, new_cpu);
1746 p->se.nr_migrations++;
1747 rseq_migrate(p);
1748 perf_event_task_migrate(p);
1749 }
1750
1751 __set_task_cpu(p, new_cpu);
1752 }
1753
1754 #ifdef CONFIG_NUMA_BALANCING
1755 static void __migrate_swap_task(struct task_struct *p, int cpu)
1756 {
1757 if (task_on_rq_queued(p)) {
1758 struct rq *src_rq, *dst_rq;
1759 struct rq_flags srf, drf;
1760
1761 src_rq = task_rq(p);
1762 dst_rq = cpu_rq(cpu);
1763
1764 rq_pin_lock(src_rq, &srf);
1765 rq_pin_lock(dst_rq, &drf);
1766
1767 deactivate_task(src_rq, p, 0);
1768 set_task_cpu(p, cpu);
1769 activate_task(dst_rq, p, 0);
1770 check_preempt_curr(dst_rq, p, 0);
1771
1772 rq_unpin_lock(dst_rq, &drf);
1773 rq_unpin_lock(src_rq, &srf);
1774
1775 } else {
1776
1777
1778
1779
1780
1781 p->wake_cpu = cpu;
1782 }
1783 }
1784
1785 struct migration_swap_arg {
1786 struct task_struct *src_task, *dst_task;
1787 int src_cpu, dst_cpu;
1788 };
1789
1790 static int migrate_swap_stop(void *data)
1791 {
1792 struct migration_swap_arg *arg = data;
1793 struct rq *src_rq, *dst_rq;
1794 int ret = -EAGAIN;
1795
1796 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1797 return -EAGAIN;
1798
1799 src_rq = cpu_rq(arg->src_cpu);
1800 dst_rq = cpu_rq(arg->dst_cpu);
1801
1802 double_raw_lock(&arg->src_task->pi_lock,
1803 &arg->dst_task->pi_lock);
1804 double_rq_lock(src_rq, dst_rq);
1805
1806 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1807 goto unlock;
1808
1809 if (task_cpu(arg->src_task) != arg->src_cpu)
1810 goto unlock;
1811
1812 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1813 goto unlock;
1814
1815 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1816 goto unlock;
1817
1818 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1819 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1820
1821 ret = 0;
1822
1823 unlock:
1824 double_rq_unlock(src_rq, dst_rq);
1825 raw_spin_unlock(&arg->dst_task->pi_lock);
1826 raw_spin_unlock(&arg->src_task->pi_lock);
1827
1828 return ret;
1829 }
1830
1831
1832
1833
1834 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1835 int target_cpu, int curr_cpu)
1836 {
1837 struct migration_swap_arg arg;
1838 int ret = -EINVAL;
1839
1840 arg = (struct migration_swap_arg){
1841 .src_task = cur,
1842 .src_cpu = curr_cpu,
1843 .dst_task = p,
1844 .dst_cpu = target_cpu,
1845 };
1846
1847 if (arg.src_cpu == arg.dst_cpu)
1848 goto out;
1849
1850
1851
1852
1853
1854 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1855 goto out;
1856
1857 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1858 goto out;
1859
1860 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1861 goto out;
1862
1863 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1864 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1865
1866 out:
1867 return ret;
1868 }
1869 #endif
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1888 {
1889 int running, queued;
1890 struct rq_flags rf;
1891 unsigned long ncsw;
1892 struct rq *rq;
1893
1894 for (;;) {
1895
1896
1897
1898
1899
1900
1901 rq = task_rq(p);
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914 while (task_running(rq, p)) {
1915 if (match_state && unlikely(p->state != match_state))
1916 return 0;
1917 cpu_relax();
1918 }
1919
1920
1921
1922
1923
1924
1925 rq = task_rq_lock(p, &rf);
1926 trace_sched_wait_task(p);
1927 running = task_running(rq, p);
1928 queued = task_on_rq_queued(p);
1929 ncsw = 0;
1930 if (!match_state || p->state == match_state)
1931 ncsw = p->nvcsw | LONG_MIN;
1932 task_rq_unlock(rq, p, &rf);
1933
1934
1935
1936
1937 if (unlikely(!ncsw))
1938 break;
1939
1940
1941
1942
1943
1944
1945
1946 if (unlikely(running)) {
1947 cpu_relax();
1948 continue;
1949 }
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960 if (unlikely(queued)) {
1961 ktime_t to = NSEC_PER_SEC / HZ;
1962
1963 set_current_state(TASK_UNINTERRUPTIBLE);
1964 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1965 continue;
1966 }
1967
1968
1969
1970
1971
1972
1973 break;
1974 }
1975
1976 return ncsw;
1977 }
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992 void kick_process(struct task_struct *p)
1993 {
1994 int cpu;
1995
1996 preempt_disable();
1997 cpu = task_cpu(p);
1998 if ((cpu != smp_processor_id()) && task_curr(p))
1999 smp_send_reschedule(cpu);
2000 preempt_enable();
2001 }
2002 EXPORT_SYMBOL_GPL(kick_process);
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026 static int select_fallback_rq(int cpu, struct task_struct *p)
2027 {
2028 int nid = cpu_to_node(cpu);
2029 const struct cpumask *nodemask = NULL;
2030 enum { cpuset, possible, fail } state = cpuset;
2031 int dest_cpu;
2032
2033
2034
2035
2036
2037
2038 if (nid != -1) {
2039 nodemask = cpumask_of_node(nid);
2040
2041
2042 for_each_cpu(dest_cpu, nodemask) {
2043 if (!cpu_active(dest_cpu))
2044 continue;
2045 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2046 return dest_cpu;
2047 }
2048 }
2049
2050 for (;;) {
2051
2052 for_each_cpu(dest_cpu, p->cpus_ptr) {
2053 if (!is_cpu_allowed(p, dest_cpu))
2054 continue;
2055
2056 goto out;
2057 }
2058
2059
2060 switch (state) {
2061 case cpuset:
2062 if (IS_ENABLED(CONFIG_CPUSETS)) {
2063 cpuset_cpus_allowed_fallback(p);
2064 state = possible;
2065 break;
2066 }
2067
2068 case possible:
2069 do_set_cpus_allowed(p, cpu_possible_mask);
2070 state = fail;
2071 break;
2072
2073 case fail:
2074 BUG();
2075 break;
2076 }
2077 }
2078
2079 out:
2080 if (state != cpuset) {
2081
2082
2083
2084
2085
2086 if (p->mm && printk_ratelimit()) {
2087 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2088 task_pid_nr(p), p->comm, cpu);
2089 }
2090 }
2091
2092 return dest_cpu;
2093 }
2094
2095
2096
2097
2098 static inline
2099 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2100 {
2101 lockdep_assert_held(&p->pi_lock);
2102
2103 if (p->nr_cpus_allowed > 1)
2104 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2105 else
2106 cpu = cpumask_any(p->cpus_ptr);
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118 if (unlikely(!is_cpu_allowed(p, cpu)))
2119 cpu = select_fallback_rq(task_cpu(p), p);
2120
2121 return cpu;
2122 }
2123
2124 static void update_avg(u64 *avg, u64 sample)
2125 {
2126 s64 diff = sample - *avg;
2127 *avg += diff >> 3;
2128 }
2129
2130 void sched_set_stop_task(int cpu, struct task_struct *stop)
2131 {
2132 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2133 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2134
2135 if (stop) {
2136
2137
2138
2139
2140
2141
2142
2143
2144 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2145
2146 stop->sched_class = &stop_sched_class;
2147 }
2148
2149 cpu_rq(cpu)->stop = stop;
2150
2151 if (old_stop) {
2152
2153
2154
2155
2156 old_stop->sched_class = &rt_sched_class;
2157 }
2158 }
2159
2160 #else
2161
2162 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2163 const struct cpumask *new_mask, bool check)
2164 {
2165 return set_cpus_allowed_ptr(p, new_mask);
2166 }
2167
2168 #endif
2169
2170 static void
2171 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2172 {
2173 struct rq *rq;
2174
2175 if (!schedstat_enabled())
2176 return;
2177
2178 rq = this_rq();
2179
2180 #ifdef CONFIG_SMP
2181 if (cpu == rq->cpu) {
2182 __schedstat_inc(rq->ttwu_local);
2183 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2184 } else {
2185 struct sched_domain *sd;
2186
2187 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2188 rcu_read_lock();
2189 for_each_domain(rq->cpu, sd) {
2190 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2191 __schedstat_inc(sd->ttwu_wake_remote);
2192 break;
2193 }
2194 }
2195 rcu_read_unlock();
2196 }
2197
2198 if (wake_flags & WF_MIGRATED)
2199 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2200 #endif
2201
2202 __schedstat_inc(rq->ttwu_count);
2203 __schedstat_inc(p->se.statistics.nr_wakeups);
2204
2205 if (wake_flags & WF_SYNC)
2206 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2207 }
2208
2209
2210
2211
2212 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2213 struct rq_flags *rf)
2214 {
2215 check_preempt_curr(rq, p, wake_flags);
2216 p->state = TASK_RUNNING;
2217 trace_sched_wakeup(p);
2218
2219 #ifdef CONFIG_SMP
2220 if (p->sched_class->task_woken) {
2221
2222
2223
2224
2225 rq_unpin_lock(rq, rf);
2226 p->sched_class->task_woken(rq, p);
2227 rq_repin_lock(rq, rf);
2228 }
2229
2230 if (rq->idle_stamp) {
2231 u64 delta = rq_clock(rq) - rq->idle_stamp;
2232 u64 max = 2*rq->max_idle_balance_cost;
2233
2234 update_avg(&rq->avg_idle, delta);
2235
2236 if (rq->avg_idle > max)
2237 rq->avg_idle = max;
2238
2239 rq->idle_stamp = 0;
2240 }
2241 #endif
2242 }
2243
2244 static void
2245 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2246 struct rq_flags *rf)
2247 {
2248 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2249
2250 lockdep_assert_held(&rq->lock);
2251
2252 #ifdef CONFIG_SMP
2253 if (p->sched_contributes_to_load)
2254 rq->nr_uninterruptible--;
2255
2256 if (wake_flags & WF_MIGRATED)
2257 en_flags |= ENQUEUE_MIGRATED;
2258 #endif
2259
2260 activate_task(rq, p, en_flags);
2261 ttwu_do_wakeup(rq, p, wake_flags, rf);
2262 }
2263
2264
2265
2266
2267
2268
2269
2270 static int ttwu_remote(struct task_struct *p, int wake_flags)
2271 {
2272 struct rq_flags rf;
2273 struct rq *rq;
2274 int ret = 0;
2275
2276 rq = __task_rq_lock(p, &rf);
2277 if (task_on_rq_queued(p)) {
2278
2279 update_rq_clock(rq);
2280 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2281 ret = 1;
2282 }
2283 __task_rq_unlock(rq, &rf);
2284
2285 return ret;
2286 }
2287
2288 #ifdef CONFIG_SMP
2289 void sched_ttwu_pending(void)
2290 {
2291 struct rq *rq = this_rq();
2292 struct llist_node *llist = llist_del_all(&rq->wake_list);
2293 struct task_struct *p, *t;
2294 struct rq_flags rf;
2295
2296 if (!llist)
2297 return;
2298
2299 rq_lock_irqsave(rq, &rf);
2300 update_rq_clock(rq);
2301
2302 llist_for_each_entry_safe(p, t, llist, wake_entry)
2303 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2304
2305 rq_unlock_irqrestore(rq, &rf);
2306 }
2307
2308 void scheduler_ipi(void)
2309 {
2310
2311
2312
2313
2314
2315 preempt_fold_need_resched();
2316
2317 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2318 return;
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333 irq_enter();
2334 sched_ttwu_pending();
2335
2336
2337
2338
2339 if (unlikely(got_nohz_idle_kick())) {
2340 this_rq()->idle_balance = 1;
2341 raise_softirq_irqoff(SCHED_SOFTIRQ);
2342 }
2343 irq_exit();
2344 }
2345
2346 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2347 {
2348 struct rq *rq = cpu_rq(cpu);
2349
2350 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2351
2352 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2353 if (!set_nr_if_polling(rq->idle))
2354 smp_send_reschedule(cpu);
2355 else
2356 trace_sched_wake_idle_without_ipi(cpu);
2357 }
2358 }
2359
2360 void wake_up_if_idle(int cpu)
2361 {
2362 struct rq *rq = cpu_rq(cpu);
2363 struct rq_flags rf;
2364
2365 rcu_read_lock();
2366
2367 if (!is_idle_task(rcu_dereference(rq->curr)))
2368 goto out;
2369
2370 if (set_nr_if_polling(rq->idle)) {
2371 trace_sched_wake_idle_without_ipi(cpu);
2372 } else {
2373 rq_lock_irqsave(rq, &rf);
2374 if (is_idle_task(rq->curr))
2375 smp_send_reschedule(cpu);
2376
2377 rq_unlock_irqrestore(rq, &rf);
2378 }
2379
2380 out:
2381 rcu_read_unlock();
2382 }
2383
2384 bool cpus_share_cache(int this_cpu, int that_cpu)
2385 {
2386 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2387 }
2388 #endif
2389
2390 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2391 {
2392 struct rq *rq = cpu_rq(cpu);
2393 struct rq_flags rf;
2394
2395 #if defined(CONFIG_SMP)
2396 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2397 sched_clock_cpu(cpu);
2398 ttwu_queue_remote(p, cpu, wake_flags);
2399 return;
2400 }
2401 #endif
2402
2403 rq_lock(rq, &rf);
2404 update_rq_clock(rq);
2405 ttwu_do_activate(rq, p, wake_flags, &rf);
2406 rq_unlock(rq, &rf);
2407 }
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511 static int
2512 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2513 {
2514 unsigned long flags;
2515 int cpu, success = 0;
2516
2517 preempt_disable();
2518 if (p == current) {
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530 if (!(p->state & state))
2531 goto out;
2532
2533 success = 1;
2534 cpu = task_cpu(p);
2535 trace_sched_waking(p);
2536 p->state = TASK_RUNNING;
2537 trace_sched_wakeup(p);
2538 goto out;
2539 }
2540
2541
2542
2543
2544
2545
2546
2547 raw_spin_lock_irqsave(&p->pi_lock, flags);
2548 smp_mb__after_spinlock();
2549 if (!(p->state & state))
2550 goto unlock;
2551
2552 trace_sched_waking(p);
2553
2554
2555 success = 1;
2556 cpu = task_cpu(p);
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578 smp_rmb();
2579 if (p->on_rq && ttwu_remote(p, wake_flags))
2580 goto unlock;
2581
2582 #ifdef CONFIG_SMP
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602 smp_rmb();
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613 smp_cond_load_acquire(&p->on_cpu, !VAL);
2614
2615 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2616 p->state = TASK_WAKING;
2617
2618 if (p->in_iowait) {
2619 delayacct_blkio_end(p);
2620 atomic_dec(&task_rq(p)->nr_iowait);
2621 }
2622
2623 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2624 if (task_cpu(p) != cpu) {
2625 wake_flags |= WF_MIGRATED;
2626 psi_ttwu_dequeue(p);
2627 set_task_cpu(p, cpu);
2628 }
2629
2630 #else
2631
2632 if (p->in_iowait) {
2633 delayacct_blkio_end(p);
2634 atomic_dec(&task_rq(p)->nr_iowait);
2635 }
2636
2637 #endif
2638
2639 ttwu_queue(p, cpu, wake_flags);
2640 unlock:
2641 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2642 out:
2643 if (success)
2644 ttwu_stat(p, cpu, wake_flags);
2645 preempt_enable();
2646
2647 return success;
2648 }
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661 int wake_up_process(struct task_struct *p)
2662 {
2663 return try_to_wake_up(p, TASK_NORMAL, 0);
2664 }
2665 EXPORT_SYMBOL(wake_up_process);
2666
2667 int wake_up_state(struct task_struct *p, unsigned int state)
2668 {
2669 return try_to_wake_up(p, state, 0);
2670 }
2671
2672
2673
2674
2675
2676
2677
2678 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2679 {
2680 p->on_rq = 0;
2681
2682 p->se.on_rq = 0;
2683 p->se.exec_start = 0;
2684 p->se.sum_exec_runtime = 0;
2685 p->se.prev_sum_exec_runtime = 0;
2686 p->se.nr_migrations = 0;
2687 p->se.vruntime = 0;
2688 INIT_LIST_HEAD(&p->se.group_node);
2689
2690 #ifdef CONFIG_FAIR_GROUP_SCHED
2691 p->se.cfs_rq = NULL;
2692 #endif
2693
2694 #ifdef CONFIG_SCHEDSTATS
2695
2696 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2697 #endif
2698
2699 RB_CLEAR_NODE(&p->dl.rb_node);
2700 init_dl_task_timer(&p->dl);
2701 init_dl_inactive_task_timer(&p->dl);
2702 __dl_clear_params(p);
2703
2704 INIT_LIST_HEAD(&p->rt.run_list);
2705 p->rt.timeout = 0;
2706 p->rt.time_slice = sched_rr_timeslice;
2707 p->rt.on_rq = 0;
2708 p->rt.on_list = 0;
2709
2710 #ifdef CONFIG_PREEMPT_NOTIFIERS
2711 INIT_HLIST_HEAD(&p->preempt_notifiers);
2712 #endif
2713
2714 #ifdef CONFIG_COMPACTION
2715 p->capture_control = NULL;
2716 #endif
2717 init_numa_balancing(clone_flags, p);
2718 }
2719
2720 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2721
2722 #ifdef CONFIG_NUMA_BALANCING
2723
2724 void set_numabalancing_state(bool enabled)
2725 {
2726 if (enabled)
2727 static_branch_enable(&sched_numa_balancing);
2728 else
2729 static_branch_disable(&sched_numa_balancing);
2730 }
2731
2732 #ifdef CONFIG_PROC_SYSCTL
2733 int sysctl_numa_balancing(struct ctl_table *table, int write,
2734 void __user *buffer, size_t *lenp, loff_t *ppos)
2735 {
2736 struct ctl_table t;
2737 int err;
2738 int state = static_branch_likely(&sched_numa_balancing);
2739
2740 if (write && !capable(CAP_SYS_ADMIN))
2741 return -EPERM;
2742
2743 t = *table;
2744 t.data = &state;
2745 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2746 if (err < 0)
2747 return err;
2748 if (write)
2749 set_numabalancing_state(state);
2750 return err;
2751 }
2752 #endif
2753 #endif
2754
2755 #ifdef CONFIG_SCHEDSTATS
2756
2757 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2758 static bool __initdata __sched_schedstats = false;
2759
2760 static void set_schedstats(bool enabled)
2761 {
2762 if (enabled)
2763 static_branch_enable(&sched_schedstats);
2764 else
2765 static_branch_disable(&sched_schedstats);
2766 }
2767
2768 void force_schedstat_enabled(void)
2769 {
2770 if (!schedstat_enabled()) {
2771 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2772 static_branch_enable(&sched_schedstats);
2773 }
2774 }
2775
2776 static int __init setup_schedstats(char *str)
2777 {
2778 int ret = 0;
2779 if (!str)
2780 goto out;
2781
2782
2783
2784
2785
2786
2787 if (!strcmp(str, "enable")) {
2788 __sched_schedstats = true;
2789 ret = 1;
2790 } else if (!strcmp(str, "disable")) {
2791 __sched_schedstats = false;
2792 ret = 1;
2793 }
2794 out:
2795 if (!ret)
2796 pr_warn("Unable to parse schedstats=\n");
2797
2798 return ret;
2799 }
2800 __setup("schedstats=", setup_schedstats);
2801
2802 static void __init init_schedstats(void)
2803 {
2804 set_schedstats(__sched_schedstats);
2805 }
2806
2807 #ifdef CONFIG_PROC_SYSCTL
2808 int sysctl_schedstats(struct ctl_table *table, int write,
2809 void __user *buffer, size_t *lenp, loff_t *ppos)
2810 {
2811 struct ctl_table t;
2812 int err;
2813 int state = static_branch_likely(&sched_schedstats);
2814
2815 if (write && !capable(CAP_SYS_ADMIN))
2816 return -EPERM;
2817
2818 t = *table;
2819 t.data = &state;
2820 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2821 if (err < 0)
2822 return err;
2823 if (write)
2824 set_schedstats(state);
2825 return err;
2826 }
2827 #endif
2828 #else
2829 static inline void init_schedstats(void) {}
2830 #endif
2831
2832
2833
2834
2835 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2836 {
2837 unsigned long flags;
2838
2839 __sched_fork(clone_flags, p);
2840
2841
2842
2843
2844
2845 p->state = TASK_NEW;
2846
2847
2848
2849
2850 p->prio = current->normal_prio;
2851
2852 uclamp_fork(p);
2853
2854
2855
2856
2857 if (unlikely(p->sched_reset_on_fork)) {
2858 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2859 p->policy = SCHED_NORMAL;
2860 p->static_prio = NICE_TO_PRIO(0);
2861 p->rt_priority = 0;
2862 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2863 p->static_prio = NICE_TO_PRIO(0);
2864
2865 p->prio = p->normal_prio = __normal_prio(p);
2866 set_load_weight(p, false);
2867
2868
2869
2870
2871
2872 p->sched_reset_on_fork = 0;
2873 }
2874
2875 if (dl_prio(p->prio))
2876 return -EAGAIN;
2877 else if (rt_prio(p->prio))
2878 p->sched_class = &rt_sched_class;
2879 else
2880 p->sched_class = &fair_sched_class;
2881
2882 init_entity_runnable_average(&p->se);
2883
2884
2885
2886
2887
2888
2889
2890
2891 raw_spin_lock_irqsave(&p->pi_lock, flags);
2892
2893
2894
2895
2896 __set_task_cpu(p, smp_processor_id());
2897 if (p->sched_class->task_fork)
2898 p->sched_class->task_fork(p);
2899 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2900
2901 #ifdef CONFIG_SCHED_INFO
2902 if (likely(sched_info_on()))
2903 memset(&p->sched_info, 0, sizeof(p->sched_info));
2904 #endif
2905 #if defined(CONFIG_SMP)
2906 p->on_cpu = 0;
2907 #endif
2908 init_task_preempt_count(p);
2909 #ifdef CONFIG_SMP
2910 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2911 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2912 #endif
2913 return 0;
2914 }
2915
2916 unsigned long to_ratio(u64 period, u64 runtime)
2917 {
2918 if (runtime == RUNTIME_INF)
2919 return BW_UNIT;
2920
2921
2922
2923
2924
2925
2926 if (period == 0)
2927 return 0;
2928
2929 return div64_u64(runtime << BW_SHIFT, period);
2930 }
2931
2932
2933
2934
2935
2936
2937
2938
2939 void wake_up_new_task(struct task_struct *p)
2940 {
2941 struct rq_flags rf;
2942 struct rq *rq;
2943
2944 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2945 p->state = TASK_RUNNING;
2946 #ifdef CONFIG_SMP
2947
2948
2949
2950
2951
2952
2953
2954
2955 p->recent_used_cpu = task_cpu(p);
2956 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2957 #endif
2958 rq = __task_rq_lock(p, &rf);
2959 update_rq_clock(rq);
2960 post_init_entity_util_avg(p);
2961
2962 activate_task(rq, p, ENQUEUE_NOCLOCK);
2963 trace_sched_wakeup_new(p);
2964 check_preempt_curr(rq, p, WF_FORK);
2965 #ifdef CONFIG_SMP
2966 if (p->sched_class->task_woken) {
2967
2968
2969
2970
2971 rq_unpin_lock(rq, &rf);
2972 p->sched_class->task_woken(rq, p);
2973 rq_repin_lock(rq, &rf);
2974 }
2975 #endif
2976 task_rq_unlock(rq, p, &rf);
2977 }
2978
2979 #ifdef CONFIG_PREEMPT_NOTIFIERS
2980
2981 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2982
2983 void preempt_notifier_inc(void)
2984 {
2985 static_branch_inc(&preempt_notifier_key);
2986 }
2987 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2988
2989 void preempt_notifier_dec(void)
2990 {
2991 static_branch_dec(&preempt_notifier_key);
2992 }
2993 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2994
2995
2996
2997
2998
2999 void preempt_notifier_register(struct preempt_notifier *notifier)
3000 {
3001 if (!static_branch_unlikely(&preempt_notifier_key))
3002 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3003
3004 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3005 }
3006 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3007
3008
3009
3010
3011
3012
3013
3014 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3015 {
3016 hlist_del(¬ifier->link);
3017 }
3018 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3019
3020 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3021 {
3022 struct preempt_notifier *notifier;
3023
3024 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3025 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3026 }
3027
3028 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3029 {
3030 if (static_branch_unlikely(&preempt_notifier_key))
3031 __fire_sched_in_preempt_notifiers(curr);
3032 }
3033
3034 static void
3035 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3036 struct task_struct *next)
3037 {
3038 struct preempt_notifier *notifier;
3039
3040 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3041 notifier->ops->sched_out(notifier, next);
3042 }
3043
3044 static __always_inline void
3045 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3046 struct task_struct *next)
3047 {
3048 if (static_branch_unlikely(&preempt_notifier_key))
3049 __fire_sched_out_preempt_notifiers(curr, next);
3050 }
3051
3052 #else
3053
3054 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3055 {
3056 }
3057
3058 static inline void
3059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3060 struct task_struct *next)
3061 {
3062 }
3063
3064 #endif
3065
3066 static inline void prepare_task(struct task_struct *next)
3067 {
3068 #ifdef CONFIG_SMP
3069
3070
3071
3072
3073 next->on_cpu = 1;
3074 #endif
3075 }
3076
3077 static inline void finish_task(struct task_struct *prev)
3078 {
3079 #ifdef CONFIG_SMP
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090 smp_store_release(&prev->on_cpu, 0);
3091 #endif
3092 }
3093
3094 static inline void
3095 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3096 {
3097
3098
3099
3100
3101
3102
3103 rq_unpin_lock(rq, rf);
3104 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3105 #ifdef CONFIG_DEBUG_SPINLOCK
3106
3107 rq->lock.owner = next;
3108 #endif
3109 }
3110
3111 static inline void finish_lock_switch(struct rq *rq)
3112 {
3113
3114
3115
3116
3117
3118 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3119 raw_spin_unlock_irq(&rq->lock);
3120 }
3121
3122
3123
3124
3125
3126 #ifndef prepare_arch_switch
3127 # define prepare_arch_switch(next) do { } while (0)
3128 #endif
3129
3130 #ifndef finish_arch_post_lock_switch
3131 # define finish_arch_post_lock_switch() do { } while (0)
3132 #endif
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147 static inline void
3148 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3149 struct task_struct *next)
3150 {
3151 kcov_prepare_switch(prev);
3152 sched_info_switch(rq, prev, next);
3153 perf_event_task_sched_out(prev, next);
3154 rseq_preempt(prev);
3155 fire_sched_out_preempt_notifiers(prev, next);
3156 prepare_task(next);
3157 prepare_arch_switch(next);
3158 }
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179 static struct rq *finish_task_switch(struct task_struct *prev)
3180 __releases(rq->lock)
3181 {
3182 struct rq *rq = this_rq();
3183 struct mm_struct *mm = rq->prev_mm;
3184 long prev_state;
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3198 "corrupted preempt_count: %s/%d/0x%x\n",
3199 current->comm, current->pid, preempt_count()))
3200 preempt_count_set(FORK_PREEMPT_COUNT);
3201
3202 rq->prev_mm = NULL;
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215 prev_state = prev->state;
3216 vtime_task_switch(prev);
3217 perf_event_task_sched_in(prev, current);
3218 finish_task(prev);
3219 finish_lock_switch(rq);
3220 finish_arch_post_lock_switch();
3221 kcov_finish_switch(current);
3222
3223 fire_sched_in_preempt_notifiers(current);
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236 if (mm) {
3237 membarrier_mm_sync_core_before_usermode(mm);
3238 mmdrop(mm);
3239 }
3240 if (unlikely(prev_state == TASK_DEAD)) {
3241 if (prev->sched_class->task_dead)
3242 prev->sched_class->task_dead(prev);
3243
3244
3245
3246
3247
3248 kprobe_flush_task(prev);
3249
3250
3251 put_task_stack(prev);
3252
3253 put_task_struct_rcu_user(prev);
3254 }
3255
3256 tick_nohz_task_switch();
3257 return rq;
3258 }
3259
3260 #ifdef CONFIG_SMP
3261
3262
3263 static void __balance_callback(struct rq *rq)
3264 {
3265 struct callback_head *head, *next;
3266 void (*func)(struct rq *rq);
3267 unsigned long flags;
3268
3269 raw_spin_lock_irqsave(&rq->lock, flags);
3270 head = rq->balance_callback;
3271 rq->balance_callback = NULL;
3272 while (head) {
3273 func = (void (*)(struct rq *))head->func;
3274 next = head->next;
3275 head->next = NULL;
3276 head = next;
3277
3278 func(rq);
3279 }
3280 raw_spin_unlock_irqrestore(&rq->lock, flags);
3281 }
3282
3283 static inline void balance_callback(struct rq *rq)
3284 {
3285 if (unlikely(rq->balance_callback))
3286 __balance_callback(rq);
3287 }
3288
3289 #else
3290
3291 static inline void balance_callback(struct rq *rq)
3292 {
3293 }
3294
3295 #endif
3296
3297
3298
3299
3300
3301 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3302 __releases(rq->lock)
3303 {
3304 struct rq *rq;
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315 rq = finish_task_switch(prev);
3316 balance_callback(rq);
3317 preempt_enable();
3318
3319 if (current->set_child_tid)
3320 put_user(task_pid_vnr(current), current->set_child_tid);
3321
3322 calculate_sigpending();
3323 }
3324
3325
3326
3327
3328 static __always_inline struct rq *
3329 context_switch(struct rq *rq, struct task_struct *prev,
3330 struct task_struct *next, struct rq_flags *rf)
3331 {
3332 prepare_task_switch(rq, prev, next);
3333
3334
3335
3336
3337
3338
3339 arch_start_context_switch(prev);
3340
3341
3342
3343
3344
3345
3346
3347
3348 if (!next->mm) {
3349 enter_lazy_tlb(prev->active_mm, next);
3350
3351 next->active_mm = prev->active_mm;
3352 if (prev->mm)
3353 mmgrab(prev->active_mm);
3354 else
3355 prev->active_mm = NULL;
3356 } else {
3357 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3358
3359
3360
3361
3362
3363
3364
3365
3366 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3367
3368 if (!prev->mm) {
3369
3370 rq->prev_mm = prev->active_mm;
3371 prev->active_mm = NULL;
3372 }
3373 }
3374
3375 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3376
3377 prepare_lock_switch(rq, next, rf);
3378
3379
3380 switch_to(prev, next, prev);
3381 barrier();
3382
3383 return finish_task_switch(prev);
3384 }
3385
3386
3387
3388
3389
3390
3391
3392 unsigned long nr_running(void)
3393 {
3394 unsigned long i, sum = 0;
3395
3396 for_each_online_cpu(i)
3397 sum += cpu_rq(i)->nr_running;
3398
3399 return sum;
3400 }
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415 bool single_task_running(void)
3416 {
3417 return raw_rq()->nr_running == 1;
3418 }
3419 EXPORT_SYMBOL(single_task_running);
3420
3421 unsigned long long nr_context_switches(void)
3422 {
3423 int i;
3424 unsigned long long sum = 0;
3425
3426 for_each_possible_cpu(i)
3427 sum += cpu_rq(i)->nr_switches;
3428
3429 return sum;
3430 }
3431
3432
3433
3434
3435
3436
3437
3438
3439 unsigned long nr_iowait_cpu(int cpu)
3440 {
3441 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3442 }
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474 unsigned long nr_iowait(void)
3475 {
3476 unsigned long i, sum = 0;
3477
3478 for_each_possible_cpu(i)
3479 sum += nr_iowait_cpu(i);
3480
3481 return sum;
3482 }
3483
3484 #ifdef CONFIG_SMP
3485
3486
3487
3488
3489
3490 void sched_exec(void)
3491 {
3492 struct task_struct *p = current;
3493 unsigned long flags;
3494 int dest_cpu;
3495
3496 raw_spin_lock_irqsave(&p->pi_lock, flags);
3497 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3498 if (dest_cpu == smp_processor_id())
3499 goto unlock;
3500
3501 if (likely(cpu_active(dest_cpu))) {
3502 struct migration_arg arg = { p, dest_cpu };
3503
3504 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3505 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3506 return;
3507 }
3508 unlock:
3509 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3510 }
3511
3512 #endif
3513
3514 DEFINE_PER_CPU(struct kernel_stat, kstat);
3515 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3516
3517 EXPORT_PER_CPU_SYMBOL(kstat);
3518 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3519
3520
3521
3522
3523
3524
3525
3526 static inline void prefetch_curr_exec_start(struct task_struct *p)
3527 {
3528 #ifdef CONFIG_FAIR_GROUP_SCHED
3529 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3530 #else
3531 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3532 #endif
3533 prefetch(curr);
3534 prefetch(&curr->exec_start);
3535 }
3536
3537
3538
3539
3540
3541
3542 unsigned long long task_sched_runtime(struct task_struct *p)
3543 {
3544 struct rq_flags rf;
3545 struct rq *rq;
3546 u64 ns;
3547
3548 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560 if (!p->on_cpu || !task_on_rq_queued(p))
3561 return p->se.sum_exec_runtime;
3562 #endif
3563
3564 rq = task_rq_lock(p, &rf);
3565
3566
3567
3568
3569
3570 if (task_current(rq, p) && task_on_rq_queued(p)) {
3571 prefetch_curr_exec_start(p);
3572 update_rq_clock(rq);
3573 p->sched_class->update_curr(rq);
3574 }
3575 ns = p->se.sum_exec_runtime;
3576 task_rq_unlock(rq, p, &rf);
3577
3578 return ns;
3579 }
3580
3581
3582
3583
3584
3585 void scheduler_tick(void)
3586 {
3587 int cpu = smp_processor_id();
3588 struct rq *rq = cpu_rq(cpu);
3589 struct task_struct *curr = rq->curr;
3590 struct rq_flags rf;
3591
3592 sched_clock_tick();
3593
3594 rq_lock(rq, &rf);
3595
3596 update_rq_clock(rq);
3597 curr->sched_class->task_tick(rq, curr, 0);
3598 calc_global_load_tick(rq);
3599 psi_task_tick(rq);
3600
3601 rq_unlock(rq, &rf);
3602
3603 perf_event_task_tick();
3604
3605 #ifdef CONFIG_SMP
3606 rq->idle_balance = idle_cpu(cpu);
3607 trigger_load_balance(rq);
3608 #endif
3609 }
3610
3611 #ifdef CONFIG_NO_HZ_FULL
3612
3613 struct tick_work {
3614 int cpu;
3615 atomic_t state;
3616 struct delayed_work work;
3617 };
3618
3619 #define TICK_SCHED_REMOTE_OFFLINE 0
3620 #define TICK_SCHED_REMOTE_OFFLINING 1
3621 #define TICK_SCHED_REMOTE_RUNNING 2
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646 static struct tick_work __percpu *tick_work_cpu;
3647
3648 static void sched_tick_remote(struct work_struct *work)
3649 {
3650 struct delayed_work *dwork = to_delayed_work(work);
3651 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3652 int cpu = twork->cpu;
3653 struct rq *rq = cpu_rq(cpu);
3654 struct task_struct *curr;
3655 struct rq_flags rf;
3656 u64 delta;
3657 int os;
3658
3659
3660
3661
3662
3663
3664
3665
3666 if (!tick_nohz_tick_stopped_cpu(cpu))
3667 goto out_requeue;
3668
3669 rq_lock_irq(rq, &rf);
3670 curr = rq->curr;
3671 if (cpu_is_offline(cpu))
3672 goto out_unlock;
3673
3674 update_rq_clock(rq);
3675
3676 if (!is_idle_task(curr)) {
3677
3678
3679
3680
3681 delta = rq_clock_task(rq) - curr->se.exec_start;
3682 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3683 }
3684 curr->sched_class->task_tick(rq, curr, 0);
3685
3686 calc_load_nohz_remote(rq);
3687 out_unlock:
3688 rq_unlock_irq(rq, &rf);
3689 out_requeue:
3690
3691
3692
3693
3694
3695
3696
3697 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3698 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3699 if (os == TICK_SCHED_REMOTE_RUNNING)
3700 queue_delayed_work(system_unbound_wq, dwork, HZ);
3701 }
3702
3703 static void sched_tick_start(int cpu)
3704 {
3705 int os;
3706 struct tick_work *twork;
3707
3708 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3709 return;
3710
3711 WARN_ON_ONCE(!tick_work_cpu);
3712
3713 twork = per_cpu_ptr(tick_work_cpu, cpu);
3714 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3715 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3716 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3717 twork->cpu = cpu;
3718 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3719 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3720 }
3721 }
3722
3723 #ifdef CONFIG_HOTPLUG_CPU
3724 static void sched_tick_stop(int cpu)
3725 {
3726 struct tick_work *twork;
3727 int os;
3728
3729 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3730 return;
3731
3732 WARN_ON_ONCE(!tick_work_cpu);
3733
3734 twork = per_cpu_ptr(tick_work_cpu, cpu);
3735
3736 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3737 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3738
3739 }
3740 #endif
3741
3742 int __init sched_tick_offload_init(void)
3743 {
3744 tick_work_cpu = alloc_percpu(struct tick_work);
3745 BUG_ON(!tick_work_cpu);
3746 return 0;
3747 }
3748
3749 #else
3750 static inline void sched_tick_start(int cpu) { }
3751 static inline void sched_tick_stop(int cpu) { }
3752 #endif
3753
3754 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3755 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3756
3757
3758
3759
3760 static inline void preempt_latency_start(int val)
3761 {
3762 if (preempt_count() == val) {
3763 unsigned long ip = get_lock_parent_ip();
3764 #ifdef CONFIG_DEBUG_PREEMPT
3765 current->preempt_disable_ip = ip;
3766 #endif
3767 trace_preempt_off(CALLER_ADDR0, ip);
3768 }
3769 }
3770
3771 void preempt_count_add(int val)
3772 {
3773 #ifdef CONFIG_DEBUG_PREEMPT
3774
3775
3776
3777 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3778 return;
3779 #endif
3780 __preempt_count_add(val);
3781 #ifdef CONFIG_DEBUG_PREEMPT
3782
3783
3784
3785 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3786 PREEMPT_MASK - 10);
3787 #endif
3788 preempt_latency_start(val);
3789 }
3790 EXPORT_SYMBOL(preempt_count_add);
3791 NOKPROBE_SYMBOL(preempt_count_add);
3792
3793
3794
3795
3796
3797 static inline void preempt_latency_stop(int val)
3798 {
3799 if (preempt_count() == val)
3800 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3801 }
3802
3803 void preempt_count_sub(int val)
3804 {
3805 #ifdef CONFIG_DEBUG_PREEMPT
3806
3807
3808
3809 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3810 return;
3811
3812
3813
3814 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3815 !(preempt_count() & PREEMPT_MASK)))
3816 return;
3817 #endif
3818
3819 preempt_latency_stop(val);
3820 __preempt_count_sub(val);
3821 }
3822 EXPORT_SYMBOL(preempt_count_sub);
3823 NOKPROBE_SYMBOL(preempt_count_sub);
3824
3825 #else
3826 static inline void preempt_latency_start(int val) { }
3827 static inline void preempt_latency_stop(int val) { }
3828 #endif
3829
3830 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3831 {
3832 #ifdef CONFIG_DEBUG_PREEMPT
3833 return p->preempt_disable_ip;
3834 #else
3835 return 0;
3836 #endif
3837 }
3838
3839
3840
3841
3842 static noinline void __schedule_bug(struct task_struct *prev)
3843 {
3844
3845 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3846
3847 if (oops_in_progress)
3848 return;
3849
3850 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3851 prev->comm, prev->pid, preempt_count());
3852
3853 debug_show_held_locks(prev);
3854 print_modules();
3855 if (irqs_disabled())
3856 print_irqtrace_events(prev);
3857 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3858 && in_atomic_preempt_off()) {
3859 pr_err("Preemption disabled at:");
3860 print_ip_sym(preempt_disable_ip);
3861 pr_cont("\n");
3862 }
3863 if (panic_on_warn)
3864 panic("scheduling while atomic\n");
3865
3866 dump_stack();
3867 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3868 }
3869
3870
3871
3872
3873 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3874 {
3875 #ifdef CONFIG_SCHED_STACK_END_CHECK
3876 if (task_stack_end_corrupted(prev))
3877 panic("corrupted stack end detected inside scheduler\n");
3878 #endif
3879
3880 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3881 if (!preempt && prev->state && prev->non_block_count) {
3882 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3883 prev->comm, prev->pid, prev->non_block_count);
3884 dump_stack();
3885 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3886 }
3887 #endif
3888
3889 if (unlikely(in_atomic_preempt_off())) {
3890 __schedule_bug(prev);
3891 preempt_count_set(PREEMPT_DISABLED);
3892 }
3893 rcu_sleep_check();
3894
3895 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3896
3897 schedstat_inc(this_rq()->sched_count);
3898 }
3899
3900
3901
3902
3903 static inline struct task_struct *
3904 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3905 {
3906 const struct sched_class *class;
3907 struct task_struct *p;
3908
3909
3910
3911
3912
3913
3914
3915 if (likely((prev->sched_class == &idle_sched_class ||
3916 prev->sched_class == &fair_sched_class) &&
3917 rq->nr_running == rq->cfs.h_nr_running)) {
3918
3919 p = fair_sched_class.pick_next_task(rq, prev, rf);
3920 if (unlikely(p == RETRY_TASK))
3921 goto restart;
3922
3923
3924 if (unlikely(!p))
3925 p = idle_sched_class.pick_next_task(rq, prev, rf);
3926
3927 return p;
3928 }
3929
3930 restart:
3931 #ifdef CONFIG_SMP
3932
3933
3934
3935
3936
3937
3938
3939
3940 for_class_range(class, prev->sched_class, &idle_sched_class) {
3941 if (class->balance(rq, prev, rf))
3942 break;
3943 }
3944 #endif
3945
3946 put_prev_task(rq, prev);
3947
3948 for_each_class(class) {
3949 p = class->pick_next_task(rq, NULL, NULL);
3950 if (p)
3951 return p;
3952 }
3953
3954
3955 BUG();
3956 }
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997 static void __sched notrace __schedule(bool preempt)
3998 {
3999 struct task_struct *prev, *next;
4000 unsigned long *switch_count;
4001 struct rq_flags rf;
4002 struct rq *rq;
4003 int cpu;
4004
4005 cpu = smp_processor_id();
4006 rq = cpu_rq(cpu);
4007 prev = rq->curr;
4008
4009 schedule_debug(prev, preempt);
4010
4011 if (sched_feat(HRTICK))
4012 hrtick_clear(rq);
4013
4014 local_irq_disable();
4015 rcu_note_context_switch(preempt);
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025 rq_lock(rq, &rf);
4026 smp_mb__after_spinlock();
4027
4028
4029 rq->clock_update_flags <<= 1;
4030 update_rq_clock(rq);
4031
4032 switch_count = &prev->nivcsw;
4033 if (!preempt && prev->state) {
4034 if (signal_pending_state(prev->state, prev)) {
4035 prev->state = TASK_RUNNING;
4036 } else {
4037 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4038
4039 if (prev->in_iowait) {
4040 atomic_inc(&rq->nr_iowait);
4041 delayacct_blkio_start();
4042 }
4043 }
4044 switch_count = &prev->nvcsw;
4045 }
4046
4047 next = pick_next_task(rq, prev, &rf);
4048 clear_tsk_need_resched(prev);
4049 clear_preempt_need_resched();
4050
4051 if (likely(prev != next)) {
4052 rq->nr_switches++;
4053
4054
4055
4056
4057 RCU_INIT_POINTER(rq->curr, next);
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072 ++*switch_count;
4073
4074 trace_sched_switch(preempt, prev, next);
4075
4076
4077 rq = context_switch(rq, prev, next, &rf);
4078 } else {
4079 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4080 rq_unlock_irq(rq, &rf);
4081 }
4082
4083 balance_callback(rq);
4084 }
4085
4086 void __noreturn do_task_dead(void)
4087 {
4088
4089 set_special_state(TASK_DEAD);
4090
4091
4092 current->flags |= PF_NOFREEZE;
4093
4094 __schedule(false);
4095 BUG();
4096
4097
4098 for (;;)
4099 cpu_relax();
4100 }
4101
4102 static inline void sched_submit_work(struct task_struct *tsk)
4103 {
4104 if (!tsk->state)
4105 return;
4106
4107
4108
4109
4110
4111
4112
4113
4114 if (tsk->flags & PF_WQ_WORKER) {
4115 preempt_disable();
4116 wq_worker_sleeping(tsk);
4117 preempt_enable_no_resched();
4118 }
4119
4120 if (tsk_is_pi_blocked(tsk))
4121 return;
4122
4123
4124
4125
4126
4127 if (blk_needs_flush_plug(tsk))
4128 blk_schedule_flush_plug(tsk);
4129 }
4130
4131 static void sched_update_worker(struct task_struct *tsk)
4132 {
4133 if (tsk->flags & PF_WQ_WORKER)
4134 wq_worker_running(tsk);
4135 }
4136
4137 asmlinkage __visible void __sched schedule(void)
4138 {
4139 struct task_struct *tsk = current;
4140
4141 sched_submit_work(tsk);
4142 do {
4143 preempt_disable();
4144 __schedule(false);
4145 sched_preempt_enable_no_resched();
4146 } while (need_resched());
4147 sched_update_worker(tsk);
4148 }
4149 EXPORT_SYMBOL(schedule);
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161 void __sched schedule_idle(void)
4162 {
4163
4164
4165
4166
4167
4168
4169
4170 WARN_ON_ONCE(current->state);
4171 do {
4172 __schedule(false);
4173 } while (need_resched());
4174 }
4175
4176 #ifdef CONFIG_CONTEXT_TRACKING
4177 asmlinkage __visible void __sched schedule_user(void)
4178 {
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189 enum ctx_state prev_state = exception_enter();
4190 schedule();
4191 exception_exit(prev_state);
4192 }
4193 #endif
4194
4195
4196
4197
4198
4199
4200 void __sched schedule_preempt_disabled(void)
4201 {
4202 sched_preempt_enable_no_resched();
4203 schedule();
4204 preempt_disable();
4205 }
4206
4207 static void __sched notrace preempt_schedule_common(void)
4208 {
4209 do {
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223 preempt_disable_notrace();
4224 preempt_latency_start(1);
4225 __schedule(true);
4226 preempt_latency_stop(1);
4227 preempt_enable_no_resched_notrace();
4228
4229
4230
4231
4232
4233 } while (need_resched());
4234 }
4235
4236 #ifdef CONFIG_PREEMPTION
4237
4238
4239
4240
4241 asmlinkage __visible void __sched notrace preempt_schedule(void)
4242 {
4243
4244
4245
4246
4247 if (likely(!preemptible()))
4248 return;
4249
4250 preempt_schedule_common();
4251 }
4252 NOKPROBE_SYMBOL(preempt_schedule);
4253 EXPORT_SYMBOL(preempt_schedule);
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4270 {
4271 enum ctx_state prev_ctx;
4272
4273 if (likely(!preemptible()))
4274 return;
4275
4276 do {
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290 preempt_disable_notrace();
4291 preempt_latency_start(1);
4292
4293
4294
4295
4296
4297 prev_ctx = exception_enter();
4298 __schedule(true);
4299 exception_exit(prev_ctx);
4300
4301 preempt_latency_stop(1);
4302 preempt_enable_no_resched_notrace();
4303 } while (need_resched());
4304 }
4305 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4306
4307 #endif
4308
4309
4310
4311
4312
4313
4314
4315 asmlinkage __visible void __sched preempt_schedule_irq(void)
4316 {
4317 enum ctx_state prev_state;
4318
4319
4320 BUG_ON(preempt_count() || !irqs_disabled());
4321
4322 prev_state = exception_enter();
4323
4324 do {
4325 preempt_disable();
4326 local_irq_enable();
4327 __schedule(true);
4328 local_irq_disable();
4329 sched_preempt_enable_no_resched();
4330 } while (need_resched());
4331
4332 exception_exit(prev_state);
4333 }
4334
4335 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4336 void *key)
4337 {
4338 return try_to_wake_up(curr->private, mode, wake_flags);
4339 }
4340 EXPORT_SYMBOL(default_wake_function);
4341
4342 #ifdef CONFIG_RT_MUTEXES
4343
4344 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4345 {
4346 if (pi_task)
4347 prio = min(prio, pi_task->prio);
4348
4349 return prio;
4350 }
4351
4352 static inline int rt_effective_prio(struct task_struct *p, int prio)
4353 {
4354 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4355
4356 return __rt_effective_prio(pi_task, prio);
4357 }
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4371 {
4372 int prio, oldprio, queued, running, queue_flag =
4373 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4374 const struct sched_class *prev_class;
4375 struct rq_flags rf;
4376 struct rq *rq;
4377
4378
4379 prio = __rt_effective_prio(pi_task, p->normal_prio);
4380
4381
4382
4383
4384 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4385 return;
4386
4387 rq = __task_rq_lock(p, &rf);
4388 update_rq_clock(rq);
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399 p->pi_top_task = pi_task;
4400
4401
4402
4403
4404 if (prio == p->prio && !dl_prio(prio))
4405 goto out_unlock;
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419 if (unlikely(p == rq->idle)) {
4420 WARN_ON(p != rq->curr);
4421 WARN_ON(p->pi_blocked_on);
4422 goto out_unlock;
4423 }
4424
4425 trace_sched_pi_setprio(p, pi_task);
4426 oldprio = p->prio;
4427
4428 if (oldprio == prio)
4429 queue_flag &= ~DEQUEUE_MOVE;
4430
4431 prev_class = p->sched_class;
4432 queued = task_on_rq_queued(p);
4433 running = task_current(rq, p);
4434 if (queued)
4435 dequeue_task(rq, p, queue_flag);
4436 if (running)
4437 put_prev_task(rq, p);
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448 if (dl_prio(prio)) {
4449 if (!dl_prio(p->normal_prio) ||
4450 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4451 p->dl.dl_boosted = 1;
4452 queue_flag |= ENQUEUE_REPLENISH;
4453 } else
4454 p->dl.dl_boosted = 0;
4455 p->sched_class = &dl_sched_class;
4456 } else if (rt_prio(prio)) {
4457 if (dl_prio(oldprio))
4458 p->dl.dl_boosted = 0;
4459 if (oldprio < prio)
4460 queue_flag |= ENQUEUE_HEAD;
4461 p->sched_class = &rt_sched_class;
4462 } else {
4463 if (dl_prio(oldprio))
4464 p->dl.dl_boosted = 0;
4465 if (rt_prio(oldprio))
4466 p->rt.timeout = 0;
4467 p->sched_class = &fair_sched_class;
4468 }
4469
4470 p->prio = prio;
4471
4472 if (queued)
4473 enqueue_task(rq, p, queue_flag);
4474 if (running)
4475 set_next_task(rq, p);
4476
4477 check_class_changed(rq, p, prev_class, oldprio);
4478 out_unlock:
4479
4480 preempt_disable();
4481 __task_rq_unlock(rq, &rf);
4482
4483 balance_callback(rq);
4484 preempt_enable();
4485 }
4486 #else
4487 static inline int rt_effective_prio(struct task_struct *p, int prio)
4488 {
4489 return prio;
4490 }
4491 #endif
4492
4493 void set_user_nice(struct task_struct *p, long nice)
4494 {
4495 bool queued, running;
4496 int old_prio, delta;
4497 struct rq_flags rf;
4498 struct rq *rq;
4499
4500 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4501 return;
4502
4503
4504
4505
4506 rq = task_rq_lock(p, &rf);
4507 update_rq_clock(rq);
4508
4509
4510
4511
4512
4513
4514
4515 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4516 p->static_prio = NICE_TO_PRIO(nice);
4517 goto out_unlock;
4518 }
4519 queued = task_on_rq_queued(p);
4520 running = task_current(rq, p);
4521 if (queued)
4522 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4523 if (running)
4524 put_prev_task(rq, p);
4525
4526 p->static_prio = NICE_TO_PRIO(nice);
4527 set_load_weight(p, true);
4528 old_prio = p->prio;
4529 p->prio = effective_prio(p);
4530 delta = p->prio - old_prio;
4531
4532 if (queued) {
4533 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4534
4535
4536
4537
4538 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4539 resched_curr(rq);
4540 }
4541 if (running)
4542 set_next_task(rq, p);
4543 out_unlock:
4544 task_rq_unlock(rq, p, &rf);
4545 }
4546 EXPORT_SYMBOL(set_user_nice);
4547
4548
4549
4550
4551
4552
4553 int can_nice(const struct task_struct *p, const int nice)
4554 {
4555
4556 int nice_rlim = nice_to_rlimit(nice);
4557
4558 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4559 capable(CAP_SYS_NICE));
4560 }
4561
4562 #ifdef __ARCH_WANT_SYS_NICE
4563
4564
4565
4566
4567
4568
4569
4570
4571 SYSCALL_DEFINE1(nice, int, increment)
4572 {
4573 long nice, retval;
4574
4575
4576
4577
4578
4579
4580 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4581 nice = task_nice(current) + increment;
4582
4583 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4584 if (increment < 0 && !can_nice(current, nice))
4585 return -EPERM;
4586
4587 retval = security_task_setnice(current, nice);
4588 if (retval)
4589 return retval;
4590
4591 set_user_nice(current, nice);
4592 return 0;
4593 }
4594
4595 #endif
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605 int task_prio(const struct task_struct *p)
4606 {
4607 return p->prio - MAX_RT_PRIO;
4608 }
4609
4610
4611
4612
4613
4614
4615
4616 int idle_cpu(int cpu)
4617 {
4618 struct rq *rq = cpu_rq(cpu);
4619
4620 if (rq->curr != rq->idle)
4621 return 0;
4622
4623 if (rq->nr_running)
4624 return 0;
4625
4626 #ifdef CONFIG_SMP
4627 if (!llist_empty(&rq->wake_list))
4628 return 0;
4629 #endif
4630
4631 return 1;
4632 }
4633
4634
4635
4636
4637
4638
4639
4640 int available_idle_cpu(int cpu)
4641 {
4642 if (!idle_cpu(cpu))
4643 return 0;
4644
4645 if (vcpu_is_preempted(cpu))
4646 return 0;
4647
4648 return 1;
4649 }
4650
4651
4652
4653
4654
4655
4656
4657 struct task_struct *idle_task(int cpu)
4658 {
4659 return cpu_rq(cpu)->idle;
4660 }
4661
4662
4663
4664
4665
4666
4667
4668 static struct task_struct *find_process_by_pid(pid_t pid)
4669 {
4670 return pid ? find_task_by_vpid(pid) : current;
4671 }
4672
4673
4674
4675
4676
4677 #define SETPARAM_POLICY -1
4678
4679 static void __setscheduler_params(struct task_struct *p,
4680 const struct sched_attr *attr)
4681 {
4682 int policy = attr->sched_policy;
4683
4684 if (policy == SETPARAM_POLICY)
4685 policy = p->policy;
4686
4687 p->policy = policy;
4688
4689 if (dl_policy(policy))
4690 __setparam_dl(p, attr);
4691 else if (fair_policy(policy))
4692 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4693
4694
4695
4696
4697
4698
4699 p->rt_priority = attr->sched_priority;
4700 p->normal_prio = normal_prio(p);
4701 set_load_weight(p, true);
4702 }
4703
4704
4705 static void __setscheduler(struct rq *rq, struct task_struct *p,
4706 const struct sched_attr *attr, bool keep_boost)
4707 {
4708
4709
4710
4711
4712 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4713 return;
4714
4715 __setscheduler_params(p, attr);
4716
4717
4718
4719
4720
4721 p->prio = normal_prio(p);
4722 if (keep_boost)
4723 p->prio = rt_effective_prio(p, p->prio);
4724
4725 if (dl_prio(p->prio))
4726 p->sched_class = &dl_sched_class;
4727 else if (rt_prio(p->prio))
4728 p->sched_class = &rt_sched_class;
4729 else
4730 p->sched_class = &fair_sched_class;
4731 }
4732
4733
4734
4735
4736 static bool check_same_owner(struct task_struct *p)
4737 {
4738 const struct cred *cred = current_cred(), *pcred;
4739 bool match;
4740
4741 rcu_read_lock();
4742 pcred = __task_cred(p);
4743 match = (uid_eq(cred->euid, pcred->euid) ||
4744 uid_eq(cred->euid, pcred->uid));
4745 rcu_read_unlock();
4746 return match;
4747 }
4748
4749 static int __sched_setscheduler(struct task_struct *p,
4750 const struct sched_attr *attr,
4751 bool user, bool pi)
4752 {
4753 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4754 MAX_RT_PRIO - 1 - attr->sched_priority;
4755 int retval, oldprio, oldpolicy = -1, queued, running;
4756 int new_effective_prio, policy = attr->sched_policy;
4757 const struct sched_class *prev_class;
4758 struct rq_flags rf;
4759 int reset_on_fork;
4760 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4761 struct rq *rq;
4762
4763
4764 BUG_ON(pi && in_interrupt());
4765 recheck:
4766
4767 if (policy < 0) {
4768 reset_on_fork = p->sched_reset_on_fork;
4769 policy = oldpolicy = p->policy;
4770 } else {
4771 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4772
4773 if (!valid_policy(policy))
4774 return -EINVAL;
4775 }
4776
4777 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4778 return -EINVAL;
4779
4780
4781
4782
4783
4784
4785 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4786 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4787 return -EINVAL;
4788 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4789 (rt_policy(policy) != (attr->sched_priority != 0)))
4790 return -EINVAL;
4791
4792
4793
4794
4795 if (user && !capable(CAP_SYS_NICE)) {
4796 if (fair_policy(policy)) {
4797 if (attr->sched_nice < task_nice(p) &&
4798 !can_nice(p, attr->sched_nice))
4799 return -EPERM;
4800 }
4801
4802 if (rt_policy(policy)) {
4803 unsigned long rlim_rtprio =
4804 task_rlimit(p, RLIMIT_RTPRIO);
4805
4806
4807 if (policy != p->policy && !rlim_rtprio)
4808 return -EPERM;
4809
4810
4811 if (attr->sched_priority > p->rt_priority &&
4812 attr->sched_priority > rlim_rtprio)
4813 return -EPERM;
4814 }
4815
4816
4817
4818
4819
4820
4821
4822 if (dl_policy(policy))
4823 return -EPERM;
4824
4825
4826
4827
4828
4829 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4830 if (!can_nice(p, task_nice(p)))
4831 return -EPERM;
4832 }
4833
4834
4835 if (!check_same_owner(p))
4836 return -EPERM;
4837
4838
4839 if (p->sched_reset_on_fork && !reset_on_fork)
4840 return -EPERM;
4841 }
4842
4843 if (user) {
4844 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4845 return -EINVAL;
4846
4847 retval = security_task_setscheduler(p);
4848 if (retval)
4849 return retval;
4850 }
4851
4852
4853 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4854 retval = uclamp_validate(p, attr);
4855 if (retval)
4856 return retval;
4857 }
4858
4859 if (pi)
4860 cpuset_read_lock();
4861
4862
4863
4864
4865
4866
4867
4868
4869 rq = task_rq_lock(p, &rf);
4870 update_rq_clock(rq);
4871
4872
4873
4874
4875 if (p == rq->stop) {
4876 retval = -EINVAL;
4877 goto unlock;
4878 }
4879
4880
4881
4882
4883
4884 if (unlikely(policy == p->policy)) {
4885 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4886 goto change;
4887 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4888 goto change;
4889 if (dl_policy(policy) && dl_param_changed(p, attr))
4890 goto change;
4891 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4892 goto change;
4893
4894 p->sched_reset_on_fork = reset_on_fork;
4895 retval = 0;
4896 goto unlock;
4897 }
4898 change:
4899
4900 if (user) {
4901 #ifdef CONFIG_RT_GROUP_SCHED
4902
4903
4904
4905
4906 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4907 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4908 !task_group_is_autogroup(task_group(p))) {
4909 retval = -EPERM;
4910 goto unlock;
4911 }
4912 #endif
4913 #ifdef CONFIG_SMP
4914 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4915 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4916 cpumask_t *span = rq->rd->span;
4917
4918
4919
4920
4921
4922
4923 if (!cpumask_subset(span, p->cpus_ptr) ||
4924 rq->rd->dl_bw.bw == 0) {
4925 retval = -EPERM;
4926 goto unlock;
4927 }
4928 }
4929 #endif
4930 }
4931
4932
4933 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4934 policy = oldpolicy = -1;
4935 task_rq_unlock(rq, p, &rf);
4936 if (pi)
4937 cpuset_read_unlock();
4938 goto recheck;
4939 }
4940
4941
4942
4943
4944
4945
4946 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4947 retval = -EBUSY;
4948 goto unlock;
4949 }
4950
4951 p->sched_reset_on_fork = reset_on_fork;
4952 oldprio = p->prio;
4953
4954 if (pi) {
4955
4956
4957
4958
4959
4960
4961
4962 new_effective_prio = rt_effective_prio(p, newprio);
4963 if (new_effective_prio == oldprio)
4964 queue_flags &= ~DEQUEUE_MOVE;
4965 }
4966
4967 queued = task_on_rq_queued(p);
4968 running = task_current(rq, p);
4969 if (queued)
4970 dequeue_task(rq, p, queue_flags);
4971 if (running)
4972 put_prev_task(rq, p);
4973
4974 prev_class = p->sched_class;
4975
4976 __setscheduler(rq, p, attr, pi);
4977 __setscheduler_uclamp(p, attr);
4978
4979 if (queued) {
4980
4981
4982
4983
4984 if (oldprio < p->prio)
4985 queue_flags |= ENQUEUE_HEAD;
4986
4987 enqueue_task(rq, p, queue_flags);
4988 }
4989 if (running)
4990 set_next_task(rq, p);
4991
4992 check_class_changed(rq, p, prev_class, oldprio);
4993
4994
4995 preempt_disable();
4996 task_rq_unlock(rq, p, &rf);
4997
4998 if (pi) {
4999 cpuset_read_unlock();
5000 rt_mutex_adjust_pi(p);
5001 }
5002
5003
5004 balance_callback(rq);
5005 preempt_enable();
5006
5007 return 0;
5008
5009 unlock:
5010 task_rq_unlock(rq, p, &rf);
5011 if (pi)
5012 cpuset_read_unlock();
5013 return retval;
5014 }
5015
5016 static int _sched_setscheduler(struct task_struct *p, int policy,
5017 const struct sched_param *param, bool check)
5018 {
5019 struct sched_attr attr = {
5020 .sched_policy = policy,
5021 .sched_priority = param->sched_priority,
5022 .sched_nice = PRIO_TO_NICE(p->static_prio),
5023 };
5024
5025
5026 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5027 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5028 policy &= ~SCHED_RESET_ON_FORK;
5029 attr.sched_policy = policy;
5030 }
5031
5032 return __sched_setscheduler(p, &attr, check, true);
5033 }
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044 int sched_setscheduler(struct task_struct *p, int policy,
5045 const struct sched_param *param)
5046 {
5047 return _sched_setscheduler(p, policy, param, true);
5048 }
5049 EXPORT_SYMBOL_GPL(sched_setscheduler);
5050
5051 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5052 {
5053 return __sched_setscheduler(p, attr, true, true);
5054 }
5055 EXPORT_SYMBOL_GPL(sched_setattr);
5056
5057 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5058 {
5059 return __sched_setscheduler(p, attr, false, true);
5060 }
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5076 const struct sched_param *param)
5077 {
5078 return _sched_setscheduler(p, policy, param, false);
5079 }
5080 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5081
5082 static int
5083 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5084 {
5085 struct sched_param lparam;
5086 struct task_struct *p;
5087 int retval;
5088
5089 if (!param || pid < 0)
5090 return -EINVAL;
5091 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5092 return -EFAULT;
5093
5094 rcu_read_lock();
5095 retval = -ESRCH;
5096 p = find_process_by_pid(pid);
5097 if (likely(p))
5098 get_task_struct(p);
5099 rcu_read_unlock();
5100
5101 if (likely(p)) {
5102 retval = sched_setscheduler(p, policy, &lparam);
5103 put_task_struct(p);
5104 }
5105
5106 return retval;
5107 }
5108
5109
5110
5111
5112 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5113 {
5114 u32 size;
5115 int ret;
5116
5117
5118 memset(attr, 0, sizeof(*attr));
5119
5120 ret = get_user(size, &uattr->size);
5121 if (ret)
5122 return ret;
5123
5124
5125 if (!size)
5126 size = SCHED_ATTR_SIZE_VER0;
5127 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5128 goto err_size;
5129
5130 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5131 if (ret) {
5132 if (ret == -E2BIG)
5133 goto err_size;
5134 return ret;
5135 }
5136
5137 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5138 size < SCHED_ATTR_SIZE_VER1)
5139 return -EINVAL;
5140
5141
5142
5143
5144
5145 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5146
5147 return 0;
5148
5149 err_size:
5150 put_user(sizeof(*attr), &uattr->size);
5151 return -E2BIG;
5152 }
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5163 {
5164 if (policy < 0)
5165 return -EINVAL;
5166
5167 return do_sched_setscheduler(pid, policy, param);
5168 }
5169
5170
5171
5172
5173
5174
5175
5176
5177 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5178 {
5179 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5180 }
5181
5182
5183
5184
5185
5186
5187
5188 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5189 unsigned int, flags)
5190 {
5191 struct sched_attr attr;
5192 struct task_struct *p;
5193 int retval;
5194
5195 if (!uattr || pid < 0 || flags)
5196 return -EINVAL;
5197
5198 retval = sched_copy_attr(uattr, &attr);
5199 if (retval)
5200 return retval;
5201
5202 if ((int)attr.sched_policy < 0)
5203 return -EINVAL;
5204 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5205 attr.sched_policy = SETPARAM_POLICY;
5206
5207 rcu_read_lock();
5208 retval = -ESRCH;
5209 p = find_process_by_pid(pid);
5210 if (likely(p))
5211 get_task_struct(p);
5212 rcu_read_unlock();
5213
5214 if (likely(p)) {
5215 retval = sched_setattr(p, &attr);
5216 put_task_struct(p);
5217 }
5218
5219 return retval;
5220 }
5221
5222
5223
5224
5225
5226
5227
5228
5229 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5230 {
5231 struct task_struct *p;
5232 int retval;
5233
5234 if (pid < 0)
5235 return -EINVAL;
5236
5237 retval = -ESRCH;
5238 rcu_read_lock();
5239 p = find_process_by_pid(pid);
5240 if (p) {
5241 retval = security_task_getscheduler(p);
5242 if (!retval)
5243 retval = p->policy
5244 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5245 }
5246 rcu_read_unlock();
5247 return retval;
5248 }
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5259 {
5260 struct sched_param lp = { .sched_priority = 0 };
5261 struct task_struct *p;
5262 int retval;
5263
5264 if (!param || pid < 0)
5265 return -EINVAL;
5266
5267 rcu_read_lock();
5268 p = find_process_by_pid(pid);
5269 retval = -ESRCH;
5270 if (!p)
5271 goto out_unlock;
5272
5273 retval = security_task_getscheduler(p);
5274 if (retval)
5275 goto out_unlock;
5276
5277 if (task_has_rt_policy(p))
5278 lp.sched_priority = p->rt_priority;
5279 rcu_read_unlock();
5280
5281
5282
5283
5284 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5285
5286 return retval;
5287
5288 out_unlock:
5289 rcu_read_unlock();
5290 return retval;
5291 }
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301 static int
5302 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5303 struct sched_attr *kattr,
5304 unsigned int usize)
5305 {
5306 unsigned int ksize = sizeof(*kattr);
5307
5308 if (!access_ok(uattr, usize))
5309 return -EFAULT;
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324 kattr->size = min(usize, ksize);
5325
5326 if (copy_to_user(uattr, kattr, kattr->size))
5327 return -EFAULT;
5328
5329 return 0;
5330 }
5331
5332
5333
5334
5335
5336
5337
5338
5339 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5340 unsigned int, usize, unsigned int, flags)
5341 {
5342 struct sched_attr kattr = { };
5343 struct task_struct *p;
5344 int retval;
5345
5346 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5347 usize < SCHED_ATTR_SIZE_VER0 || flags)
5348 return -EINVAL;
5349
5350 rcu_read_lock();
5351 p = find_process_by_pid(pid);
5352 retval = -ESRCH;
5353 if (!p)
5354 goto out_unlock;
5355
5356 retval = security_task_getscheduler(p);
5357 if (retval)
5358 goto out_unlock;
5359
5360 kattr.sched_policy = p->policy;
5361 if (p->sched_reset_on_fork)
5362 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5363 if (task_has_dl_policy(p))
5364 __getparam_dl(p, &kattr);
5365 else if (task_has_rt_policy(p))
5366 kattr.sched_priority = p->rt_priority;
5367 else
5368 kattr.sched_nice = task_nice(p);
5369
5370 #ifdef CONFIG_UCLAMP_TASK
5371 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5372 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5373 #endif
5374
5375 rcu_read_unlock();
5376
5377 return sched_attr_copy_to_user(uattr, &kattr, usize);
5378
5379 out_unlock:
5380 rcu_read_unlock();
5381 return retval;
5382 }
5383
5384 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5385 {
5386 cpumask_var_t cpus_allowed, new_mask;
5387 struct task_struct *p;
5388 int retval;
5389
5390 rcu_read_lock();
5391
5392 p = find_process_by_pid(pid);
5393 if (!p) {
5394 rcu_read_unlock();
5395 return -ESRCH;
5396 }
5397
5398
5399 get_task_struct(p);
5400 rcu_read_unlock();
5401
5402 if (p->flags & PF_NO_SETAFFINITY) {
5403 retval = -EINVAL;
5404 goto out_put_task;
5405 }
5406 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5407 retval = -ENOMEM;
5408 goto out_put_task;
5409 }
5410 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5411 retval = -ENOMEM;
5412 goto out_free_cpus_allowed;
5413 }
5414 retval = -EPERM;
5415 if (!check_same_owner(p)) {
5416 rcu_read_lock();
5417 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5418 rcu_read_unlock();
5419 goto out_free_new_mask;
5420 }
5421 rcu_read_unlock();
5422 }
5423
5424 retval = security_task_setscheduler(p);
5425 if (retval)
5426 goto out_free_new_mask;
5427
5428
5429 cpuset_cpus_allowed(p, cpus_allowed);
5430 cpumask_and(new_mask, in_mask, cpus_allowed);
5431
5432
5433
5434
5435
5436
5437
5438 #ifdef CONFIG_SMP
5439 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5440 rcu_read_lock();
5441 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5442 retval = -EBUSY;
5443 rcu_read_unlock();
5444 goto out_free_new_mask;
5445 }
5446 rcu_read_unlock();
5447 }
5448 #endif
5449 again:
5450 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5451
5452 if (!retval) {
5453 cpuset_cpus_allowed(p, cpus_allowed);
5454 if (!cpumask_subset(new_mask, cpus_allowed)) {
5455
5456
5457
5458
5459
5460 cpumask_copy(new_mask, cpus_allowed);
5461 goto again;
5462 }
5463 }
5464 out_free_new_mask:
5465 free_cpumask_var(new_mask);
5466 out_free_cpus_allowed:
5467 free_cpumask_var(cpus_allowed);
5468 out_put_task:
5469 put_task_struct(p);
5470 return retval;
5471 }
5472
5473 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5474 struct cpumask *new_mask)
5475 {
5476 if (len < cpumask_size())
5477 cpumask_clear(new_mask);
5478 else if (len > cpumask_size())
5479 len = cpumask_size();
5480
5481 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5482 }
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5493 unsigned long __user *, user_mask_ptr)
5494 {
5495 cpumask_var_t new_mask;
5496 int retval;
5497
5498 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5499 return -ENOMEM;
5500
5501 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5502 if (retval == 0)
5503 retval = sched_setaffinity(pid, new_mask);
5504 free_cpumask_var(new_mask);
5505 return retval;
5506 }
5507
5508 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5509 {
5510 struct task_struct *p;
5511 unsigned long flags;
5512 int retval;
5513
5514 rcu_read_lock();
5515
5516 retval = -ESRCH;
5517 p = find_process_by_pid(pid);
5518 if (!p)
5519 goto out_unlock;
5520
5521 retval = security_task_getscheduler(p);
5522 if (retval)
5523 goto out_unlock;
5524
5525 raw_spin_lock_irqsave(&p->pi_lock, flags);
5526 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5527 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5528
5529 out_unlock:
5530 rcu_read_unlock();
5531
5532 return retval;
5533 }
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5545 unsigned long __user *, user_mask_ptr)
5546 {
5547 int ret;
5548 cpumask_var_t mask;
5549
5550 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5551 return -EINVAL;
5552 if (len & (sizeof(unsigned long)-1))
5553 return -EINVAL;
5554
5555 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5556 return -ENOMEM;
5557
5558 ret = sched_getaffinity(pid, mask);
5559 if (ret == 0) {
5560 unsigned int retlen = min(len, cpumask_size());
5561
5562 if (copy_to_user(user_mask_ptr, mask, retlen))
5563 ret = -EFAULT;
5564 else
5565 ret = retlen;
5566 }
5567 free_cpumask_var(mask);
5568
5569 return ret;
5570 }
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580 static void do_sched_yield(void)
5581 {
5582 struct rq_flags rf;
5583 struct rq *rq;
5584
5585 rq = this_rq_lock_irq(&rf);
5586
5587 schedstat_inc(rq->yld_count);
5588 current->sched_class->yield_task(rq);
5589
5590
5591
5592
5593
5594 preempt_disable();
5595 rq_unlock(rq, &rf);
5596 sched_preempt_enable_no_resched();
5597
5598 schedule();
5599 }
5600
5601 SYSCALL_DEFINE0(sched_yield)
5602 {
5603 do_sched_yield();
5604 return 0;
5605 }
5606
5607 #ifndef CONFIG_PREEMPTION
5608 int __sched _cond_resched(void)
5609 {
5610 if (should_resched(0)) {
5611 preempt_schedule_common();
5612 return 1;
5613 }
5614 rcu_all_qs();
5615 return 0;
5616 }
5617 EXPORT_SYMBOL(_cond_resched);
5618 #endif
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628 int __cond_resched_lock(spinlock_t *lock)
5629 {
5630 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5631 int ret = 0;
5632
5633 lockdep_assert_held(lock);
5634
5635 if (spin_needbreak(lock) || resched) {
5636 spin_unlock(lock);
5637 if (resched)
5638 preempt_schedule_common();
5639 else
5640 cpu_relax();
5641 ret = 1;
5642 spin_lock(lock);
5643 }
5644 return ret;
5645 }
5646 EXPORT_SYMBOL(__cond_resched_lock);
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670 void __sched yield(void)
5671 {
5672 set_current_state(TASK_RUNNING);
5673 do_sched_yield();
5674 }
5675 EXPORT_SYMBOL(yield);
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692 int __sched yield_to(struct task_struct *p, bool preempt)
5693 {
5694 struct task_struct *curr = current;
5695 struct rq *rq, *p_rq;
5696 unsigned long flags;
5697 int yielded = 0;
5698
5699 local_irq_save(flags);
5700 rq = this_rq();
5701
5702 again:
5703 p_rq = task_rq(p);
5704
5705
5706
5707
5708 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5709 yielded = -ESRCH;
5710 goto out_irq;
5711 }
5712
5713 double_rq_lock(rq, p_rq);
5714 if (task_rq(p) != p_rq) {
5715 double_rq_unlock(rq, p_rq);
5716 goto again;
5717 }
5718
5719 if (!curr->sched_class->yield_to_task)
5720 goto out_unlock;
5721
5722 if (curr->sched_class != p->sched_class)
5723 goto out_unlock;
5724
5725 if (task_running(p_rq, p) || p->state)
5726 goto out_unlock;
5727
5728 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5729 if (yielded) {
5730 schedstat_inc(rq->yld_count);
5731
5732
5733
5734
5735 if (preempt && rq != p_rq)
5736 resched_curr(p_rq);
5737 }
5738
5739 out_unlock:
5740 double_rq_unlock(rq, p_rq);
5741 out_irq:
5742 local_irq_restore(flags);
5743
5744 if (yielded > 0)
5745 schedule();
5746
5747 return yielded;
5748 }
5749 EXPORT_SYMBOL_GPL(yield_to);
5750
5751 int io_schedule_prepare(void)
5752 {
5753 int old_iowait = current->in_iowait;
5754
5755 current->in_iowait = 1;
5756 blk_schedule_flush_plug(current);
5757
5758 return old_iowait;
5759 }
5760
5761 void io_schedule_finish(int token)
5762 {
5763 current->in_iowait = token;
5764 }
5765
5766
5767
5768
5769
5770 long __sched io_schedule_timeout(long timeout)
5771 {
5772 int token;
5773 long ret;
5774
5775 token = io_schedule_prepare();
5776 ret = schedule_timeout(timeout);
5777 io_schedule_finish(token);
5778
5779 return ret;
5780 }
5781 EXPORT_SYMBOL(io_schedule_timeout);
5782
5783 void __sched io_schedule(void)
5784 {
5785 int token;
5786
5787 token = io_schedule_prepare();
5788 schedule();
5789 io_schedule_finish(token);
5790 }
5791 EXPORT_SYMBOL(io_schedule);
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5802 {
5803 int ret = -EINVAL;
5804
5805 switch (policy) {
5806 case SCHED_FIFO:
5807 case SCHED_RR:
5808 ret = MAX_USER_RT_PRIO-1;
5809 break;
5810 case SCHED_DEADLINE:
5811 case SCHED_NORMAL:
5812 case SCHED_BATCH:
5813 case SCHED_IDLE:
5814 ret = 0;
5815 break;
5816 }
5817 return ret;
5818 }
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5829 {
5830 int ret = -EINVAL;
5831
5832 switch (policy) {
5833 case SCHED_FIFO:
5834 case SCHED_RR:
5835 ret = 1;
5836 break;
5837 case SCHED_DEADLINE:
5838 case SCHED_NORMAL:
5839 case SCHED_BATCH:
5840 case SCHED_IDLE:
5841 ret = 0;
5842 }
5843 return ret;
5844 }
5845
5846 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5847 {
5848 struct task_struct *p;
5849 unsigned int time_slice;
5850 struct rq_flags rf;
5851 struct rq *rq;
5852 int retval;
5853
5854 if (pid < 0)
5855 return -EINVAL;
5856
5857 retval = -ESRCH;
5858 rcu_read_lock();
5859 p = find_process_by_pid(pid);
5860 if (!p)
5861 goto out_unlock;
5862
5863 retval = security_task_getscheduler(p);
5864 if (retval)
5865 goto out_unlock;
5866
5867 rq = task_rq_lock(p, &rf);
5868 time_slice = 0;
5869 if (p->sched_class->get_rr_interval)
5870 time_slice = p->sched_class->get_rr_interval(rq, p);
5871 task_rq_unlock(rq, p, &rf);
5872
5873 rcu_read_unlock();
5874 jiffies_to_timespec64(time_slice, t);
5875 return 0;
5876
5877 out_unlock:
5878 rcu_read_unlock();
5879 return retval;
5880 }
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5894 struct __kernel_timespec __user *, interval)
5895 {
5896 struct timespec64 t;
5897 int retval = sched_rr_get_interval(pid, &t);
5898
5899 if (retval == 0)
5900 retval = put_timespec64(&t, interval);
5901
5902 return retval;
5903 }
5904
5905 #ifdef CONFIG_COMPAT_32BIT_TIME
5906 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5907 struct old_timespec32 __user *, interval)
5908 {
5909 struct timespec64 t;
5910 int retval = sched_rr_get_interval(pid, &t);
5911
5912 if (retval == 0)
5913 retval = put_old_timespec32(&t, interval);
5914 return retval;
5915 }
5916 #endif
5917
5918 void sched_show_task(struct task_struct *p)
5919 {
5920 unsigned long free = 0;
5921 int ppid;
5922
5923 if (!try_get_task_stack(p))
5924 return;
5925
5926 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5927
5928 if (p->state == TASK_RUNNING)
5929 printk(KERN_CONT " running task ");
5930 #ifdef CONFIG_DEBUG_STACK_USAGE
5931 free = stack_not_used(p);
5932 #endif
5933 ppid = 0;
5934 rcu_read_lock();
5935 if (pid_alive(p))
5936 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5937 rcu_read_unlock();
5938 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5939 task_pid_nr(p), ppid,
5940 (unsigned long)task_thread_info(p)->flags);
5941
5942 print_worker_info(KERN_INFO, p);
5943 show_stack(p, NULL);
5944 put_task_stack(p);
5945 }
5946 EXPORT_SYMBOL_GPL(sched_show_task);
5947
5948 static inline bool
5949 state_filter_match(unsigned long state_filter, struct task_struct *p)
5950 {
5951
5952 if (!state_filter)
5953 return true;
5954
5955
5956 if (!(p->state & state_filter))
5957 return false;
5958
5959
5960
5961
5962
5963 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5964 return false;
5965
5966 return true;
5967 }
5968
5969
5970 void show_state_filter(unsigned long state_filter)
5971 {
5972 struct task_struct *g, *p;
5973
5974 #if BITS_PER_LONG == 32
5975 printk(KERN_INFO
5976 " task PC stack pid father\n");
5977 #else
5978 printk(KERN_INFO
5979 " task PC stack pid father\n");
5980 #endif
5981 rcu_read_lock();
5982 for_each_process_thread(g, p) {
5983
5984
5985
5986
5987
5988
5989
5990 touch_nmi_watchdog();
5991 touch_all_softlockup_watchdogs();
5992 if (state_filter_match(state_filter, p))
5993 sched_show_task(p);
5994 }
5995
5996 #ifdef CONFIG_SCHED_DEBUG
5997 if (!state_filter)
5998 sysrq_sched_debug_show();
5999 #endif
6000 rcu_read_unlock();
6001
6002
6003
6004 if (!state_filter)
6005 debug_show_all_locks();
6006 }
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016 void init_idle(struct task_struct *idle, int cpu)
6017 {
6018 struct rq *rq = cpu_rq(cpu);
6019 unsigned long flags;
6020
6021 __sched_fork(0, idle);
6022
6023 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6024 raw_spin_lock(&rq->lock);
6025
6026 idle->state = TASK_RUNNING;
6027 idle->se.exec_start = sched_clock();
6028 idle->flags |= PF_IDLE;
6029
6030 kasan_unpoison_task_stack(idle);
6031
6032 #ifdef CONFIG_SMP
6033
6034
6035
6036
6037
6038
6039 set_cpus_allowed_common(idle, cpumask_of(cpu));
6040 #endif
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051 rcu_read_lock();
6052 __set_task_cpu(idle, cpu);
6053 rcu_read_unlock();
6054
6055 rq->idle = idle;
6056 rcu_assign_pointer(rq->curr, idle);
6057 idle->on_rq = TASK_ON_RQ_QUEUED;
6058 #ifdef CONFIG_SMP
6059 idle->on_cpu = 1;
6060 #endif
6061 raw_spin_unlock(&rq->lock);
6062 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6063
6064
6065 init_idle_preempt_count(idle, cpu);
6066
6067
6068
6069
6070 idle->sched_class = &idle_sched_class;
6071 ftrace_graph_init_idle_task(idle, cpu);
6072 vtime_init_idle(idle, cpu);
6073 #ifdef CONFIG_SMP
6074 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6075 #endif
6076 }
6077
6078 #ifdef CONFIG_SMP
6079
6080 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6081 const struct cpumask *trial)
6082 {
6083 int ret = 1;
6084
6085 if (!cpumask_weight(cur))
6086 return ret;
6087
6088 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6089
6090 return ret;
6091 }
6092
6093 int task_can_attach(struct task_struct *p,
6094 const struct cpumask *cs_cpus_allowed)
6095 {
6096 int ret = 0;
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107 if (p->flags & PF_NO_SETAFFINITY) {
6108 ret = -EINVAL;
6109 goto out;
6110 }
6111
6112 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6113 cs_cpus_allowed))
6114 ret = dl_task_can_attach(p, cs_cpus_allowed);
6115
6116 out:
6117 return ret;
6118 }
6119
6120 bool sched_smp_initialized __read_mostly;
6121
6122 #ifdef CONFIG_NUMA_BALANCING
6123
6124 int migrate_task_to(struct task_struct *p, int target_cpu)
6125 {
6126 struct migration_arg arg = { p, target_cpu };
6127 int curr_cpu = task_cpu(p);
6128
6129 if (curr_cpu == target_cpu)
6130 return 0;
6131
6132 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6133 return -EINVAL;
6134
6135
6136
6137 trace_sched_move_numa(p, curr_cpu, target_cpu);
6138 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6139 }
6140
6141
6142
6143
6144
6145 void sched_setnuma(struct task_struct *p, int nid)
6146 {
6147 bool queued, running;
6148 struct rq_flags rf;
6149 struct rq *rq;
6150
6151 rq = task_rq_lock(p, &rf);
6152 queued = task_on_rq_queued(p);
6153 running = task_current(rq, p);
6154
6155 if (queued)
6156 dequeue_task(rq, p, DEQUEUE_SAVE);
6157 if (running)
6158 put_prev_task(rq, p);
6159
6160 p->numa_preferred_nid = nid;
6161
6162 if (queued)
6163 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6164 if (running)
6165 set_next_task(rq, p);
6166 task_rq_unlock(rq, p, &rf);
6167 }
6168 #endif
6169
6170 #ifdef CONFIG_HOTPLUG_CPU
6171
6172
6173
6174
6175 void idle_task_exit(void)
6176 {
6177 struct mm_struct *mm = current->active_mm;
6178
6179 BUG_ON(cpu_online(smp_processor_id()));
6180
6181 if (mm != &init_mm) {
6182 switch_mm(mm, &init_mm, current);
6183 current->active_mm = &init_mm;
6184 finish_arch_post_lock_switch();
6185 }
6186 mmdrop(mm);
6187 }
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198 static void calc_load_migrate(struct rq *rq)
6199 {
6200 long delta = calc_load_fold_active(rq, 1);
6201 if (delta)
6202 atomic_long_add(delta, &calc_load_tasks);
6203 }
6204
6205 static struct task_struct *__pick_migrate_task(struct rq *rq)
6206 {
6207 const struct sched_class *class;
6208 struct task_struct *next;
6209
6210 for_each_class(class) {
6211 next = class->pick_next_task(rq, NULL, NULL);
6212 if (next) {
6213 next->sched_class->put_prev_task(rq, next);
6214 return next;
6215 }
6216 }
6217
6218
6219 BUG();
6220 }
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6231 {
6232 struct rq *rq = dead_rq;
6233 struct task_struct *next, *stop = rq->stop;
6234 struct rq_flags orf = *rf;
6235 int dest_cpu;
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246 rq->stop = NULL;
6247
6248
6249
6250
6251
6252
6253 update_rq_clock(rq);
6254
6255 for (;;) {
6256
6257
6258
6259
6260 if (rq->nr_running == 1)
6261 break;
6262
6263 next = __pick_migrate_task(rq);
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274 rq_unlock(rq, rf);
6275 raw_spin_lock(&next->pi_lock);
6276 rq_relock(rq, rf);
6277
6278
6279
6280
6281
6282
6283 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6284 raw_spin_unlock(&next->pi_lock);
6285 continue;
6286 }
6287
6288
6289 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6290 rq = __migrate_task(rq, rf, next, dest_cpu);
6291 if (rq != dead_rq) {
6292 rq_unlock(rq, rf);
6293 rq = dead_rq;
6294 *rf = orf;
6295 rq_relock(rq, rf);
6296 }
6297 raw_spin_unlock(&next->pi_lock);
6298 }
6299
6300 rq->stop = stop;
6301 }
6302 #endif
6303
6304 void set_rq_online(struct rq *rq)
6305 {
6306 if (!rq->online) {
6307 const struct sched_class *class;
6308
6309 cpumask_set_cpu(rq->cpu, rq->rd->online);
6310 rq->online = 1;
6311
6312 for_each_class(class) {
6313 if (class->rq_online)
6314 class->rq_online(rq);
6315 }
6316 }
6317 }
6318
6319 void set_rq_offline(struct rq *rq)
6320 {
6321 if (rq->online) {
6322 const struct sched_class *class;
6323
6324 for_each_class(class) {
6325 if (class->rq_offline)
6326 class->rq_offline(rq);
6327 }
6328
6329 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6330 rq->online = 0;
6331 }
6332 }
6333
6334
6335
6336
6337 static int num_cpus_frozen;
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347 static void cpuset_cpu_active(void)
6348 {
6349 if (cpuhp_tasks_frozen) {
6350
6351
6352
6353
6354
6355
6356 partition_sched_domains(1, NULL, NULL);
6357 if (--num_cpus_frozen)
6358 return;
6359
6360
6361
6362
6363
6364 cpuset_force_rebuild();
6365 }
6366 cpuset_update_active_cpus();
6367 }
6368
6369 static int cpuset_cpu_inactive(unsigned int cpu)
6370 {
6371 if (!cpuhp_tasks_frozen) {
6372 if (dl_cpu_busy(cpu))
6373 return -EBUSY;
6374 cpuset_update_active_cpus();
6375 } else {
6376 num_cpus_frozen++;
6377 partition_sched_domains(1, NULL, NULL);
6378 }
6379 return 0;
6380 }
6381
6382 int sched_cpu_activate(unsigned int cpu)
6383 {
6384 struct rq *rq = cpu_rq(cpu);
6385 struct rq_flags rf;
6386
6387 #ifdef CONFIG_SCHED_SMT
6388
6389
6390
6391 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6392 static_branch_inc_cpuslocked(&sched_smt_present);
6393 #endif
6394 set_cpu_active(cpu, true);
6395
6396 if (sched_smp_initialized) {
6397 sched_domains_numa_masks_set(cpu);
6398 cpuset_cpu_active();
6399 }
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410 rq_lock_irqsave(rq, &rf);
6411 if (rq->rd) {
6412 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6413 set_rq_online(rq);
6414 }
6415 rq_unlock_irqrestore(rq, &rf);
6416
6417 return 0;
6418 }
6419
6420 int sched_cpu_deactivate(unsigned int cpu)
6421 {
6422 int ret;
6423
6424 set_cpu_active(cpu, false);
6425
6426
6427
6428
6429
6430
6431
6432 synchronize_rcu();
6433
6434 #ifdef CONFIG_SCHED_SMT
6435
6436
6437
6438 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6439 static_branch_dec_cpuslocked(&sched_smt_present);
6440 #endif
6441
6442 if (!sched_smp_initialized)
6443 return 0;
6444
6445 ret = cpuset_cpu_inactive(cpu);
6446 if (ret) {
6447 set_cpu_active(cpu, true);
6448 return ret;
6449 }
6450 sched_domains_numa_masks_clear(cpu);
6451 return 0;
6452 }
6453
6454 static void sched_rq_cpu_starting(unsigned int cpu)
6455 {
6456 struct rq *rq = cpu_rq(cpu);
6457
6458 rq->calc_load_update = calc_load_update;
6459 update_max_interval();
6460 }
6461
6462 int sched_cpu_starting(unsigned int cpu)
6463 {
6464 sched_rq_cpu_starting(cpu);
6465 sched_tick_start(cpu);
6466 return 0;
6467 }
6468
6469 #ifdef CONFIG_HOTPLUG_CPU
6470 int sched_cpu_dying(unsigned int cpu)
6471 {
6472 struct rq *rq = cpu_rq(cpu);
6473 struct rq_flags rf;
6474
6475
6476 sched_ttwu_pending();
6477 sched_tick_stop(cpu);
6478
6479 rq_lock_irqsave(rq, &rf);
6480 if (rq->rd) {
6481 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6482 set_rq_offline(rq);
6483 }
6484 migrate_tasks(rq, &rf);
6485 BUG_ON(rq->nr_running != 1);
6486 rq_unlock_irqrestore(rq, &rf);
6487
6488 calc_load_migrate(rq);
6489 update_max_interval();
6490 nohz_balance_exit_idle(rq);
6491 hrtick_clear(rq);
6492 return 0;
6493 }
6494 #endif
6495
6496 void __init sched_init_smp(void)
6497 {
6498 sched_init_numa();
6499
6500
6501
6502
6503
6504
6505 mutex_lock(&sched_domains_mutex);
6506 sched_init_domains(cpu_active_mask);
6507 mutex_unlock(&sched_domains_mutex);
6508
6509
6510 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6511 BUG();
6512 sched_init_granularity();
6513
6514 init_sched_rt_class();
6515 init_sched_dl_class();
6516
6517 sched_smp_initialized = true;
6518 }
6519
6520 static int __init migration_init(void)
6521 {
6522 sched_cpu_starting(smp_processor_id());
6523 return 0;
6524 }
6525 early_initcall(migration_init);
6526
6527 #else
6528 void __init sched_init_smp(void)
6529 {
6530 sched_init_granularity();
6531 }
6532 #endif
6533
6534 int in_sched_functions(unsigned long addr)
6535 {
6536 return in_lock_functions(addr) ||
6537 (addr >= (unsigned long)__sched_text_start
6538 && addr < (unsigned long)__sched_text_end);
6539 }
6540
6541 #ifdef CONFIG_CGROUP_SCHED
6542
6543
6544
6545
6546 struct task_group root_task_group;
6547 LIST_HEAD(task_groups);
6548
6549
6550 static struct kmem_cache *task_group_cache __read_mostly;
6551 #endif
6552
6553 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6554 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6555
6556 void __init sched_init(void)
6557 {
6558 unsigned long ptr = 0;
6559 int i;
6560
6561 wait_bit_init();
6562
6563 #ifdef CONFIG_FAIR_GROUP_SCHED
6564 ptr += 2 * nr_cpu_ids * sizeof(void **);
6565 #endif
6566 #ifdef CONFIG_RT_GROUP_SCHED
6567 ptr += 2 * nr_cpu_ids * sizeof(void **);
6568 #endif
6569 if (ptr) {
6570 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6571
6572 #ifdef CONFIG_FAIR_GROUP_SCHED
6573 root_task_group.se = (struct sched_entity **)ptr;
6574 ptr += nr_cpu_ids * sizeof(void **);
6575
6576 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6577 ptr += nr_cpu_ids * sizeof(void **);
6578
6579 #endif
6580 #ifdef CONFIG_RT_GROUP_SCHED
6581 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6582 ptr += nr_cpu_ids * sizeof(void **);
6583
6584 root_task_group.rt_rq = (struct rt_rq **)ptr;
6585 ptr += nr_cpu_ids * sizeof(void **);
6586
6587 #endif
6588 }
6589 #ifdef CONFIG_CPUMASK_OFFSTACK
6590 for_each_possible_cpu(i) {
6591 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6592 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6593 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6594 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6595 }
6596 #endif
6597
6598 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6599 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6600
6601 #ifdef CONFIG_SMP
6602 init_defrootdomain();
6603 #endif
6604
6605 #ifdef CONFIG_RT_GROUP_SCHED
6606 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6607 global_rt_period(), global_rt_runtime());
6608 #endif
6609
6610 #ifdef CONFIG_CGROUP_SCHED
6611 task_group_cache = KMEM_CACHE(task_group, 0);
6612
6613 list_add(&root_task_group.list, &task_groups);
6614 INIT_LIST_HEAD(&root_task_group.children);
6615 INIT_LIST_HEAD(&root_task_group.siblings);
6616 autogroup_init(&init_task);
6617 #endif
6618
6619 for_each_possible_cpu(i) {
6620 struct rq *rq;
6621
6622 rq = cpu_rq(i);
6623 raw_spin_lock_init(&rq->lock);
6624 rq->nr_running = 0;
6625 rq->calc_load_active = 0;
6626 rq->calc_load_update = jiffies + LOAD_FREQ;
6627 init_cfs_rq(&rq->cfs);
6628 init_rt_rq(&rq->rt);
6629 init_dl_rq(&rq->dl);
6630 #ifdef CONFIG_FAIR_GROUP_SCHED
6631 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6632 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6633 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6654 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6655 #endif
6656
6657 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6658 #ifdef CONFIG_RT_GROUP_SCHED
6659 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6660 #endif
6661 #ifdef CONFIG_SMP
6662 rq->sd = NULL;
6663 rq->rd = NULL;
6664 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6665 rq->balance_callback = NULL;
6666 rq->active_balance = 0;
6667 rq->next_balance = jiffies;
6668 rq->push_cpu = 0;
6669 rq->cpu = i;
6670 rq->online = 0;
6671 rq->idle_stamp = 0;
6672 rq->avg_idle = 2*sysctl_sched_migration_cost;
6673 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6674
6675 INIT_LIST_HEAD(&rq->cfs_tasks);
6676
6677 rq_attach_root(rq, &def_root_domain);
6678 #ifdef CONFIG_NO_HZ_COMMON
6679 rq->last_load_update_tick = jiffies;
6680 rq->last_blocked_load_update_tick = jiffies;
6681 atomic_set(&rq->nohz_flags, 0);
6682 #endif
6683 #endif
6684 hrtick_rq_init(rq);
6685 atomic_set(&rq->nr_iowait, 0);
6686 }
6687
6688 set_load_weight(&init_task, false);
6689
6690
6691
6692
6693 mmgrab(&init_mm);
6694 enter_lazy_tlb(&init_mm, current);
6695
6696
6697
6698
6699
6700
6701
6702 init_idle(current, smp_processor_id());
6703
6704 calc_load_update = jiffies + LOAD_FREQ;
6705
6706 #ifdef CONFIG_SMP
6707 idle_thread_set_boot_cpu();
6708 #endif
6709 init_sched_fair_class();
6710
6711 init_schedstats();
6712
6713 psi_init();
6714
6715 init_uclamp();
6716
6717 scheduler_running = 1;
6718 }
6719
6720 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6721 static inline int preempt_count_equals(int preempt_offset)
6722 {
6723 int nested = preempt_count() + rcu_preempt_depth();
6724
6725 return (nested == preempt_offset);
6726 }
6727
6728 void __might_sleep(const char *file, int line, int preempt_offset)
6729 {
6730
6731
6732
6733
6734
6735 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6736 "do not call blocking ops when !TASK_RUNNING; "
6737 "state=%lx set at [<%p>] %pS\n",
6738 current->state,
6739 (void *)current->task_state_change,
6740 (void *)current->task_state_change);
6741
6742 ___might_sleep(file, line, preempt_offset);
6743 }
6744 EXPORT_SYMBOL(__might_sleep);
6745
6746 void ___might_sleep(const char *file, int line, int preempt_offset)
6747 {
6748
6749 static unsigned long prev_jiffy;
6750
6751 unsigned long preempt_disable_ip;
6752
6753
6754 rcu_sleep_check();
6755
6756 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6757 !is_idle_task(current) && !current->non_block_count) ||
6758 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6759 oops_in_progress)
6760 return;
6761
6762 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6763 return;
6764 prev_jiffy = jiffies;
6765
6766
6767 preempt_disable_ip = get_preempt_disable_ip(current);
6768
6769 printk(KERN_ERR
6770 "BUG: sleeping function called from invalid context at %s:%d\n",
6771 file, line);
6772 printk(KERN_ERR
6773 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6774 in_atomic(), irqs_disabled(), current->non_block_count,
6775 current->pid, current->comm);
6776
6777 if (task_stack_end_corrupted(current))
6778 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6779
6780 debug_show_held_locks(current);
6781 if (irqs_disabled())
6782 print_irqtrace_events(current);
6783 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6784 && !preempt_count_equals(preempt_offset)) {
6785 pr_err("Preemption disabled at:");
6786 print_ip_sym(preempt_disable_ip);
6787 pr_cont("\n");
6788 }
6789 dump_stack();
6790 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6791 }
6792 EXPORT_SYMBOL(___might_sleep);
6793
6794 void __cant_sleep(const char *file, int line, int preempt_offset)
6795 {
6796 static unsigned long prev_jiffy;
6797
6798 if (irqs_disabled())
6799 return;
6800
6801 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6802 return;
6803
6804 if (preempt_count() > preempt_offset)
6805 return;
6806
6807 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6808 return;
6809 prev_jiffy = jiffies;
6810
6811 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6812 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6813 in_atomic(), irqs_disabled(),
6814 current->pid, current->comm);
6815
6816 debug_show_held_locks(current);
6817 dump_stack();
6818 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6819 }
6820 EXPORT_SYMBOL_GPL(__cant_sleep);
6821 #endif
6822
6823 #ifdef CONFIG_MAGIC_SYSRQ
6824 void normalize_rt_tasks(void)
6825 {
6826 struct task_struct *g, *p;
6827 struct sched_attr attr = {
6828 .sched_policy = SCHED_NORMAL,
6829 };
6830
6831 read_lock(&tasklist_lock);
6832 for_each_process_thread(g, p) {
6833
6834
6835
6836 if (p->flags & PF_KTHREAD)
6837 continue;
6838
6839 p->se.exec_start = 0;
6840 schedstat_set(p->se.statistics.wait_start, 0);
6841 schedstat_set(p->se.statistics.sleep_start, 0);
6842 schedstat_set(p->se.statistics.block_start, 0);
6843
6844 if (!dl_task(p) && !rt_task(p)) {
6845
6846
6847
6848
6849 if (task_nice(p) < 0)
6850 set_user_nice(p, 0);
6851 continue;
6852 }
6853
6854 __sched_setscheduler(p, &attr, false, false);
6855 }
6856 read_unlock(&tasklist_lock);
6857 }
6858
6859 #endif
6860
6861 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880 struct task_struct *curr_task(int cpu)
6881 {
6882 return cpu_curr(cpu);
6883 }
6884
6885 #endif
6886
6887 #ifdef CONFIG_IA64
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903 void ia64_set_curr_task(int cpu, struct task_struct *p)
6904 {
6905 cpu_curr(cpu) = p;
6906 }
6907
6908 #endif
6909
6910 #ifdef CONFIG_CGROUP_SCHED
6911
6912 static DEFINE_SPINLOCK(task_group_lock);
6913
6914 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6915 struct task_group *parent)
6916 {
6917 #ifdef CONFIG_UCLAMP_TASK_GROUP
6918 enum uclamp_id clamp_id;
6919
6920 for_each_clamp_id(clamp_id) {
6921 uclamp_se_set(&tg->uclamp_req[clamp_id],
6922 uclamp_none(clamp_id), false);
6923 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6924 }
6925 #endif
6926 }
6927
6928 static void sched_free_group(struct task_group *tg)
6929 {
6930 free_fair_sched_group(tg);
6931 free_rt_sched_group(tg);
6932 autogroup_free(tg);
6933 kmem_cache_free(task_group_cache, tg);
6934 }
6935
6936
6937 struct task_group *sched_create_group(struct task_group *parent)
6938 {
6939 struct task_group *tg;
6940
6941 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6942 if (!tg)
6943 return ERR_PTR(-ENOMEM);
6944
6945 if (!alloc_fair_sched_group(tg, parent))
6946 goto err;
6947
6948 if (!alloc_rt_sched_group(tg, parent))
6949 goto err;
6950
6951 alloc_uclamp_sched_group(tg, parent);
6952
6953 return tg;
6954
6955 err:
6956 sched_free_group(tg);
6957 return ERR_PTR(-ENOMEM);
6958 }
6959
6960 void sched_online_group(struct task_group *tg, struct task_group *parent)
6961 {
6962 unsigned long flags;
6963
6964 spin_lock_irqsave(&task_group_lock, flags);
6965 list_add_rcu(&tg->list, &task_groups);
6966
6967
6968 WARN_ON(!parent);
6969
6970 tg->parent = parent;
6971 INIT_LIST_HEAD(&tg->children);
6972 list_add_rcu(&tg->siblings, &parent->children);
6973 spin_unlock_irqrestore(&task_group_lock, flags);
6974
6975 online_fair_sched_group(tg);
6976 }
6977
6978
6979 static void sched_free_group_rcu(struct rcu_head *rhp)
6980 {
6981
6982 sched_free_group(container_of(rhp, struct task_group, rcu));
6983 }
6984
6985 void sched_destroy_group(struct task_group *tg)
6986 {
6987
6988 call_rcu(&tg->rcu, sched_free_group_rcu);
6989 }
6990
6991 void sched_offline_group(struct task_group *tg)
6992 {
6993 unsigned long flags;
6994
6995
6996 unregister_fair_sched_group(tg);
6997
6998 spin_lock_irqsave(&task_group_lock, flags);
6999 list_del_rcu(&tg->list);
7000 list_del_rcu(&tg->siblings);
7001 spin_unlock_irqrestore(&task_group_lock, flags);
7002 }
7003
7004 static void sched_change_group(struct task_struct *tsk, int type)
7005 {
7006 struct task_group *tg;
7007
7008
7009
7010
7011
7012
7013 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7014 struct task_group, css);
7015 tg = autogroup_task_group(tsk, tg);
7016 tsk->sched_task_group = tg;
7017
7018 #ifdef CONFIG_FAIR_GROUP_SCHED
7019 if (tsk->sched_class->task_change_group)
7020 tsk->sched_class->task_change_group(tsk, type);
7021 else
7022 #endif
7023 set_task_rq(tsk, task_cpu(tsk));
7024 }
7025
7026
7027
7028
7029
7030
7031
7032
7033 void sched_move_task(struct task_struct *tsk)
7034 {
7035 int queued, running, queue_flags =
7036 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7037 struct rq_flags rf;
7038 struct rq *rq;
7039
7040 rq = task_rq_lock(tsk, &rf);
7041 update_rq_clock(rq);
7042
7043 running = task_current(rq, tsk);
7044 queued = task_on_rq_queued(tsk);
7045
7046 if (queued)
7047 dequeue_task(rq, tsk, queue_flags);
7048 if (running)
7049 put_prev_task(rq, tsk);
7050
7051 sched_change_group(tsk, TASK_MOVE_GROUP);
7052
7053 if (queued)
7054 enqueue_task(rq, tsk, queue_flags);
7055 if (running) {
7056 set_next_task(rq, tsk);
7057
7058
7059
7060
7061
7062 resched_curr(rq);
7063 }
7064
7065 task_rq_unlock(rq, tsk, &rf);
7066 }
7067
7068 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7069 {
7070 return css ? container_of(css, struct task_group, css) : NULL;
7071 }
7072
7073 static struct cgroup_subsys_state *
7074 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7075 {
7076 struct task_group *parent = css_tg(parent_css);
7077 struct task_group *tg;
7078
7079 if (!parent) {
7080
7081 return &root_task_group.css;
7082 }
7083
7084 tg = sched_create_group(parent);
7085 if (IS_ERR(tg))
7086 return ERR_PTR(-ENOMEM);
7087
7088 return &tg->css;
7089 }
7090
7091
7092 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7093 {
7094 struct task_group *tg = css_tg(css);
7095 struct task_group *parent = css_tg(css->parent);
7096
7097 if (parent)
7098 sched_online_group(tg, parent);
7099
7100 #ifdef CONFIG_UCLAMP_TASK_GROUP
7101
7102 cpu_util_update_eff(css);
7103 #endif
7104
7105 return 0;
7106 }
7107
7108 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7109 {
7110 struct task_group *tg = css_tg(css);
7111
7112 sched_offline_group(tg);
7113 }
7114
7115 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7116 {
7117 struct task_group *tg = css_tg(css);
7118
7119
7120
7121
7122 sched_free_group(tg);
7123 }
7124
7125
7126
7127
7128
7129 static void cpu_cgroup_fork(struct task_struct *task)
7130 {
7131 struct rq_flags rf;
7132 struct rq *rq;
7133
7134 rq = task_rq_lock(task, &rf);
7135
7136 update_rq_clock(rq);
7137 sched_change_group(task, TASK_SET_GROUP);
7138
7139 task_rq_unlock(rq, task, &rf);
7140 }
7141
7142 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7143 {
7144 struct task_struct *task;
7145 struct cgroup_subsys_state *css;
7146 int ret = 0;
7147
7148 cgroup_taskset_for_each(task, css, tset) {
7149 #ifdef CONFIG_RT_GROUP_SCHED
7150 if (!sched_rt_can_attach(css_tg(css), task))
7151 return -EINVAL;
7152 #endif
7153
7154
7155
7156
7157 raw_spin_lock_irq(&task->pi_lock);
7158
7159
7160
7161
7162
7163 if (task->state == TASK_NEW)
7164 ret = -EINVAL;
7165 raw_spin_unlock_irq(&task->pi_lock);
7166
7167 if (ret)
7168 break;
7169 }
7170 return ret;
7171 }
7172
7173 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7174 {
7175 struct task_struct *task;
7176 struct cgroup_subsys_state *css;
7177
7178 cgroup_taskset_for_each(task, css, tset)
7179 sched_move_task(task);
7180 }
7181
7182 #ifdef CONFIG_UCLAMP_TASK_GROUP
7183 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7184 {
7185 struct cgroup_subsys_state *top_css = css;
7186 struct uclamp_se *uc_parent = NULL;
7187 struct uclamp_se *uc_se = NULL;
7188 unsigned int eff[UCLAMP_CNT];
7189 enum uclamp_id clamp_id;
7190 unsigned int clamps;
7191
7192 css_for_each_descendant_pre(css, top_css) {
7193 uc_parent = css_tg(css)->parent
7194 ? css_tg(css)->parent->uclamp : NULL;
7195
7196 for_each_clamp_id(clamp_id) {
7197
7198 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7199
7200 if (uc_parent &&
7201 eff[clamp_id] > uc_parent[clamp_id].value) {
7202 eff[clamp_id] = uc_parent[clamp_id].value;
7203 }
7204 }
7205
7206 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7207
7208
7209 clamps = 0x0;
7210 uc_se = css_tg(css)->uclamp;
7211 for_each_clamp_id(clamp_id) {
7212 if (eff[clamp_id] == uc_se[clamp_id].value)
7213 continue;
7214 uc_se[clamp_id].value = eff[clamp_id];
7215 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7216 clamps |= (0x1 << clamp_id);
7217 }
7218 if (!clamps) {
7219 css = css_rightmost_descendant(css);
7220 continue;
7221 }
7222
7223
7224 uclamp_update_active_tasks(css, clamps);
7225 }
7226 }
7227
7228
7229
7230
7231
7232
7233 #define _POW10(exp) ((unsigned int)1e##exp)
7234 #define POW10(exp) _POW10(exp)
7235
7236 struct uclamp_request {
7237 #define UCLAMP_PERCENT_SHIFT 2
7238 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7239 s64 percent;
7240 u64 util;
7241 int ret;
7242 };
7243
7244 static inline struct uclamp_request
7245 capacity_from_percent(char *buf)
7246 {
7247 struct uclamp_request req = {
7248 .percent = UCLAMP_PERCENT_SCALE,
7249 .util = SCHED_CAPACITY_SCALE,
7250 .ret = 0,
7251 };
7252
7253 buf = strim(buf);
7254 if (strcmp(buf, "max")) {
7255 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7256 &req.percent);
7257 if (req.ret)
7258 return req;
7259 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7260 req.ret = -ERANGE;
7261 return req;
7262 }
7263
7264 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7265 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7266 }
7267
7268 return req;
7269 }
7270
7271 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7272 size_t nbytes, loff_t off,
7273 enum uclamp_id clamp_id)
7274 {
7275 struct uclamp_request req;
7276 struct task_group *tg;
7277
7278 req = capacity_from_percent(buf);
7279 if (req.ret)
7280 return req.ret;
7281
7282 mutex_lock(&uclamp_mutex);
7283 rcu_read_lock();
7284
7285 tg = css_tg(of_css(of));
7286 if (tg->uclamp_req[clamp_id].value != req.util)
7287 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7288
7289
7290
7291
7292
7293 tg->uclamp_pct[clamp_id] = req.percent;
7294
7295
7296 cpu_util_update_eff(of_css(of));
7297
7298 rcu_read_unlock();
7299 mutex_unlock(&uclamp_mutex);
7300
7301 return nbytes;
7302 }
7303
7304 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7305 char *buf, size_t nbytes,
7306 loff_t off)
7307 {
7308 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7309 }
7310
7311 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7312 char *buf, size_t nbytes,
7313 loff_t off)
7314 {
7315 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7316 }
7317
7318 static inline void cpu_uclamp_print(struct seq_file *sf,
7319 enum uclamp_id clamp_id)
7320 {
7321 struct task_group *tg;
7322 u64 util_clamp;
7323 u64 percent;
7324 u32 rem;
7325
7326 rcu_read_lock();
7327 tg = css_tg(seq_css(sf));
7328 util_clamp = tg->uclamp_req[clamp_id].value;
7329 rcu_read_unlock();
7330
7331 if (util_clamp == SCHED_CAPACITY_SCALE) {
7332 seq_puts(sf, "max\n");
7333 return;
7334 }
7335
7336 percent = tg->uclamp_pct[clamp_id];
7337 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7338 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7339 }
7340
7341 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7342 {
7343 cpu_uclamp_print(sf, UCLAMP_MIN);
7344 return 0;
7345 }
7346
7347 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7348 {
7349 cpu_uclamp_print(sf, UCLAMP_MAX);
7350 return 0;
7351 }
7352 #endif
7353
7354 #ifdef CONFIG_FAIR_GROUP_SCHED
7355 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7356 struct cftype *cftype, u64 shareval)
7357 {
7358 if (shareval > scale_load_down(ULONG_MAX))
7359 shareval = MAX_SHARES;
7360 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7361 }
7362
7363 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7364 struct cftype *cft)
7365 {
7366 struct task_group *tg = css_tg(css);
7367
7368 return (u64) scale_load_down(tg->shares);
7369 }
7370
7371 #ifdef CONFIG_CFS_BANDWIDTH
7372 static DEFINE_MUTEX(cfs_constraints_mutex);
7373
7374 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC;
7375 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC;
7376
7377 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7378
7379 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7380 {
7381 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7382 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7383
7384 if (tg == &root_task_group)
7385 return -EINVAL;
7386
7387
7388
7389
7390
7391
7392 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7393 return -EINVAL;
7394
7395
7396
7397
7398
7399
7400 if (period > max_cfs_quota_period)
7401 return -EINVAL;
7402
7403
7404
7405
7406
7407 get_online_cpus();
7408 mutex_lock(&cfs_constraints_mutex);
7409 ret = __cfs_schedulable(tg, period, quota);
7410 if (ret)
7411 goto out_unlock;
7412
7413 runtime_enabled = quota != RUNTIME_INF;
7414 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7415
7416
7417
7418
7419 if (runtime_enabled && !runtime_was_enabled)
7420 cfs_bandwidth_usage_inc();
7421 raw_spin_lock_irq(&cfs_b->lock);
7422 cfs_b->period = ns_to_ktime(period);
7423 cfs_b->quota = quota;
7424
7425 __refill_cfs_bandwidth_runtime(cfs_b);
7426
7427
7428 if (runtime_enabled)
7429 start_cfs_bandwidth(cfs_b);
7430
7431 raw_spin_unlock_irq(&cfs_b->lock);
7432
7433 for_each_online_cpu(i) {
7434 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7435 struct rq *rq = cfs_rq->rq;
7436 struct rq_flags rf;
7437
7438 rq_lock_irq(rq, &rf);
7439 cfs_rq->runtime_enabled = runtime_enabled;
7440 cfs_rq->runtime_remaining = 0;
7441
7442 if (cfs_rq->throttled)
7443 unthrottle_cfs_rq(cfs_rq);
7444 rq_unlock_irq(rq, &rf);
7445 }
7446 if (runtime_was_enabled && !runtime_enabled)
7447 cfs_bandwidth_usage_dec();
7448 out_unlock:
7449 mutex_unlock(&cfs_constraints_mutex);
7450 put_online_cpus();
7451
7452 return ret;
7453 }
7454
7455 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7456 {
7457 u64 quota, period;
7458
7459 period = ktime_to_ns(tg->cfs_bandwidth.period);
7460 if (cfs_quota_us < 0)
7461 quota = RUNTIME_INF;
7462 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7463 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7464 else
7465 return -EINVAL;
7466
7467 return tg_set_cfs_bandwidth(tg, period, quota);
7468 }
7469
7470 static long tg_get_cfs_quota(struct task_group *tg)
7471 {
7472 u64 quota_us;
7473
7474 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7475 return -1;
7476
7477 quota_us = tg->cfs_bandwidth.quota;
7478 do_div(quota_us, NSEC_PER_USEC);
7479
7480 return quota_us;
7481 }
7482
7483 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7484 {
7485 u64 quota, period;
7486
7487 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7488 return -EINVAL;
7489
7490 period = (u64)cfs_period_us * NSEC_PER_USEC;
7491 quota = tg->cfs_bandwidth.quota;
7492
7493 return tg_set_cfs_bandwidth(tg, period, quota);
7494 }
7495
7496 static long tg_get_cfs_period(struct task_group *tg)
7497 {
7498 u64 cfs_period_us;
7499
7500 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7501 do_div(cfs_period_us, NSEC_PER_USEC);
7502
7503 return cfs_period_us;
7504 }
7505
7506 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7507 struct cftype *cft)
7508 {
7509 return tg_get_cfs_quota(css_tg(css));
7510 }
7511
7512 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7513 struct cftype *cftype, s64 cfs_quota_us)
7514 {
7515 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7516 }
7517
7518 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7519 struct cftype *cft)
7520 {
7521 return tg_get_cfs_period(css_tg(css));
7522 }
7523
7524 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7525 struct cftype *cftype, u64 cfs_period_us)
7526 {
7527 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7528 }
7529
7530 struct cfs_schedulable_data {
7531 struct task_group *tg;
7532 u64 period, quota;
7533 };
7534
7535
7536
7537
7538
7539 static u64 normalize_cfs_quota(struct task_group *tg,
7540 struct cfs_schedulable_data *d)
7541 {
7542 u64 quota, period;
7543
7544 if (tg == d->tg) {
7545 period = d->period;
7546 quota = d->quota;
7547 } else {
7548 period = tg_get_cfs_period(tg);
7549 quota = tg_get_cfs_quota(tg);
7550 }
7551
7552
7553 if (quota == RUNTIME_INF || quota == -1)
7554 return RUNTIME_INF;
7555
7556 return to_ratio(period, quota);
7557 }
7558
7559 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7560 {
7561 struct cfs_schedulable_data *d = data;
7562 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7563 s64 quota = 0, parent_quota = -1;
7564
7565 if (!tg->parent) {
7566 quota = RUNTIME_INF;
7567 } else {
7568 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7569
7570 quota = normalize_cfs_quota(tg, d);
7571 parent_quota = parent_b->hierarchical_quota;
7572
7573
7574
7575
7576
7577
7578 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7579 quota = min(quota, parent_quota);
7580 } else {
7581 if (quota == RUNTIME_INF)
7582 quota = parent_quota;
7583 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7584 return -EINVAL;
7585 }
7586 }
7587 cfs_b->hierarchical_quota = quota;
7588
7589 return 0;
7590 }
7591
7592 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7593 {
7594 int ret;
7595 struct cfs_schedulable_data data = {
7596 .tg = tg,
7597 .period = period,
7598 .quota = quota,
7599 };
7600
7601 if (quota != RUNTIME_INF) {
7602 do_div(data.period, NSEC_PER_USEC);
7603 do_div(data.quota, NSEC_PER_USEC);
7604 }
7605
7606 rcu_read_lock();
7607 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7608 rcu_read_unlock();
7609
7610 return ret;
7611 }
7612
7613 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7614 {
7615 struct task_group *tg = css_tg(seq_css(sf));
7616 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7617
7618 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7619 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7620 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7621
7622 if (schedstat_enabled() && tg != &root_task_group) {
7623 u64 ws = 0;
7624 int i;
7625
7626 for_each_possible_cpu(i)
7627 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7628
7629 seq_printf(sf, "wait_sum %llu\n", ws);
7630 }
7631
7632 return 0;
7633 }
7634 #endif
7635 #endif
7636
7637 #ifdef CONFIG_RT_GROUP_SCHED
7638 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7639 struct cftype *cft, s64 val)
7640 {
7641 return sched_group_set_rt_runtime(css_tg(css), val);
7642 }
7643
7644 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7645 struct cftype *cft)
7646 {
7647 return sched_group_rt_runtime(css_tg(css));
7648 }
7649
7650 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7651 struct cftype *cftype, u64 rt_period_us)
7652 {
7653 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7654 }
7655
7656 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7657 struct cftype *cft)
7658 {
7659 return sched_group_rt_period(css_tg(css));
7660 }
7661 #endif
7662
7663 static struct cftype cpu_legacy_files[] = {
7664 #ifdef CONFIG_FAIR_GROUP_SCHED
7665 {
7666 .name = "shares",
7667 .read_u64 = cpu_shares_read_u64,
7668 .write_u64 = cpu_shares_write_u64,
7669 },
7670 #endif
7671 #ifdef CONFIG_CFS_BANDWIDTH
7672 {
7673 .name = "cfs_quota_us",
7674 .read_s64 = cpu_cfs_quota_read_s64,
7675 .write_s64 = cpu_cfs_quota_write_s64,
7676 },
7677 {
7678 .name = "cfs_period_us",
7679 .read_u64 = cpu_cfs_period_read_u64,
7680 .write_u64 = cpu_cfs_period_write_u64,
7681 },
7682 {
7683 .name = "stat",
7684 .seq_show = cpu_cfs_stat_show,
7685 },
7686 #endif
7687 #ifdef CONFIG_RT_GROUP_SCHED
7688 {
7689 .name = "rt_runtime_us",
7690 .read_s64 = cpu_rt_runtime_read,
7691 .write_s64 = cpu_rt_runtime_write,
7692 },
7693 {
7694 .name = "rt_period_us",
7695 .read_u64 = cpu_rt_period_read_uint,
7696 .write_u64 = cpu_rt_period_write_uint,
7697 },
7698 #endif
7699 #ifdef CONFIG_UCLAMP_TASK_GROUP
7700 {
7701 .name = "uclamp.min",
7702 .flags = CFTYPE_NOT_ON_ROOT,
7703 .seq_show = cpu_uclamp_min_show,
7704 .write = cpu_uclamp_min_write,
7705 },
7706 {
7707 .name = "uclamp.max",
7708 .flags = CFTYPE_NOT_ON_ROOT,
7709 .seq_show = cpu_uclamp_max_show,
7710 .write = cpu_uclamp_max_write,
7711 },
7712 #endif
7713 { }
7714 };
7715
7716 static int cpu_extra_stat_show(struct seq_file *sf,
7717 struct cgroup_subsys_state *css)
7718 {
7719 #ifdef CONFIG_CFS_BANDWIDTH
7720 {
7721 struct task_group *tg = css_tg(css);
7722 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7723 u64 throttled_usec;
7724
7725 throttled_usec = cfs_b->throttled_time;
7726 do_div(throttled_usec, NSEC_PER_USEC);
7727
7728 seq_printf(sf, "nr_periods %d\n"
7729 "nr_throttled %d\n"
7730 "throttled_usec %llu\n",
7731 cfs_b->nr_periods, cfs_b->nr_throttled,
7732 throttled_usec);
7733 }
7734 #endif
7735 return 0;
7736 }
7737
7738 #ifdef CONFIG_FAIR_GROUP_SCHED
7739 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7740 struct cftype *cft)
7741 {
7742 struct task_group *tg = css_tg(css);
7743 u64 weight = scale_load_down(tg->shares);
7744
7745 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7746 }
7747
7748 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7749 struct cftype *cft, u64 weight)
7750 {
7751
7752
7753
7754
7755
7756
7757
7758 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7759 return -ERANGE;
7760
7761 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7762
7763 return sched_group_set_shares(css_tg(css), scale_load(weight));
7764 }
7765
7766 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7767 struct cftype *cft)
7768 {
7769 unsigned long weight = scale_load_down(css_tg(css)->shares);
7770 int last_delta = INT_MAX;
7771 int prio, delta;
7772
7773
7774 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7775 delta = abs(sched_prio_to_weight[prio] - weight);
7776 if (delta >= last_delta)
7777 break;
7778 last_delta = delta;
7779 }
7780
7781 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7782 }
7783
7784 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7785 struct cftype *cft, s64 nice)
7786 {
7787 unsigned long weight;
7788 int idx;
7789
7790 if (nice < MIN_NICE || nice > MAX_NICE)
7791 return -ERANGE;
7792
7793 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7794 idx = array_index_nospec(idx, 40);
7795 weight = sched_prio_to_weight[idx];
7796
7797 return sched_group_set_shares(css_tg(css), scale_load(weight));
7798 }
7799 #endif
7800
7801 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7802 long period, long quota)
7803 {
7804 if (quota < 0)
7805 seq_puts(sf, "max");
7806 else
7807 seq_printf(sf, "%ld", quota);
7808
7809 seq_printf(sf, " %ld\n", period);
7810 }
7811
7812
7813 static int __maybe_unused cpu_period_quota_parse(char *buf,
7814 u64 *periodp, u64 *quotap)
7815 {
7816 char tok[21];
7817
7818 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7819 return -EINVAL;
7820
7821 *periodp *= NSEC_PER_USEC;
7822
7823 if (sscanf(tok, "%llu", quotap))
7824 *quotap *= NSEC_PER_USEC;
7825 else if (!strcmp(tok, "max"))
7826 *quotap = RUNTIME_INF;
7827 else
7828 return -EINVAL;
7829
7830 return 0;
7831 }
7832
7833 #ifdef CONFIG_CFS_BANDWIDTH
7834 static int cpu_max_show(struct seq_file *sf, void *v)
7835 {
7836 struct task_group *tg = css_tg(seq_css(sf));
7837
7838 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7839 return 0;
7840 }
7841
7842 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7843 char *buf, size_t nbytes, loff_t off)
7844 {
7845 struct task_group *tg = css_tg(of_css(of));
7846 u64 period = tg_get_cfs_period(tg);
7847 u64 quota;
7848 int ret;
7849
7850 ret = cpu_period_quota_parse(buf, &period, "a);
7851 if (!ret)
7852 ret = tg_set_cfs_bandwidth(tg, period, quota);
7853 return ret ?: nbytes;
7854 }
7855 #endif
7856
7857 static struct cftype cpu_files[] = {
7858 #ifdef CONFIG_FAIR_GROUP_SCHED
7859 {
7860 .name = "weight",
7861 .flags = CFTYPE_NOT_ON_ROOT,
7862 .read_u64 = cpu_weight_read_u64,
7863 .write_u64 = cpu_weight_write_u64,
7864 },
7865 {
7866 .name = "weight.nice",
7867 .flags = CFTYPE_NOT_ON_ROOT,
7868 .read_s64 = cpu_weight_nice_read_s64,
7869 .write_s64 = cpu_weight_nice_write_s64,
7870 },
7871 #endif
7872 #ifdef CONFIG_CFS_BANDWIDTH
7873 {
7874 .name = "max",
7875 .flags = CFTYPE_NOT_ON_ROOT,
7876 .seq_show = cpu_max_show,
7877 .write = cpu_max_write,
7878 },
7879 #endif
7880 #ifdef CONFIG_UCLAMP_TASK_GROUP
7881 {
7882 .name = "uclamp.min",
7883 .flags = CFTYPE_NOT_ON_ROOT,
7884 .seq_show = cpu_uclamp_min_show,
7885 .write = cpu_uclamp_min_write,
7886 },
7887 {
7888 .name = "uclamp.max",
7889 .flags = CFTYPE_NOT_ON_ROOT,
7890 .seq_show = cpu_uclamp_max_show,
7891 .write = cpu_uclamp_max_write,
7892 },
7893 #endif
7894 { }
7895 };
7896
7897 struct cgroup_subsys cpu_cgrp_subsys = {
7898 .css_alloc = cpu_cgroup_css_alloc,
7899 .css_online = cpu_cgroup_css_online,
7900 .css_released = cpu_cgroup_css_released,
7901 .css_free = cpu_cgroup_css_free,
7902 .css_extra_stat_show = cpu_extra_stat_show,
7903 .fork = cpu_cgroup_fork,
7904 .can_attach = cpu_cgroup_can_attach,
7905 .attach = cpu_cgroup_attach,
7906 .legacy_cftypes = cpu_legacy_files,
7907 .dfl_cftypes = cpu_files,
7908 .early_init = true,
7909 .threaded = true,
7910 };
7911
7912 #endif
7913
7914 void dump_cpu_task(int cpu)
7915 {
7916 pr_info("Task dump for CPU %d:\n", cpu);
7917 sched_show_task(cpu_curr(cpu));
7918 }
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932 const int sched_prio_to_weight[40] = {
7933 88761, 71755, 56483, 46273, 36291,
7934 29154, 23254, 18705, 14949, 11916,
7935 9548, 7620, 6100, 4904, 3906,
7936 3121, 2501, 1991, 1586, 1277,
7937 1024, 820, 655, 526, 423,
7938 335, 272, 215, 172, 137,
7939 110, 87, 70, 56, 45,
7940 36, 29, 23, 18, 15,
7941 };
7942
7943
7944
7945
7946
7947
7948
7949
7950 const u32 sched_prio_to_wmult[40] = {
7951 48388, 59856, 76040, 92818, 118348,
7952 147320, 184698, 229616, 287308, 360437,
7953 449829, 563644, 704093, 875809, 1099582,
7954 1376151, 1717300, 2157191, 2708050, 3363326,
7955 4194304, 5237765, 6557202, 8165337, 10153587,
7956 12820798, 15790321, 19976592, 24970740, 31350126,
7957 39045157, 49367440, 61356676, 76695844, 95443717,
7958 119304647, 148102320, 186737708, 238609294, 286331153,
7959 };
7960
7961 #undef CREATE_TRACE_POINTS