root/kernel/sched/clock.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sched_clock
  2. this_scd
  3. cpu_sdc
  4. sched_clock_stable
  5. __scd_stamp
  6. __set_sched_clock_stable
  7. __sched_clock_work
  8. __clear_sched_clock_stable
  9. clear_sched_clock_stable
  10. __sched_clock_gtod_offset
  11. sched_clock_init
  12. sched_clock_init_late
  13. wrap_min
  14. wrap_max
  15. sched_clock_local
  16. sched_clock_remote
  17. sched_clock_cpu
  18. sched_clock_tick
  19. sched_clock_tick_stable
  20. sched_clock_idle_sleep_event
  21. sched_clock_idle_wakeup_event
  22. sched_clock_init
  23. sched_clock_cpu
  24. running_clock

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * sched_clock() for unstable CPU clocks
   4  *
   5  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
   6  *
   7  *  Updates and enhancements:
   8  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
   9  *
  10  * Based on code by:
  11  *   Ingo Molnar <mingo@redhat.com>
  12  *   Guillaume Chazarain <guichaz@gmail.com>
  13  *
  14  *
  15  * What this file implements:
  16  *
  17  * cpu_clock(i) provides a fast (execution time) high resolution
  18  * clock with bounded drift between CPUs. The value of cpu_clock(i)
  19  * is monotonic for constant i. The timestamp returned is in nanoseconds.
  20  *
  21  * ######################### BIG FAT WARNING ##########################
  22  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  23  * # go backwards !!                                                  #
  24  * ####################################################################
  25  *
  26  * There is no strict promise about the base, although it tends to start
  27  * at 0 on boot (but people really shouldn't rely on that).
  28  *
  29  * cpu_clock(i)       -- can be used from any context, including NMI.
  30  * local_clock()      -- is cpu_clock() on the current CPU.
  31  *
  32  * sched_clock_cpu(i)
  33  *
  34  * How it is implemented:
  35  *
  36  * The implementation either uses sched_clock() when
  37  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  38  * sched_clock() is assumed to provide these properties (mostly it means
  39  * the architecture provides a globally synchronized highres time source).
  40  *
  41  * Otherwise it tries to create a semi stable clock from a mixture of other
  42  * clocks, including:
  43  *
  44  *  - GTOD (clock monotomic)
  45  *  - sched_clock()
  46  *  - explicit idle events
  47  *
  48  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  49  * deltas are filtered to provide monotonicity and keeping it within an
  50  * expected window.
  51  *
  52  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  53  * that is otherwise invisible (TSC gets stopped).
  54  *
  55  */
  56 #include "sched.h"
  57 #include <linux/sched_clock.h>
  58 
  59 /*
  60  * Scheduler clock - returns current time in nanosec units.
  61  * This is default implementation.
  62  * Architectures and sub-architectures can override this.
  63  */
  64 unsigned long long __weak sched_clock(void)
  65 {
  66         return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  67                                         * (NSEC_PER_SEC / HZ);
  68 }
  69 EXPORT_SYMBOL_GPL(sched_clock);
  70 
  71 static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
  72 
  73 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  74 /*
  75  * We must start with !__sched_clock_stable because the unstable -> stable
  76  * transition is accurate, while the stable -> unstable transition is not.
  77  *
  78  * Similarly we start with __sched_clock_stable_early, thereby assuming we
  79  * will become stable, such that there's only a single 1 -> 0 transition.
  80  */
  81 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
  82 static int __sched_clock_stable_early = 1;
  83 
  84 /*
  85  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
  86  */
  87 __read_mostly u64 __sched_clock_offset;
  88 static __read_mostly u64 __gtod_offset;
  89 
  90 struct sched_clock_data {
  91         u64                     tick_raw;
  92         u64                     tick_gtod;
  93         u64                     clock;
  94 };
  95 
  96 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  97 
  98 static inline struct sched_clock_data *this_scd(void)
  99 {
 100         return this_cpu_ptr(&sched_clock_data);
 101 }
 102 
 103 static inline struct sched_clock_data *cpu_sdc(int cpu)
 104 {
 105         return &per_cpu(sched_clock_data, cpu);
 106 }
 107 
 108 int sched_clock_stable(void)
 109 {
 110         return static_branch_likely(&__sched_clock_stable);
 111 }
 112 
 113 static void __scd_stamp(struct sched_clock_data *scd)
 114 {
 115         scd->tick_gtod = ktime_get_ns();
 116         scd->tick_raw = sched_clock();
 117 }
 118 
 119 static void __set_sched_clock_stable(void)
 120 {
 121         struct sched_clock_data *scd;
 122 
 123         /*
 124          * Since we're still unstable and the tick is already running, we have
 125          * to disable IRQs in order to get a consistent scd->tick* reading.
 126          */
 127         local_irq_disable();
 128         scd = this_scd();
 129         /*
 130          * Attempt to make the (initial) unstable->stable transition continuous.
 131          */
 132         __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
 133         local_irq_enable();
 134 
 135         printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
 136                         scd->tick_gtod, __gtod_offset,
 137                         scd->tick_raw,  __sched_clock_offset);
 138 
 139         static_branch_enable(&__sched_clock_stable);
 140         tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
 141 }
 142 
 143 /*
 144  * If we ever get here, we're screwed, because we found out -- typically after
 145  * the fact -- that TSC wasn't good. This means all our clocksources (including
 146  * ktime) could have reported wrong values.
 147  *
 148  * What we do here is an attempt to fix up and continue sort of where we left
 149  * off in a coherent manner.
 150  *
 151  * The only way to fully avoid random clock jumps is to boot with:
 152  * "tsc=unstable".
 153  */
 154 static void __sched_clock_work(struct work_struct *work)
 155 {
 156         struct sched_clock_data *scd;
 157         int cpu;
 158 
 159         /* take a current timestamp and set 'now' */
 160         preempt_disable();
 161         scd = this_scd();
 162         __scd_stamp(scd);
 163         scd->clock = scd->tick_gtod + __gtod_offset;
 164         preempt_enable();
 165 
 166         /* clone to all CPUs */
 167         for_each_possible_cpu(cpu)
 168                 per_cpu(sched_clock_data, cpu) = *scd;
 169 
 170         printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
 171         printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
 172                         scd->tick_gtod, __gtod_offset,
 173                         scd->tick_raw,  __sched_clock_offset);
 174 
 175         static_branch_disable(&__sched_clock_stable);
 176 }
 177 
 178 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
 179 
 180 static void __clear_sched_clock_stable(void)
 181 {
 182         if (!sched_clock_stable())
 183                 return;
 184 
 185         tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
 186         schedule_work(&sched_clock_work);
 187 }
 188 
 189 void clear_sched_clock_stable(void)
 190 {
 191         __sched_clock_stable_early = 0;
 192 
 193         smp_mb(); /* matches sched_clock_init_late() */
 194 
 195         if (static_key_count(&sched_clock_running.key) == 2)
 196                 __clear_sched_clock_stable();
 197 }
 198 
 199 static void __sched_clock_gtod_offset(void)
 200 {
 201         struct sched_clock_data *scd = this_scd();
 202 
 203         __scd_stamp(scd);
 204         __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
 205 }
 206 
 207 void __init sched_clock_init(void)
 208 {
 209         /*
 210          * Set __gtod_offset such that once we mark sched_clock_running,
 211          * sched_clock_tick() continues where sched_clock() left off.
 212          *
 213          * Even if TSC is buggered, we're still UP at this point so it
 214          * can't really be out of sync.
 215          */
 216         local_irq_disable();
 217         __sched_clock_gtod_offset();
 218         local_irq_enable();
 219 
 220         static_branch_inc(&sched_clock_running);
 221 }
 222 /*
 223  * We run this as late_initcall() such that it runs after all built-in drivers,
 224  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
 225  */
 226 static int __init sched_clock_init_late(void)
 227 {
 228         static_branch_inc(&sched_clock_running);
 229         /*
 230          * Ensure that it is impossible to not do a static_key update.
 231          *
 232          * Either {set,clear}_sched_clock_stable() must see sched_clock_running
 233          * and do the update, or we must see their __sched_clock_stable_early
 234          * and do the update, or both.
 235          */
 236         smp_mb(); /* matches {set,clear}_sched_clock_stable() */
 237 
 238         if (__sched_clock_stable_early)
 239                 __set_sched_clock_stable();
 240 
 241         return 0;
 242 }
 243 late_initcall(sched_clock_init_late);
 244 
 245 /*
 246  * min, max except they take wrapping into account
 247  */
 248 
 249 static inline u64 wrap_min(u64 x, u64 y)
 250 {
 251         return (s64)(x - y) < 0 ? x : y;
 252 }
 253 
 254 static inline u64 wrap_max(u64 x, u64 y)
 255 {
 256         return (s64)(x - y) > 0 ? x : y;
 257 }
 258 
 259 /*
 260  * update the percpu scd from the raw @now value
 261  *
 262  *  - filter out backward motion
 263  *  - use the GTOD tick value to create a window to filter crazy TSC values
 264  */
 265 static u64 sched_clock_local(struct sched_clock_data *scd)
 266 {
 267         u64 now, clock, old_clock, min_clock, max_clock, gtod;
 268         s64 delta;
 269 
 270 again:
 271         now = sched_clock();
 272         delta = now - scd->tick_raw;
 273         if (unlikely(delta < 0))
 274                 delta = 0;
 275 
 276         old_clock = scd->clock;
 277 
 278         /*
 279          * scd->clock = clamp(scd->tick_gtod + delta,
 280          *                    max(scd->tick_gtod, scd->clock),
 281          *                    scd->tick_gtod + TICK_NSEC);
 282          */
 283 
 284         gtod = scd->tick_gtod + __gtod_offset;
 285         clock = gtod + delta;
 286         min_clock = wrap_max(gtod, old_clock);
 287         max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
 288 
 289         clock = wrap_max(clock, min_clock);
 290         clock = wrap_min(clock, max_clock);
 291 
 292         if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
 293                 goto again;
 294 
 295         return clock;
 296 }
 297 
 298 static u64 sched_clock_remote(struct sched_clock_data *scd)
 299 {
 300         struct sched_clock_data *my_scd = this_scd();
 301         u64 this_clock, remote_clock;
 302         u64 *ptr, old_val, val;
 303 
 304 #if BITS_PER_LONG != 64
 305 again:
 306         /*
 307          * Careful here: The local and the remote clock values need to
 308          * be read out atomic as we need to compare the values and
 309          * then update either the local or the remote side. So the
 310          * cmpxchg64 below only protects one readout.
 311          *
 312          * We must reread via sched_clock_local() in the retry case on
 313          * 32-bit kernels as an NMI could use sched_clock_local() via the
 314          * tracer and hit between the readout of
 315          * the low 32-bit and the high 32-bit portion.
 316          */
 317         this_clock = sched_clock_local(my_scd);
 318         /*
 319          * We must enforce atomic readout on 32-bit, otherwise the
 320          * update on the remote CPU can hit inbetween the readout of
 321          * the low 32-bit and the high 32-bit portion.
 322          */
 323         remote_clock = cmpxchg64(&scd->clock, 0, 0);
 324 #else
 325         /*
 326          * On 64-bit kernels the read of [my]scd->clock is atomic versus the
 327          * update, so we can avoid the above 32-bit dance.
 328          */
 329         sched_clock_local(my_scd);
 330 again:
 331         this_clock = my_scd->clock;
 332         remote_clock = scd->clock;
 333 #endif
 334 
 335         /*
 336          * Use the opportunity that we have both locks
 337          * taken to couple the two clocks: we take the
 338          * larger time as the latest time for both
 339          * runqueues. (this creates monotonic movement)
 340          */
 341         if (likely((s64)(remote_clock - this_clock) < 0)) {
 342                 ptr = &scd->clock;
 343                 old_val = remote_clock;
 344                 val = this_clock;
 345         } else {
 346                 /*
 347                  * Should be rare, but possible:
 348                  */
 349                 ptr = &my_scd->clock;
 350                 old_val = this_clock;
 351                 val = remote_clock;
 352         }
 353 
 354         if (cmpxchg64(ptr, old_val, val) != old_val)
 355                 goto again;
 356 
 357         return val;
 358 }
 359 
 360 /*
 361  * Similar to cpu_clock(), but requires local IRQs to be disabled.
 362  *
 363  * See cpu_clock().
 364  */
 365 u64 sched_clock_cpu(int cpu)
 366 {
 367         struct sched_clock_data *scd;
 368         u64 clock;
 369 
 370         if (sched_clock_stable())
 371                 return sched_clock() + __sched_clock_offset;
 372 
 373         if (!static_branch_unlikely(&sched_clock_running))
 374                 return sched_clock();
 375 
 376         preempt_disable_notrace();
 377         scd = cpu_sdc(cpu);
 378 
 379         if (cpu != smp_processor_id())
 380                 clock = sched_clock_remote(scd);
 381         else
 382                 clock = sched_clock_local(scd);
 383         preempt_enable_notrace();
 384 
 385         return clock;
 386 }
 387 EXPORT_SYMBOL_GPL(sched_clock_cpu);
 388 
 389 void sched_clock_tick(void)
 390 {
 391         struct sched_clock_data *scd;
 392 
 393         if (sched_clock_stable())
 394                 return;
 395 
 396         if (!static_branch_unlikely(&sched_clock_running))
 397                 return;
 398 
 399         lockdep_assert_irqs_disabled();
 400 
 401         scd = this_scd();
 402         __scd_stamp(scd);
 403         sched_clock_local(scd);
 404 }
 405 
 406 void sched_clock_tick_stable(void)
 407 {
 408         if (!sched_clock_stable())
 409                 return;
 410 
 411         /*
 412          * Called under watchdog_lock.
 413          *
 414          * The watchdog just found this TSC to (still) be stable, so now is a
 415          * good moment to update our __gtod_offset. Because once we find the
 416          * TSC to be unstable, any computation will be computing crap.
 417          */
 418         local_irq_disable();
 419         __sched_clock_gtod_offset();
 420         local_irq_enable();
 421 }
 422 
 423 /*
 424  * We are going deep-idle (irqs are disabled):
 425  */
 426 void sched_clock_idle_sleep_event(void)
 427 {
 428         sched_clock_cpu(smp_processor_id());
 429 }
 430 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
 431 
 432 /*
 433  * We just idled; resync with ktime.
 434  */
 435 void sched_clock_idle_wakeup_event(void)
 436 {
 437         unsigned long flags;
 438 
 439         if (sched_clock_stable())
 440                 return;
 441 
 442         if (unlikely(timekeeping_suspended))
 443                 return;
 444 
 445         local_irq_save(flags);
 446         sched_clock_tick();
 447         local_irq_restore(flags);
 448 }
 449 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
 450 
 451 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 452 
 453 void __init sched_clock_init(void)
 454 {
 455         static_branch_inc(&sched_clock_running);
 456         local_irq_disable();
 457         generic_sched_clock_init();
 458         local_irq_enable();
 459 }
 460 
 461 u64 sched_clock_cpu(int cpu)
 462 {
 463         if (!static_branch_unlikely(&sched_clock_running))
 464                 return 0;
 465 
 466         return sched_clock();
 467 }
 468 
 469 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
 470 
 471 /*
 472  * Running clock - returns the time that has elapsed while a guest has been
 473  * running.
 474  * On a guest this value should be local_clock minus the time the guest was
 475  * suspended by the hypervisor (for any reason).
 476  * On bare metal this function should return the same as local_clock.
 477  * Architectures and sub-architectures can override this.
 478  */
 479 u64 __weak running_clock(void)
 480 {
 481         return local_clock();
 482 }

/* [<][>][^][v][top][bottom][index][help] */