root/kernel/bpf/core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bpf_internal_load_pointer_neg_helper
  2. bpf_prog_alloc_no_stats
  3. bpf_prog_alloc
  4. bpf_prog_alloc_jited_linfo
  5. bpf_prog_free_jited_linfo
  6. bpf_prog_free_unused_jited_linfo
  7. bpf_prog_fill_jited_linfo
  8. bpf_prog_free_linfo
  9. bpf_prog_realloc
  10. __bpf_prog_free
  11. bpf_prog_calc_tag
  12. bpf_adj_delta_to_imm
  13. bpf_adj_delta_to_off
  14. bpf_adj_branches
  15. bpf_adj_linfo
  16. bpf_patch_insn_single
  17. bpf_remove_insns
  18. bpf_prog_kallsyms_del_subprogs
  19. bpf_prog_kallsyms_del_all
  20. bpf_get_prog_addr_region
  21. bpf_get_prog_name
  22. bpf_get_prog_addr_start
  23. bpf_tree_less
  24. bpf_tree_comp
  25. bpf_prog_ksym_node_add
  26. bpf_prog_ksym_node_del
  27. bpf_prog_kallsyms_candidate
  28. bpf_prog_kallsyms_verify_off
  29. bpf_prog_kallsyms_add
  30. bpf_prog_kallsyms_del
  31. bpf_prog_kallsyms_find
  32. __bpf_address_lookup
  33. is_bpf_text_address
  34. bpf_get_kallsym
  35. bpf_jit_alloc_exec_limit
  36. bpf_jit_charge_init
  37. bpf_jit_charge_modmem
  38. bpf_jit_uncharge_modmem
  39. bpf_jit_alloc_exec
  40. bpf_jit_free_exec
  41. bpf_jit_binary_alloc
  42. bpf_jit_binary_free
  43. bpf_jit_free
  44. bpf_jit_get_func_addr
  45. bpf_jit_blind_insn
  46. bpf_prog_clone_create
  47. bpf_prog_clone_free
  48. bpf_jit_prog_release_other
  49. bpf_jit_blind_constants
  50. __bpf_call_base
  51. bpf_opcode_in_insntable
  52. ___bpf_prog_run
  53. bpf_patch_call_args
  54. __bpf_prog_ret0_warn
  55. bpf_prog_array_compatible
  56. bpf_check_tail_call
  57. bpf_prog_select_func
  58. bpf_prog_select_runtime
  59. __bpf_prog_ret1
  60. bpf_prog_array_alloc
  61. bpf_prog_array_free
  62. bpf_prog_array_length
  63. bpf_prog_array_is_empty
  64. bpf_prog_array_copy_core
  65. bpf_prog_array_copy_to_user
  66. bpf_prog_array_delete_safe
  67. bpf_prog_array_copy
  68. bpf_prog_array_copy_info
  69. bpf_prog_free_deferred
  70. bpf_prog_free
  71. bpf_user_rnd_init_once
  72. BPF_CALL_0
  73. bpf_get_trace_printk_proto
  74. bpf_event_output
  75. bpf_int_jit_compile
  76. bpf_jit_compile
  77. bpf_helper_changes_pkt_data
  78. bpf_jit_needs_zext
  79. skb_copy_bits

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Linux Socket Filter - Kernel level socket filtering
   4  *
   5  * Based on the design of the Berkeley Packet Filter. The new
   6  * internal format has been designed by PLUMgrid:
   7  *
   8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
   9  *
  10  * Authors:
  11  *
  12  *      Jay Schulist <jschlst@samba.org>
  13  *      Alexei Starovoitov <ast@plumgrid.com>
  14  *      Daniel Borkmann <dborkman@redhat.com>
  15  *
  16  * Andi Kleen - Fix a few bad bugs and races.
  17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  18  */
  19 
  20 #include <uapi/linux/btf.h>
  21 #include <linux/filter.h>
  22 #include <linux/skbuff.h>
  23 #include <linux/vmalloc.h>
  24 #include <linux/random.h>
  25 #include <linux/moduleloader.h>
  26 #include <linux/bpf.h>
  27 #include <linux/btf.h>
  28 #include <linux/frame.h>
  29 #include <linux/rbtree_latch.h>
  30 #include <linux/kallsyms.h>
  31 #include <linux/rcupdate.h>
  32 #include <linux/perf_event.h>
  33 
  34 #include <asm/unaligned.h>
  35 
  36 /* Registers */
  37 #define BPF_R0  regs[BPF_REG_0]
  38 #define BPF_R1  regs[BPF_REG_1]
  39 #define BPF_R2  regs[BPF_REG_2]
  40 #define BPF_R3  regs[BPF_REG_3]
  41 #define BPF_R4  regs[BPF_REG_4]
  42 #define BPF_R5  regs[BPF_REG_5]
  43 #define BPF_R6  regs[BPF_REG_6]
  44 #define BPF_R7  regs[BPF_REG_7]
  45 #define BPF_R8  regs[BPF_REG_8]
  46 #define BPF_R9  regs[BPF_REG_9]
  47 #define BPF_R10 regs[BPF_REG_10]
  48 
  49 /* Named registers */
  50 #define DST     regs[insn->dst_reg]
  51 #define SRC     regs[insn->src_reg]
  52 #define FP      regs[BPF_REG_FP]
  53 #define AX      regs[BPF_REG_AX]
  54 #define ARG1    regs[BPF_REG_ARG1]
  55 #define CTX     regs[BPF_REG_CTX]
  56 #define IMM     insn->imm
  57 
  58 /* No hurry in this branch
  59  *
  60  * Exported for the bpf jit load helper.
  61  */
  62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  63 {
  64         u8 *ptr = NULL;
  65 
  66         if (k >= SKF_NET_OFF)
  67                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  68         else if (k >= SKF_LL_OFF)
  69                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  70 
  71         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  72                 return ptr;
  73 
  74         return NULL;
  75 }
  76 
  77 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
  78 {
  79         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
  80         struct bpf_prog_aux *aux;
  81         struct bpf_prog *fp;
  82 
  83         size = round_up(size, PAGE_SIZE);
  84         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  85         if (fp == NULL)
  86                 return NULL;
  87 
  88         aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
  89         if (aux == NULL) {
  90                 vfree(fp);
  91                 return NULL;
  92         }
  93 
  94         fp->pages = size / PAGE_SIZE;
  95         fp->aux = aux;
  96         fp->aux->prog = fp;
  97         fp->jit_requested = ebpf_jit_enabled();
  98 
  99         INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
 100 
 101         return fp;
 102 }
 103 
 104 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
 105 {
 106         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 107         struct bpf_prog *prog;
 108         int cpu;
 109 
 110         prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
 111         if (!prog)
 112                 return NULL;
 113 
 114         prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
 115         if (!prog->aux->stats) {
 116                 kfree(prog->aux);
 117                 vfree(prog);
 118                 return NULL;
 119         }
 120 
 121         for_each_possible_cpu(cpu) {
 122                 struct bpf_prog_stats *pstats;
 123 
 124                 pstats = per_cpu_ptr(prog->aux->stats, cpu);
 125                 u64_stats_init(&pstats->syncp);
 126         }
 127         return prog;
 128 }
 129 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
 130 
 131 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
 132 {
 133         if (!prog->aux->nr_linfo || !prog->jit_requested)
 134                 return 0;
 135 
 136         prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
 137                                          sizeof(*prog->aux->jited_linfo),
 138                                          GFP_KERNEL | __GFP_NOWARN);
 139         if (!prog->aux->jited_linfo)
 140                 return -ENOMEM;
 141 
 142         return 0;
 143 }
 144 
 145 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
 146 {
 147         kfree(prog->aux->jited_linfo);
 148         prog->aux->jited_linfo = NULL;
 149 }
 150 
 151 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
 152 {
 153         if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
 154                 bpf_prog_free_jited_linfo(prog);
 155 }
 156 
 157 /* The jit engine is responsible to provide an array
 158  * for insn_off to the jited_off mapping (insn_to_jit_off).
 159  *
 160  * The idx to this array is the insn_off.  Hence, the insn_off
 161  * here is relative to the prog itself instead of the main prog.
 162  * This array has one entry for each xlated bpf insn.
 163  *
 164  * jited_off is the byte off to the last byte of the jited insn.
 165  *
 166  * Hence, with
 167  * insn_start:
 168  *      The first bpf insn off of the prog.  The insn off
 169  *      here is relative to the main prog.
 170  *      e.g. if prog is a subprog, insn_start > 0
 171  * linfo_idx:
 172  *      The prog's idx to prog->aux->linfo and jited_linfo
 173  *
 174  * jited_linfo[linfo_idx] = prog->bpf_func
 175  *
 176  * For i > linfo_idx,
 177  *
 178  * jited_linfo[i] = prog->bpf_func +
 179  *      insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
 180  */
 181 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
 182                                const u32 *insn_to_jit_off)
 183 {
 184         u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
 185         const struct bpf_line_info *linfo;
 186         void **jited_linfo;
 187 
 188         if (!prog->aux->jited_linfo)
 189                 /* Userspace did not provide linfo */
 190                 return;
 191 
 192         linfo_idx = prog->aux->linfo_idx;
 193         linfo = &prog->aux->linfo[linfo_idx];
 194         insn_start = linfo[0].insn_off;
 195         insn_end = insn_start + prog->len;
 196 
 197         jited_linfo = &prog->aux->jited_linfo[linfo_idx];
 198         jited_linfo[0] = prog->bpf_func;
 199 
 200         nr_linfo = prog->aux->nr_linfo - linfo_idx;
 201 
 202         for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
 203                 /* The verifier ensures that linfo[i].insn_off is
 204                  * strictly increasing
 205                  */
 206                 jited_linfo[i] = prog->bpf_func +
 207                         insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
 208 }
 209 
 210 void bpf_prog_free_linfo(struct bpf_prog *prog)
 211 {
 212         bpf_prog_free_jited_linfo(prog);
 213         kvfree(prog->aux->linfo);
 214 }
 215 
 216 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
 217                                   gfp_t gfp_extra_flags)
 218 {
 219         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
 220         struct bpf_prog *fp;
 221         u32 pages, delta;
 222         int ret;
 223 
 224         BUG_ON(fp_old == NULL);
 225 
 226         size = round_up(size, PAGE_SIZE);
 227         pages = size / PAGE_SIZE;
 228         if (pages <= fp_old->pages)
 229                 return fp_old;
 230 
 231         delta = pages - fp_old->pages;
 232         ret = __bpf_prog_charge(fp_old->aux->user, delta);
 233         if (ret)
 234                 return NULL;
 235 
 236         fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
 237         if (fp == NULL) {
 238                 __bpf_prog_uncharge(fp_old->aux->user, delta);
 239         } else {
 240                 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
 241                 fp->pages = pages;
 242                 fp->aux->prog = fp;
 243 
 244                 /* We keep fp->aux from fp_old around in the new
 245                  * reallocated structure.
 246                  */
 247                 fp_old->aux = NULL;
 248                 __bpf_prog_free(fp_old);
 249         }
 250 
 251         return fp;
 252 }
 253 
 254 void __bpf_prog_free(struct bpf_prog *fp)
 255 {
 256         if (fp->aux) {
 257                 free_percpu(fp->aux->stats);
 258                 kfree(fp->aux);
 259         }
 260         vfree(fp);
 261 }
 262 
 263 int bpf_prog_calc_tag(struct bpf_prog *fp)
 264 {
 265         const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
 266         u32 raw_size = bpf_prog_tag_scratch_size(fp);
 267         u32 digest[SHA_DIGEST_WORDS];
 268         u32 ws[SHA_WORKSPACE_WORDS];
 269         u32 i, bsize, psize, blocks;
 270         struct bpf_insn *dst;
 271         bool was_ld_map;
 272         u8 *raw, *todo;
 273         __be32 *result;
 274         __be64 *bits;
 275 
 276         raw = vmalloc(raw_size);
 277         if (!raw)
 278                 return -ENOMEM;
 279 
 280         sha_init(digest);
 281         memset(ws, 0, sizeof(ws));
 282 
 283         /* We need to take out the map fd for the digest calculation
 284          * since they are unstable from user space side.
 285          */
 286         dst = (void *)raw;
 287         for (i = 0, was_ld_map = false; i < fp->len; i++) {
 288                 dst[i] = fp->insnsi[i];
 289                 if (!was_ld_map &&
 290                     dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
 291                     (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
 292                      dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
 293                         was_ld_map = true;
 294                         dst[i].imm = 0;
 295                 } else if (was_ld_map &&
 296                            dst[i].code == 0 &&
 297                            dst[i].dst_reg == 0 &&
 298                            dst[i].src_reg == 0 &&
 299                            dst[i].off == 0) {
 300                         was_ld_map = false;
 301                         dst[i].imm = 0;
 302                 } else {
 303                         was_ld_map = false;
 304                 }
 305         }
 306 
 307         psize = bpf_prog_insn_size(fp);
 308         memset(&raw[psize], 0, raw_size - psize);
 309         raw[psize++] = 0x80;
 310 
 311         bsize  = round_up(psize, SHA_MESSAGE_BYTES);
 312         blocks = bsize / SHA_MESSAGE_BYTES;
 313         todo   = raw;
 314         if (bsize - psize >= sizeof(__be64)) {
 315                 bits = (__be64 *)(todo + bsize - sizeof(__be64));
 316         } else {
 317                 bits = (__be64 *)(todo + bsize + bits_offset);
 318                 blocks++;
 319         }
 320         *bits = cpu_to_be64((psize - 1) << 3);
 321 
 322         while (blocks--) {
 323                 sha_transform(digest, todo, ws);
 324                 todo += SHA_MESSAGE_BYTES;
 325         }
 326 
 327         result = (__force __be32 *)digest;
 328         for (i = 0; i < SHA_DIGEST_WORDS; i++)
 329                 result[i] = cpu_to_be32(digest[i]);
 330         memcpy(fp->tag, result, sizeof(fp->tag));
 331 
 332         vfree(raw);
 333         return 0;
 334 }
 335 
 336 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
 337                                 s32 end_new, s32 curr, const bool probe_pass)
 338 {
 339         const s64 imm_min = S32_MIN, imm_max = S32_MAX;
 340         s32 delta = end_new - end_old;
 341         s64 imm = insn->imm;
 342 
 343         if (curr < pos && curr + imm + 1 >= end_old)
 344                 imm += delta;
 345         else if (curr >= end_new && curr + imm + 1 < end_new)
 346                 imm -= delta;
 347         if (imm < imm_min || imm > imm_max)
 348                 return -ERANGE;
 349         if (!probe_pass)
 350                 insn->imm = imm;
 351         return 0;
 352 }
 353 
 354 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
 355                                 s32 end_new, s32 curr, const bool probe_pass)
 356 {
 357         const s32 off_min = S16_MIN, off_max = S16_MAX;
 358         s32 delta = end_new - end_old;
 359         s32 off = insn->off;
 360 
 361         if (curr < pos && curr + off + 1 >= end_old)
 362                 off += delta;
 363         else if (curr >= end_new && curr + off + 1 < end_new)
 364                 off -= delta;
 365         if (off < off_min || off > off_max)
 366                 return -ERANGE;
 367         if (!probe_pass)
 368                 insn->off = off;
 369         return 0;
 370 }
 371 
 372 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
 373                             s32 end_new, const bool probe_pass)
 374 {
 375         u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
 376         struct bpf_insn *insn = prog->insnsi;
 377         int ret = 0;
 378 
 379         for (i = 0; i < insn_cnt; i++, insn++) {
 380                 u8 code;
 381 
 382                 /* In the probing pass we still operate on the original,
 383                  * unpatched image in order to check overflows before we
 384                  * do any other adjustments. Therefore skip the patchlet.
 385                  */
 386                 if (probe_pass && i == pos) {
 387                         i = end_new;
 388                         insn = prog->insnsi + end_old;
 389                 }
 390                 code = insn->code;
 391                 if ((BPF_CLASS(code) != BPF_JMP &&
 392                      BPF_CLASS(code) != BPF_JMP32) ||
 393                     BPF_OP(code) == BPF_EXIT)
 394                         continue;
 395                 /* Adjust offset of jmps if we cross patch boundaries. */
 396                 if (BPF_OP(code) == BPF_CALL) {
 397                         if (insn->src_reg != BPF_PSEUDO_CALL)
 398                                 continue;
 399                         ret = bpf_adj_delta_to_imm(insn, pos, end_old,
 400                                                    end_new, i, probe_pass);
 401                 } else {
 402                         ret = bpf_adj_delta_to_off(insn, pos, end_old,
 403                                                    end_new, i, probe_pass);
 404                 }
 405                 if (ret)
 406                         break;
 407         }
 408 
 409         return ret;
 410 }
 411 
 412 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
 413 {
 414         struct bpf_line_info *linfo;
 415         u32 i, nr_linfo;
 416 
 417         nr_linfo = prog->aux->nr_linfo;
 418         if (!nr_linfo || !delta)
 419                 return;
 420 
 421         linfo = prog->aux->linfo;
 422 
 423         for (i = 0; i < nr_linfo; i++)
 424                 if (off < linfo[i].insn_off)
 425                         break;
 426 
 427         /* Push all off < linfo[i].insn_off by delta */
 428         for (; i < nr_linfo; i++)
 429                 linfo[i].insn_off += delta;
 430 }
 431 
 432 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
 433                                        const struct bpf_insn *patch, u32 len)
 434 {
 435         u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
 436         const u32 cnt_max = S16_MAX;
 437         struct bpf_prog *prog_adj;
 438         int err;
 439 
 440         /* Since our patchlet doesn't expand the image, we're done. */
 441         if (insn_delta == 0) {
 442                 memcpy(prog->insnsi + off, patch, sizeof(*patch));
 443                 return prog;
 444         }
 445 
 446         insn_adj_cnt = prog->len + insn_delta;
 447 
 448         /* Reject anything that would potentially let the insn->off
 449          * target overflow when we have excessive program expansions.
 450          * We need to probe here before we do any reallocation where
 451          * we afterwards may not fail anymore.
 452          */
 453         if (insn_adj_cnt > cnt_max &&
 454             (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
 455                 return ERR_PTR(err);
 456 
 457         /* Several new instructions need to be inserted. Make room
 458          * for them. Likely, there's no need for a new allocation as
 459          * last page could have large enough tailroom.
 460          */
 461         prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
 462                                     GFP_USER);
 463         if (!prog_adj)
 464                 return ERR_PTR(-ENOMEM);
 465 
 466         prog_adj->len = insn_adj_cnt;
 467 
 468         /* Patching happens in 3 steps:
 469          *
 470          * 1) Move over tail of insnsi from next instruction onwards,
 471          *    so we can patch the single target insn with one or more
 472          *    new ones (patching is always from 1 to n insns, n > 0).
 473          * 2) Inject new instructions at the target location.
 474          * 3) Adjust branch offsets if necessary.
 475          */
 476         insn_rest = insn_adj_cnt - off - len;
 477 
 478         memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
 479                 sizeof(*patch) * insn_rest);
 480         memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
 481 
 482         /* We are guaranteed to not fail at this point, otherwise
 483          * the ship has sailed to reverse to the original state. An
 484          * overflow cannot happen at this point.
 485          */
 486         BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
 487 
 488         bpf_adj_linfo(prog_adj, off, insn_delta);
 489 
 490         return prog_adj;
 491 }
 492 
 493 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
 494 {
 495         /* Branch offsets can't overflow when program is shrinking, no need
 496          * to call bpf_adj_branches(..., true) here
 497          */
 498         memmove(prog->insnsi + off, prog->insnsi + off + cnt,
 499                 sizeof(struct bpf_insn) * (prog->len - off - cnt));
 500         prog->len -= cnt;
 501 
 502         return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
 503 }
 504 
 505 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
 506 {
 507         int i;
 508 
 509         for (i = 0; i < fp->aux->func_cnt; i++)
 510                 bpf_prog_kallsyms_del(fp->aux->func[i]);
 511 }
 512 
 513 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
 514 {
 515         bpf_prog_kallsyms_del_subprogs(fp);
 516         bpf_prog_kallsyms_del(fp);
 517 }
 518 
 519 #ifdef CONFIG_BPF_JIT
 520 /* All BPF JIT sysctl knobs here. */
 521 int bpf_jit_enable   __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
 522 int bpf_jit_harden   __read_mostly;
 523 int bpf_jit_kallsyms __read_mostly;
 524 long bpf_jit_limit   __read_mostly;
 525 
 526 static __always_inline void
 527 bpf_get_prog_addr_region(const struct bpf_prog *prog,
 528                          unsigned long *symbol_start,
 529                          unsigned long *symbol_end)
 530 {
 531         const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
 532         unsigned long addr = (unsigned long)hdr;
 533 
 534         WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
 535 
 536         *symbol_start = addr;
 537         *symbol_end   = addr + hdr->pages * PAGE_SIZE;
 538 }
 539 
 540 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
 541 {
 542         const char *end = sym + KSYM_NAME_LEN;
 543         const struct btf_type *type;
 544         const char *func_name;
 545 
 546         BUILD_BUG_ON(sizeof("bpf_prog_") +
 547                      sizeof(prog->tag) * 2 +
 548                      /* name has been null terminated.
 549                       * We should need +1 for the '_' preceding
 550                       * the name.  However, the null character
 551                       * is double counted between the name and the
 552                       * sizeof("bpf_prog_") above, so we omit
 553                       * the +1 here.
 554                       */
 555                      sizeof(prog->aux->name) > KSYM_NAME_LEN);
 556 
 557         sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
 558         sym  = bin2hex(sym, prog->tag, sizeof(prog->tag));
 559 
 560         /* prog->aux->name will be ignored if full btf name is available */
 561         if (prog->aux->func_info_cnt) {
 562                 type = btf_type_by_id(prog->aux->btf,
 563                                       prog->aux->func_info[prog->aux->func_idx].type_id);
 564                 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
 565                 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
 566                 return;
 567         }
 568 
 569         if (prog->aux->name[0])
 570                 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
 571         else
 572                 *sym = 0;
 573 }
 574 
 575 static __always_inline unsigned long
 576 bpf_get_prog_addr_start(struct latch_tree_node *n)
 577 {
 578         unsigned long symbol_start, symbol_end;
 579         const struct bpf_prog_aux *aux;
 580 
 581         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 582         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 583 
 584         return symbol_start;
 585 }
 586 
 587 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
 588                                           struct latch_tree_node *b)
 589 {
 590         return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
 591 }
 592 
 593 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
 594 {
 595         unsigned long val = (unsigned long)key;
 596         unsigned long symbol_start, symbol_end;
 597         const struct bpf_prog_aux *aux;
 598 
 599         aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
 600         bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
 601 
 602         if (val < symbol_start)
 603                 return -1;
 604         if (val >= symbol_end)
 605                 return  1;
 606 
 607         return 0;
 608 }
 609 
 610 static const struct latch_tree_ops bpf_tree_ops = {
 611         .less   = bpf_tree_less,
 612         .comp   = bpf_tree_comp,
 613 };
 614 
 615 static DEFINE_SPINLOCK(bpf_lock);
 616 static LIST_HEAD(bpf_kallsyms);
 617 static struct latch_tree_root bpf_tree __cacheline_aligned;
 618 
 619 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
 620 {
 621         WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
 622         list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
 623         latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 624 }
 625 
 626 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
 627 {
 628         if (list_empty(&aux->ksym_lnode))
 629                 return;
 630 
 631         latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
 632         list_del_rcu(&aux->ksym_lnode);
 633 }
 634 
 635 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
 636 {
 637         return fp->jited && !bpf_prog_was_classic(fp);
 638 }
 639 
 640 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
 641 {
 642         return list_empty(&fp->aux->ksym_lnode) ||
 643                fp->aux->ksym_lnode.prev == LIST_POISON2;
 644 }
 645 
 646 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
 647 {
 648         if (!bpf_prog_kallsyms_candidate(fp) ||
 649             !capable(CAP_SYS_ADMIN))
 650                 return;
 651 
 652         spin_lock_bh(&bpf_lock);
 653         bpf_prog_ksym_node_add(fp->aux);
 654         spin_unlock_bh(&bpf_lock);
 655 }
 656 
 657 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
 658 {
 659         if (!bpf_prog_kallsyms_candidate(fp))
 660                 return;
 661 
 662         spin_lock_bh(&bpf_lock);
 663         bpf_prog_ksym_node_del(fp->aux);
 664         spin_unlock_bh(&bpf_lock);
 665 }
 666 
 667 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
 668 {
 669         struct latch_tree_node *n;
 670 
 671         if (!bpf_jit_kallsyms_enabled())
 672                 return NULL;
 673 
 674         n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
 675         return n ?
 676                container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
 677                NULL;
 678 }
 679 
 680 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
 681                                  unsigned long *off, char *sym)
 682 {
 683         unsigned long symbol_start, symbol_end;
 684         struct bpf_prog *prog;
 685         char *ret = NULL;
 686 
 687         rcu_read_lock();
 688         prog = bpf_prog_kallsyms_find(addr);
 689         if (prog) {
 690                 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
 691                 bpf_get_prog_name(prog, sym);
 692 
 693                 ret = sym;
 694                 if (size)
 695                         *size = symbol_end - symbol_start;
 696                 if (off)
 697                         *off  = addr - symbol_start;
 698         }
 699         rcu_read_unlock();
 700 
 701         return ret;
 702 }
 703 
 704 bool is_bpf_text_address(unsigned long addr)
 705 {
 706         bool ret;
 707 
 708         rcu_read_lock();
 709         ret = bpf_prog_kallsyms_find(addr) != NULL;
 710         rcu_read_unlock();
 711 
 712         return ret;
 713 }
 714 
 715 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
 716                     char *sym)
 717 {
 718         struct bpf_prog_aux *aux;
 719         unsigned int it = 0;
 720         int ret = -ERANGE;
 721 
 722         if (!bpf_jit_kallsyms_enabled())
 723                 return ret;
 724 
 725         rcu_read_lock();
 726         list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
 727                 if (it++ != symnum)
 728                         continue;
 729 
 730                 bpf_get_prog_name(aux->prog, sym);
 731 
 732                 *value = (unsigned long)aux->prog->bpf_func;
 733                 *type  = BPF_SYM_ELF_TYPE;
 734 
 735                 ret = 0;
 736                 break;
 737         }
 738         rcu_read_unlock();
 739 
 740         return ret;
 741 }
 742 
 743 static atomic_long_t bpf_jit_current;
 744 
 745 /* Can be overridden by an arch's JIT compiler if it has a custom,
 746  * dedicated BPF backend memory area, or if neither of the two
 747  * below apply.
 748  */
 749 u64 __weak bpf_jit_alloc_exec_limit(void)
 750 {
 751 #if defined(MODULES_VADDR)
 752         return MODULES_END - MODULES_VADDR;
 753 #else
 754         return VMALLOC_END - VMALLOC_START;
 755 #endif
 756 }
 757 
 758 static int __init bpf_jit_charge_init(void)
 759 {
 760         /* Only used as heuristic here to derive limit. */
 761         bpf_jit_limit = min_t(u64, round_up(bpf_jit_alloc_exec_limit() >> 2,
 762                                             PAGE_SIZE), LONG_MAX);
 763         return 0;
 764 }
 765 pure_initcall(bpf_jit_charge_init);
 766 
 767 static int bpf_jit_charge_modmem(u32 pages)
 768 {
 769         if (atomic_long_add_return(pages, &bpf_jit_current) >
 770             (bpf_jit_limit >> PAGE_SHIFT)) {
 771                 if (!capable(CAP_SYS_ADMIN)) {
 772                         atomic_long_sub(pages, &bpf_jit_current);
 773                         return -EPERM;
 774                 }
 775         }
 776 
 777         return 0;
 778 }
 779 
 780 static void bpf_jit_uncharge_modmem(u32 pages)
 781 {
 782         atomic_long_sub(pages, &bpf_jit_current);
 783 }
 784 
 785 void *__weak bpf_jit_alloc_exec(unsigned long size)
 786 {
 787         return module_alloc(size);
 788 }
 789 
 790 void __weak bpf_jit_free_exec(void *addr)
 791 {
 792         module_memfree(addr);
 793 }
 794 
 795 struct bpf_binary_header *
 796 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
 797                      unsigned int alignment,
 798                      bpf_jit_fill_hole_t bpf_fill_ill_insns)
 799 {
 800         struct bpf_binary_header *hdr;
 801         u32 size, hole, start, pages;
 802 
 803         /* Most of BPF filters are really small, but if some of them
 804          * fill a page, allow at least 128 extra bytes to insert a
 805          * random section of illegal instructions.
 806          */
 807         size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
 808         pages = size / PAGE_SIZE;
 809 
 810         if (bpf_jit_charge_modmem(pages))
 811                 return NULL;
 812         hdr = bpf_jit_alloc_exec(size);
 813         if (!hdr) {
 814                 bpf_jit_uncharge_modmem(pages);
 815                 return NULL;
 816         }
 817 
 818         /* Fill space with illegal/arch-dep instructions. */
 819         bpf_fill_ill_insns(hdr, size);
 820 
 821         hdr->pages = pages;
 822         hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
 823                      PAGE_SIZE - sizeof(*hdr));
 824         start = (get_random_int() % hole) & ~(alignment - 1);
 825 
 826         /* Leave a random number of instructions before BPF code. */
 827         *image_ptr = &hdr->image[start];
 828 
 829         return hdr;
 830 }
 831 
 832 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
 833 {
 834         u32 pages = hdr->pages;
 835 
 836         bpf_jit_free_exec(hdr);
 837         bpf_jit_uncharge_modmem(pages);
 838 }
 839 
 840 /* This symbol is only overridden by archs that have different
 841  * requirements than the usual eBPF JITs, f.e. when they only
 842  * implement cBPF JIT, do not set images read-only, etc.
 843  */
 844 void __weak bpf_jit_free(struct bpf_prog *fp)
 845 {
 846         if (fp->jited) {
 847                 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
 848 
 849                 bpf_jit_binary_free(hdr);
 850 
 851                 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
 852         }
 853 
 854         bpf_prog_unlock_free(fp);
 855 }
 856 
 857 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
 858                           const struct bpf_insn *insn, bool extra_pass,
 859                           u64 *func_addr, bool *func_addr_fixed)
 860 {
 861         s16 off = insn->off;
 862         s32 imm = insn->imm;
 863         u8 *addr;
 864 
 865         *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
 866         if (!*func_addr_fixed) {
 867                 /* Place-holder address till the last pass has collected
 868                  * all addresses for JITed subprograms in which case we
 869                  * can pick them up from prog->aux.
 870                  */
 871                 if (!extra_pass)
 872                         addr = NULL;
 873                 else if (prog->aux->func &&
 874                          off >= 0 && off < prog->aux->func_cnt)
 875                         addr = (u8 *)prog->aux->func[off]->bpf_func;
 876                 else
 877                         return -EINVAL;
 878         } else {
 879                 /* Address of a BPF helper call. Since part of the core
 880                  * kernel, it's always at a fixed location. __bpf_call_base
 881                  * and the helper with imm relative to it are both in core
 882                  * kernel.
 883                  */
 884                 addr = (u8 *)__bpf_call_base + imm;
 885         }
 886 
 887         *func_addr = (unsigned long)addr;
 888         return 0;
 889 }
 890 
 891 static int bpf_jit_blind_insn(const struct bpf_insn *from,
 892                               const struct bpf_insn *aux,
 893                               struct bpf_insn *to_buff,
 894                               bool emit_zext)
 895 {
 896         struct bpf_insn *to = to_buff;
 897         u32 imm_rnd = get_random_int();
 898         s16 off;
 899 
 900         BUILD_BUG_ON(BPF_REG_AX  + 1 != MAX_BPF_JIT_REG);
 901         BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
 902 
 903         /* Constraints on AX register:
 904          *
 905          * AX register is inaccessible from user space. It is mapped in
 906          * all JITs, and used here for constant blinding rewrites. It is
 907          * typically "stateless" meaning its contents are only valid within
 908          * the executed instruction, but not across several instructions.
 909          * There are a few exceptions however which are further detailed
 910          * below.
 911          *
 912          * Constant blinding is only used by JITs, not in the interpreter.
 913          * The interpreter uses AX in some occasions as a local temporary
 914          * register e.g. in DIV or MOD instructions.
 915          *
 916          * In restricted circumstances, the verifier can also use the AX
 917          * register for rewrites as long as they do not interfere with
 918          * the above cases!
 919          */
 920         if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
 921                 goto out;
 922 
 923         if (from->imm == 0 &&
 924             (from->code == (BPF_ALU   | BPF_MOV | BPF_K) ||
 925              from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
 926                 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
 927                 goto out;
 928         }
 929 
 930         switch (from->code) {
 931         case BPF_ALU | BPF_ADD | BPF_K:
 932         case BPF_ALU | BPF_SUB | BPF_K:
 933         case BPF_ALU | BPF_AND | BPF_K:
 934         case BPF_ALU | BPF_OR  | BPF_K:
 935         case BPF_ALU | BPF_XOR | BPF_K:
 936         case BPF_ALU | BPF_MUL | BPF_K:
 937         case BPF_ALU | BPF_MOV | BPF_K:
 938         case BPF_ALU | BPF_DIV | BPF_K:
 939         case BPF_ALU | BPF_MOD | BPF_K:
 940                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 941                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 942                 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
 943                 break;
 944 
 945         case BPF_ALU64 | BPF_ADD | BPF_K:
 946         case BPF_ALU64 | BPF_SUB | BPF_K:
 947         case BPF_ALU64 | BPF_AND | BPF_K:
 948         case BPF_ALU64 | BPF_OR  | BPF_K:
 949         case BPF_ALU64 | BPF_XOR | BPF_K:
 950         case BPF_ALU64 | BPF_MUL | BPF_K:
 951         case BPF_ALU64 | BPF_MOV | BPF_K:
 952         case BPF_ALU64 | BPF_DIV | BPF_K:
 953         case BPF_ALU64 | BPF_MOD | BPF_K:
 954                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 955                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 956                 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
 957                 break;
 958 
 959         case BPF_JMP | BPF_JEQ  | BPF_K:
 960         case BPF_JMP | BPF_JNE  | BPF_K:
 961         case BPF_JMP | BPF_JGT  | BPF_K:
 962         case BPF_JMP | BPF_JLT  | BPF_K:
 963         case BPF_JMP | BPF_JGE  | BPF_K:
 964         case BPF_JMP | BPF_JLE  | BPF_K:
 965         case BPF_JMP | BPF_JSGT | BPF_K:
 966         case BPF_JMP | BPF_JSLT | BPF_K:
 967         case BPF_JMP | BPF_JSGE | BPF_K:
 968         case BPF_JMP | BPF_JSLE | BPF_K:
 969         case BPF_JMP | BPF_JSET | BPF_K:
 970                 /* Accommodate for extra offset in case of a backjump. */
 971                 off = from->off;
 972                 if (off < 0)
 973                         off -= 2;
 974                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 975                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 976                 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
 977                 break;
 978 
 979         case BPF_JMP32 | BPF_JEQ  | BPF_K:
 980         case BPF_JMP32 | BPF_JNE  | BPF_K:
 981         case BPF_JMP32 | BPF_JGT  | BPF_K:
 982         case BPF_JMP32 | BPF_JLT  | BPF_K:
 983         case BPF_JMP32 | BPF_JGE  | BPF_K:
 984         case BPF_JMP32 | BPF_JLE  | BPF_K:
 985         case BPF_JMP32 | BPF_JSGT | BPF_K:
 986         case BPF_JMP32 | BPF_JSLT | BPF_K:
 987         case BPF_JMP32 | BPF_JSGE | BPF_K:
 988         case BPF_JMP32 | BPF_JSLE | BPF_K:
 989         case BPF_JMP32 | BPF_JSET | BPF_K:
 990                 /* Accommodate for extra offset in case of a backjump. */
 991                 off = from->off;
 992                 if (off < 0)
 993                         off -= 2;
 994                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
 995                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
 996                 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
 997                                       off);
 998                 break;
 999 
1000         case BPF_LD | BPF_IMM | BPF_DW:
1001                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1002                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1003                 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1004                 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1005                 break;
1006         case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1007                 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1008                 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1009                 if (emit_zext)
1010                         *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1011                 *to++ = BPF_ALU64_REG(BPF_OR,  aux[0].dst_reg, BPF_REG_AX);
1012                 break;
1013 
1014         case BPF_ST | BPF_MEM | BPF_DW:
1015         case BPF_ST | BPF_MEM | BPF_W:
1016         case BPF_ST | BPF_MEM | BPF_H:
1017         case BPF_ST | BPF_MEM | BPF_B:
1018                 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1019                 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1020                 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1021                 break;
1022         }
1023 out:
1024         return to - to_buff;
1025 }
1026 
1027 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1028                                               gfp_t gfp_extra_flags)
1029 {
1030         gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1031         struct bpf_prog *fp;
1032 
1033         fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1034         if (fp != NULL) {
1035                 /* aux->prog still points to the fp_other one, so
1036                  * when promoting the clone to the real program,
1037                  * this still needs to be adapted.
1038                  */
1039                 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1040         }
1041 
1042         return fp;
1043 }
1044 
1045 static void bpf_prog_clone_free(struct bpf_prog *fp)
1046 {
1047         /* aux was stolen by the other clone, so we cannot free
1048          * it from this path! It will be freed eventually by the
1049          * other program on release.
1050          *
1051          * At this point, we don't need a deferred release since
1052          * clone is guaranteed to not be locked.
1053          */
1054         fp->aux = NULL;
1055         __bpf_prog_free(fp);
1056 }
1057 
1058 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1059 {
1060         /* We have to repoint aux->prog to self, as we don't
1061          * know whether fp here is the clone or the original.
1062          */
1063         fp->aux->prog = fp;
1064         bpf_prog_clone_free(fp_other);
1065 }
1066 
1067 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1068 {
1069         struct bpf_insn insn_buff[16], aux[2];
1070         struct bpf_prog *clone, *tmp;
1071         int insn_delta, insn_cnt;
1072         struct bpf_insn *insn;
1073         int i, rewritten;
1074 
1075         if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1076                 return prog;
1077 
1078         clone = bpf_prog_clone_create(prog, GFP_USER);
1079         if (!clone)
1080                 return ERR_PTR(-ENOMEM);
1081 
1082         insn_cnt = clone->len;
1083         insn = clone->insnsi;
1084 
1085         for (i = 0; i < insn_cnt; i++, insn++) {
1086                 /* We temporarily need to hold the original ld64 insn
1087                  * so that we can still access the first part in the
1088                  * second blinding run.
1089                  */
1090                 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1091                     insn[1].code == 0)
1092                         memcpy(aux, insn, sizeof(aux));
1093 
1094                 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1095                                                 clone->aux->verifier_zext);
1096                 if (!rewritten)
1097                         continue;
1098 
1099                 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1100                 if (IS_ERR(tmp)) {
1101                         /* Patching may have repointed aux->prog during
1102                          * realloc from the original one, so we need to
1103                          * fix it up here on error.
1104                          */
1105                         bpf_jit_prog_release_other(prog, clone);
1106                         return tmp;
1107                 }
1108 
1109                 clone = tmp;
1110                 insn_delta = rewritten - 1;
1111 
1112                 /* Walk new program and skip insns we just inserted. */
1113                 insn = clone->insnsi + i + insn_delta;
1114                 insn_cnt += insn_delta;
1115                 i        += insn_delta;
1116         }
1117 
1118         clone->blinded = 1;
1119         return clone;
1120 }
1121 #endif /* CONFIG_BPF_JIT */
1122 
1123 /* Base function for offset calculation. Needs to go into .text section,
1124  * therefore keeping it non-static as well; will also be used by JITs
1125  * anyway later on, so do not let the compiler omit it. This also needs
1126  * to go into kallsyms for correlation from e.g. bpftool, so naming
1127  * must not change.
1128  */
1129 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1130 {
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(__bpf_call_base);
1134 
1135 /* All UAPI available opcodes. */
1136 #define BPF_INSN_MAP(INSN_2, INSN_3)            \
1137         /* 32 bit ALU operations. */            \
1138         /*   Register based. */                 \
1139         INSN_3(ALU, ADD,  X),                   \
1140         INSN_3(ALU, SUB,  X),                   \
1141         INSN_3(ALU, AND,  X),                   \
1142         INSN_3(ALU, OR,   X),                   \
1143         INSN_3(ALU, LSH,  X),                   \
1144         INSN_3(ALU, RSH,  X),                   \
1145         INSN_3(ALU, XOR,  X),                   \
1146         INSN_3(ALU, MUL,  X),                   \
1147         INSN_3(ALU, MOV,  X),                   \
1148         INSN_3(ALU, ARSH, X),                   \
1149         INSN_3(ALU, DIV,  X),                   \
1150         INSN_3(ALU, MOD,  X),                   \
1151         INSN_2(ALU, NEG),                       \
1152         INSN_3(ALU, END, TO_BE),                \
1153         INSN_3(ALU, END, TO_LE),                \
1154         /*   Immediate based. */                \
1155         INSN_3(ALU, ADD,  K),                   \
1156         INSN_3(ALU, SUB,  K),                   \
1157         INSN_3(ALU, AND,  K),                   \
1158         INSN_3(ALU, OR,   K),                   \
1159         INSN_3(ALU, LSH,  K),                   \
1160         INSN_3(ALU, RSH,  K),                   \
1161         INSN_3(ALU, XOR,  K),                   \
1162         INSN_3(ALU, MUL,  K),                   \
1163         INSN_3(ALU, MOV,  K),                   \
1164         INSN_3(ALU, ARSH, K),                   \
1165         INSN_3(ALU, DIV,  K),                   \
1166         INSN_3(ALU, MOD,  K),                   \
1167         /* 64 bit ALU operations. */            \
1168         /*   Register based. */                 \
1169         INSN_3(ALU64, ADD,  X),                 \
1170         INSN_3(ALU64, SUB,  X),                 \
1171         INSN_3(ALU64, AND,  X),                 \
1172         INSN_3(ALU64, OR,   X),                 \
1173         INSN_3(ALU64, LSH,  X),                 \
1174         INSN_3(ALU64, RSH,  X),                 \
1175         INSN_3(ALU64, XOR,  X),                 \
1176         INSN_3(ALU64, MUL,  X),                 \
1177         INSN_3(ALU64, MOV,  X),                 \
1178         INSN_3(ALU64, ARSH, X),                 \
1179         INSN_3(ALU64, DIV,  X),                 \
1180         INSN_3(ALU64, MOD,  X),                 \
1181         INSN_2(ALU64, NEG),                     \
1182         /*   Immediate based. */                \
1183         INSN_3(ALU64, ADD,  K),                 \
1184         INSN_3(ALU64, SUB,  K),                 \
1185         INSN_3(ALU64, AND,  K),                 \
1186         INSN_3(ALU64, OR,   K),                 \
1187         INSN_3(ALU64, LSH,  K),                 \
1188         INSN_3(ALU64, RSH,  K),                 \
1189         INSN_3(ALU64, XOR,  K),                 \
1190         INSN_3(ALU64, MUL,  K),                 \
1191         INSN_3(ALU64, MOV,  K),                 \
1192         INSN_3(ALU64, ARSH, K),                 \
1193         INSN_3(ALU64, DIV,  K),                 \
1194         INSN_3(ALU64, MOD,  K),                 \
1195         /* Call instruction. */                 \
1196         INSN_2(JMP, CALL),                      \
1197         /* Exit instruction. */                 \
1198         INSN_2(JMP, EXIT),                      \
1199         /* 32-bit Jump instructions. */         \
1200         /*   Register based. */                 \
1201         INSN_3(JMP32, JEQ,  X),                 \
1202         INSN_3(JMP32, JNE,  X),                 \
1203         INSN_3(JMP32, JGT,  X),                 \
1204         INSN_3(JMP32, JLT,  X),                 \
1205         INSN_3(JMP32, JGE,  X),                 \
1206         INSN_3(JMP32, JLE,  X),                 \
1207         INSN_3(JMP32, JSGT, X),                 \
1208         INSN_3(JMP32, JSLT, X),                 \
1209         INSN_3(JMP32, JSGE, X),                 \
1210         INSN_3(JMP32, JSLE, X),                 \
1211         INSN_3(JMP32, JSET, X),                 \
1212         /*   Immediate based. */                \
1213         INSN_3(JMP32, JEQ,  K),                 \
1214         INSN_3(JMP32, JNE,  K),                 \
1215         INSN_3(JMP32, JGT,  K),                 \
1216         INSN_3(JMP32, JLT,  K),                 \
1217         INSN_3(JMP32, JGE,  K),                 \
1218         INSN_3(JMP32, JLE,  K),                 \
1219         INSN_3(JMP32, JSGT, K),                 \
1220         INSN_3(JMP32, JSLT, K),                 \
1221         INSN_3(JMP32, JSGE, K),                 \
1222         INSN_3(JMP32, JSLE, K),                 \
1223         INSN_3(JMP32, JSET, K),                 \
1224         /* Jump instructions. */                \
1225         /*   Register based. */                 \
1226         INSN_3(JMP, JEQ,  X),                   \
1227         INSN_3(JMP, JNE,  X),                   \
1228         INSN_3(JMP, JGT,  X),                   \
1229         INSN_3(JMP, JLT,  X),                   \
1230         INSN_3(JMP, JGE,  X),                   \
1231         INSN_3(JMP, JLE,  X),                   \
1232         INSN_3(JMP, JSGT, X),                   \
1233         INSN_3(JMP, JSLT, X),                   \
1234         INSN_3(JMP, JSGE, X),                   \
1235         INSN_3(JMP, JSLE, X),                   \
1236         INSN_3(JMP, JSET, X),                   \
1237         /*   Immediate based. */                \
1238         INSN_3(JMP, JEQ,  K),                   \
1239         INSN_3(JMP, JNE,  K),                   \
1240         INSN_3(JMP, JGT,  K),                   \
1241         INSN_3(JMP, JLT,  K),                   \
1242         INSN_3(JMP, JGE,  K),                   \
1243         INSN_3(JMP, JLE,  K),                   \
1244         INSN_3(JMP, JSGT, K),                   \
1245         INSN_3(JMP, JSLT, K),                   \
1246         INSN_3(JMP, JSGE, K),                   \
1247         INSN_3(JMP, JSLE, K),                   \
1248         INSN_3(JMP, JSET, K),                   \
1249         INSN_2(JMP, JA),                        \
1250         /* Store instructions. */               \
1251         /*   Register based. */                 \
1252         INSN_3(STX, MEM,  B),                   \
1253         INSN_3(STX, MEM,  H),                   \
1254         INSN_3(STX, MEM,  W),                   \
1255         INSN_3(STX, MEM,  DW),                  \
1256         INSN_3(STX, XADD, W),                   \
1257         INSN_3(STX, XADD, DW),                  \
1258         /*   Immediate based. */                \
1259         INSN_3(ST, MEM, B),                     \
1260         INSN_3(ST, MEM, H),                     \
1261         INSN_3(ST, MEM, W),                     \
1262         INSN_3(ST, MEM, DW),                    \
1263         /* Load instructions. */                \
1264         /*   Register based. */                 \
1265         INSN_3(LDX, MEM, B),                    \
1266         INSN_3(LDX, MEM, H),                    \
1267         INSN_3(LDX, MEM, W),                    \
1268         INSN_3(LDX, MEM, DW),                   \
1269         /*   Immediate based. */                \
1270         INSN_3(LD, IMM, DW)
1271 
1272 bool bpf_opcode_in_insntable(u8 code)
1273 {
1274 #define BPF_INSN_2_TBL(x, y)    [BPF_##x | BPF_##y] = true
1275 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1276         static const bool public_insntable[256] = {
1277                 [0 ... 255] = false,
1278                 /* Now overwrite non-defaults ... */
1279                 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1280                 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1281                 [BPF_LD | BPF_ABS | BPF_B] = true,
1282                 [BPF_LD | BPF_ABS | BPF_H] = true,
1283                 [BPF_LD | BPF_ABS | BPF_W] = true,
1284                 [BPF_LD | BPF_IND | BPF_B] = true,
1285                 [BPF_LD | BPF_IND | BPF_H] = true,
1286                 [BPF_LD | BPF_IND | BPF_W] = true,
1287         };
1288 #undef BPF_INSN_3_TBL
1289 #undef BPF_INSN_2_TBL
1290         return public_insntable[code];
1291 }
1292 
1293 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1294 /**
1295  *      __bpf_prog_run - run eBPF program on a given context
1296  *      @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1297  *      @insn: is the array of eBPF instructions
1298  *      @stack: is the eBPF storage stack
1299  *
1300  * Decode and execute eBPF instructions.
1301  */
1302 static u64 __no_fgcse ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1303 {
1304 #define BPF_INSN_2_LBL(x, y)    [BPF_##x | BPF_##y] = &&x##_##y
1305 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1306         static const void * const jumptable[256] __annotate_jump_table = {
1307                 [0 ... 255] = &&default_label,
1308                 /* Now overwrite non-defaults ... */
1309                 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1310                 /* Non-UAPI available opcodes. */
1311                 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1312                 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1313         };
1314 #undef BPF_INSN_3_LBL
1315 #undef BPF_INSN_2_LBL
1316         u32 tail_call_cnt = 0;
1317 
1318 #define CONT     ({ insn++; goto select_insn; })
1319 #define CONT_JMP ({ insn++; goto select_insn; })
1320 
1321 select_insn:
1322         goto *jumptable[insn->code];
1323 
1324         /* ALU */
1325 #define ALU(OPCODE, OP)                 \
1326         ALU64_##OPCODE##_X:             \
1327                 DST = DST OP SRC;       \
1328                 CONT;                   \
1329         ALU_##OPCODE##_X:               \
1330                 DST = (u32) DST OP (u32) SRC;   \
1331                 CONT;                   \
1332         ALU64_##OPCODE##_K:             \
1333                 DST = DST OP IMM;               \
1334                 CONT;                   \
1335         ALU_##OPCODE##_K:               \
1336                 DST = (u32) DST OP (u32) IMM;   \
1337                 CONT;
1338 
1339         ALU(ADD,  +)
1340         ALU(SUB,  -)
1341         ALU(AND,  &)
1342         ALU(OR,   |)
1343         ALU(LSH, <<)
1344         ALU(RSH, >>)
1345         ALU(XOR,  ^)
1346         ALU(MUL,  *)
1347 #undef ALU
1348         ALU_NEG:
1349                 DST = (u32) -DST;
1350                 CONT;
1351         ALU64_NEG:
1352                 DST = -DST;
1353                 CONT;
1354         ALU_MOV_X:
1355                 DST = (u32) SRC;
1356                 CONT;
1357         ALU_MOV_K:
1358                 DST = (u32) IMM;
1359                 CONT;
1360         ALU64_MOV_X:
1361                 DST = SRC;
1362                 CONT;
1363         ALU64_MOV_K:
1364                 DST = IMM;
1365                 CONT;
1366         LD_IMM_DW:
1367                 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1368                 insn++;
1369                 CONT;
1370         ALU_ARSH_X:
1371                 DST = (u64) (u32) (((s32) DST) >> SRC);
1372                 CONT;
1373         ALU_ARSH_K:
1374                 DST = (u64) (u32) (((s32) DST) >> IMM);
1375                 CONT;
1376         ALU64_ARSH_X:
1377                 (*(s64 *) &DST) >>= SRC;
1378                 CONT;
1379         ALU64_ARSH_K:
1380                 (*(s64 *) &DST) >>= IMM;
1381                 CONT;
1382         ALU64_MOD_X:
1383                 div64_u64_rem(DST, SRC, &AX);
1384                 DST = AX;
1385                 CONT;
1386         ALU_MOD_X:
1387                 AX = (u32) DST;
1388                 DST = do_div(AX, (u32) SRC);
1389                 CONT;
1390         ALU64_MOD_K:
1391                 div64_u64_rem(DST, IMM, &AX);
1392                 DST = AX;
1393                 CONT;
1394         ALU_MOD_K:
1395                 AX = (u32) DST;
1396                 DST = do_div(AX, (u32) IMM);
1397                 CONT;
1398         ALU64_DIV_X:
1399                 DST = div64_u64(DST, SRC);
1400                 CONT;
1401         ALU_DIV_X:
1402                 AX = (u32) DST;
1403                 do_div(AX, (u32) SRC);
1404                 DST = (u32) AX;
1405                 CONT;
1406         ALU64_DIV_K:
1407                 DST = div64_u64(DST, IMM);
1408                 CONT;
1409         ALU_DIV_K:
1410                 AX = (u32) DST;
1411                 do_div(AX, (u32) IMM);
1412                 DST = (u32) AX;
1413                 CONT;
1414         ALU_END_TO_BE:
1415                 switch (IMM) {
1416                 case 16:
1417                         DST = (__force u16) cpu_to_be16(DST);
1418                         break;
1419                 case 32:
1420                         DST = (__force u32) cpu_to_be32(DST);
1421                         break;
1422                 case 64:
1423                         DST = (__force u64) cpu_to_be64(DST);
1424                         break;
1425                 }
1426                 CONT;
1427         ALU_END_TO_LE:
1428                 switch (IMM) {
1429                 case 16:
1430                         DST = (__force u16) cpu_to_le16(DST);
1431                         break;
1432                 case 32:
1433                         DST = (__force u32) cpu_to_le32(DST);
1434                         break;
1435                 case 64:
1436                         DST = (__force u64) cpu_to_le64(DST);
1437                         break;
1438                 }
1439                 CONT;
1440 
1441         /* CALL */
1442         JMP_CALL:
1443                 /* Function call scratches BPF_R1-BPF_R5 registers,
1444                  * preserves BPF_R6-BPF_R9, and stores return value
1445                  * into BPF_R0.
1446                  */
1447                 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1448                                                        BPF_R4, BPF_R5);
1449                 CONT;
1450 
1451         JMP_CALL_ARGS:
1452                 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1453                                                             BPF_R3, BPF_R4,
1454                                                             BPF_R5,
1455                                                             insn + insn->off + 1);
1456                 CONT;
1457 
1458         JMP_TAIL_CALL: {
1459                 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1460                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1461                 struct bpf_prog *prog;
1462                 u32 index = BPF_R3;
1463 
1464                 if (unlikely(index >= array->map.max_entries))
1465                         goto out;
1466                 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1467                         goto out;
1468 
1469                 tail_call_cnt++;
1470 
1471                 prog = READ_ONCE(array->ptrs[index]);
1472                 if (!prog)
1473                         goto out;
1474 
1475                 /* ARG1 at this point is guaranteed to point to CTX from
1476                  * the verifier side due to the fact that the tail call is
1477                  * handeled like a helper, that is, bpf_tail_call_proto,
1478                  * where arg1_type is ARG_PTR_TO_CTX.
1479                  */
1480                 insn = prog->insnsi;
1481                 goto select_insn;
1482 out:
1483                 CONT;
1484         }
1485         JMP_JA:
1486                 insn += insn->off;
1487                 CONT;
1488         JMP_EXIT:
1489                 return BPF_R0;
1490         /* JMP */
1491 #define COND_JMP(SIGN, OPCODE, CMP_OP)                          \
1492         JMP_##OPCODE##_X:                                       \
1493                 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) {     \
1494                         insn += insn->off;                      \
1495                         CONT_JMP;                               \
1496                 }                                               \
1497                 CONT;                                           \
1498         JMP32_##OPCODE##_X:                                     \
1499                 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) {     \
1500                         insn += insn->off;                      \
1501                         CONT_JMP;                               \
1502                 }                                               \
1503                 CONT;                                           \
1504         JMP_##OPCODE##_K:                                       \
1505                 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) {     \
1506                         insn += insn->off;                      \
1507                         CONT_JMP;                               \
1508                 }                                               \
1509                 CONT;                                           \
1510         JMP32_##OPCODE##_K:                                     \
1511                 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) {     \
1512                         insn += insn->off;                      \
1513                         CONT_JMP;                               \
1514                 }                                               \
1515                 CONT;
1516         COND_JMP(u, JEQ, ==)
1517         COND_JMP(u, JNE, !=)
1518         COND_JMP(u, JGT, >)
1519         COND_JMP(u, JLT, <)
1520         COND_JMP(u, JGE, >=)
1521         COND_JMP(u, JLE, <=)
1522         COND_JMP(u, JSET, &)
1523         COND_JMP(s, JSGT, >)
1524         COND_JMP(s, JSLT, <)
1525         COND_JMP(s, JSGE, >=)
1526         COND_JMP(s, JSLE, <=)
1527 #undef COND_JMP
1528         /* STX and ST and LDX*/
1529 #define LDST(SIZEOP, SIZE)                                              \
1530         STX_MEM_##SIZEOP:                                               \
1531                 *(SIZE *)(unsigned long) (DST + insn->off) = SRC;       \
1532                 CONT;                                                   \
1533         ST_MEM_##SIZEOP:                                                \
1534                 *(SIZE *)(unsigned long) (DST + insn->off) = IMM;       \
1535                 CONT;                                                   \
1536         LDX_MEM_##SIZEOP:                                               \
1537                 DST = *(SIZE *)(unsigned long) (SRC + insn->off);       \
1538                 CONT;
1539 
1540         LDST(B,   u8)
1541         LDST(H,  u16)
1542         LDST(W,  u32)
1543         LDST(DW, u64)
1544 #undef LDST
1545         STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1546                 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1547                            (DST + insn->off));
1548                 CONT;
1549         STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1550                 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1551                              (DST + insn->off));
1552                 CONT;
1553 
1554         default_label:
1555                 /* If we ever reach this, we have a bug somewhere. Die hard here
1556                  * instead of just returning 0; we could be somewhere in a subprog,
1557                  * so execution could continue otherwise which we do /not/ want.
1558                  *
1559                  * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1560                  */
1561                 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1562                 BUG_ON(1);
1563                 return 0;
1564 }
1565 
1566 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1567 #define DEFINE_BPF_PROG_RUN(stack_size) \
1568 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1569 { \
1570         u64 stack[stack_size / sizeof(u64)]; \
1571         u64 regs[MAX_BPF_EXT_REG]; \
1572 \
1573         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1574         ARG1 = (u64) (unsigned long) ctx; \
1575         return ___bpf_prog_run(regs, insn, stack); \
1576 }
1577 
1578 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1579 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1580 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1581                                       const struct bpf_insn *insn) \
1582 { \
1583         u64 stack[stack_size / sizeof(u64)]; \
1584         u64 regs[MAX_BPF_EXT_REG]; \
1585 \
1586         FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1587         BPF_R1 = r1; \
1588         BPF_R2 = r2; \
1589         BPF_R3 = r3; \
1590         BPF_R4 = r4; \
1591         BPF_R5 = r5; \
1592         return ___bpf_prog_run(regs, insn, stack); \
1593 }
1594 
1595 #define EVAL1(FN, X) FN(X)
1596 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1597 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1598 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1599 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1600 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1601 
1602 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1603 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1604 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1605 
1606 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1607 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1608 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1609 
1610 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1611 
1612 static unsigned int (*interpreters[])(const void *ctx,
1613                                       const struct bpf_insn *insn) = {
1614 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1615 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1616 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1617 };
1618 #undef PROG_NAME_LIST
1619 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1620 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1621                                   const struct bpf_insn *insn) = {
1622 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1623 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1624 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1625 };
1626 #undef PROG_NAME_LIST
1627 
1628 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1629 {
1630         stack_depth = max_t(u32, stack_depth, 1);
1631         insn->off = (s16) insn->imm;
1632         insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1633                 __bpf_call_base_args;
1634         insn->code = BPF_JMP | BPF_CALL_ARGS;
1635 }
1636 
1637 #else
1638 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1639                                          const struct bpf_insn *insn)
1640 {
1641         /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1642          * is not working properly, so warn about it!
1643          */
1644         WARN_ON_ONCE(1);
1645         return 0;
1646 }
1647 #endif
1648 
1649 bool bpf_prog_array_compatible(struct bpf_array *array,
1650                                const struct bpf_prog *fp)
1651 {
1652         if (fp->kprobe_override)
1653                 return false;
1654 
1655         if (!array->owner_prog_type) {
1656                 /* There's no owner yet where we could check for
1657                  * compatibility.
1658                  */
1659                 array->owner_prog_type = fp->type;
1660                 array->owner_jited = fp->jited;
1661 
1662                 return true;
1663         }
1664 
1665         return array->owner_prog_type == fp->type &&
1666                array->owner_jited == fp->jited;
1667 }
1668 
1669 static int bpf_check_tail_call(const struct bpf_prog *fp)
1670 {
1671         struct bpf_prog_aux *aux = fp->aux;
1672         int i;
1673 
1674         for (i = 0; i < aux->used_map_cnt; i++) {
1675                 struct bpf_map *map = aux->used_maps[i];
1676                 struct bpf_array *array;
1677 
1678                 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1679                         continue;
1680 
1681                 array = container_of(map, struct bpf_array, map);
1682                 if (!bpf_prog_array_compatible(array, fp))
1683                         return -EINVAL;
1684         }
1685 
1686         return 0;
1687 }
1688 
1689 static void bpf_prog_select_func(struct bpf_prog *fp)
1690 {
1691 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1692         u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1693 
1694         fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1695 #else
1696         fp->bpf_func = __bpf_prog_ret0_warn;
1697 #endif
1698 }
1699 
1700 /**
1701  *      bpf_prog_select_runtime - select exec runtime for BPF program
1702  *      @fp: bpf_prog populated with internal BPF program
1703  *      @err: pointer to error variable
1704  *
1705  * Try to JIT eBPF program, if JIT is not available, use interpreter.
1706  * The BPF program will be executed via BPF_PROG_RUN() macro.
1707  */
1708 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1709 {
1710         /* In case of BPF to BPF calls, verifier did all the prep
1711          * work with regards to JITing, etc.
1712          */
1713         if (fp->bpf_func)
1714                 goto finalize;
1715 
1716         bpf_prog_select_func(fp);
1717 
1718         /* eBPF JITs can rewrite the program in case constant
1719          * blinding is active. However, in case of error during
1720          * blinding, bpf_int_jit_compile() must always return a
1721          * valid program, which in this case would simply not
1722          * be JITed, but falls back to the interpreter.
1723          */
1724         if (!bpf_prog_is_dev_bound(fp->aux)) {
1725                 *err = bpf_prog_alloc_jited_linfo(fp);
1726                 if (*err)
1727                         return fp;
1728 
1729                 fp = bpf_int_jit_compile(fp);
1730                 if (!fp->jited) {
1731                         bpf_prog_free_jited_linfo(fp);
1732 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1733                         *err = -ENOTSUPP;
1734                         return fp;
1735 #endif
1736                 } else {
1737                         bpf_prog_free_unused_jited_linfo(fp);
1738                 }
1739         } else {
1740                 *err = bpf_prog_offload_compile(fp);
1741                 if (*err)
1742                         return fp;
1743         }
1744 
1745 finalize:
1746         bpf_prog_lock_ro(fp);
1747 
1748         /* The tail call compatibility check can only be done at
1749          * this late stage as we need to determine, if we deal
1750          * with JITed or non JITed program concatenations and not
1751          * all eBPF JITs might immediately support all features.
1752          */
1753         *err = bpf_check_tail_call(fp);
1754 
1755         return fp;
1756 }
1757 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1758 
1759 static unsigned int __bpf_prog_ret1(const void *ctx,
1760                                     const struct bpf_insn *insn)
1761 {
1762         return 1;
1763 }
1764 
1765 static struct bpf_prog_dummy {
1766         struct bpf_prog prog;
1767 } dummy_bpf_prog = {
1768         .prog = {
1769                 .bpf_func = __bpf_prog_ret1,
1770         },
1771 };
1772 
1773 /* to avoid allocating empty bpf_prog_array for cgroups that
1774  * don't have bpf program attached use one global 'empty_prog_array'
1775  * It will not be modified the caller of bpf_prog_array_alloc()
1776  * (since caller requested prog_cnt == 0)
1777  * that pointer should be 'freed' by bpf_prog_array_free()
1778  */
1779 static struct {
1780         struct bpf_prog_array hdr;
1781         struct bpf_prog *null_prog;
1782 } empty_prog_array = {
1783         .null_prog = NULL,
1784 };
1785 
1786 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1787 {
1788         if (prog_cnt)
1789                 return kzalloc(sizeof(struct bpf_prog_array) +
1790                                sizeof(struct bpf_prog_array_item) *
1791                                (prog_cnt + 1),
1792                                flags);
1793 
1794         return &empty_prog_array.hdr;
1795 }
1796 
1797 void bpf_prog_array_free(struct bpf_prog_array *progs)
1798 {
1799         if (!progs || progs == &empty_prog_array.hdr)
1800                 return;
1801         kfree_rcu(progs, rcu);
1802 }
1803 
1804 int bpf_prog_array_length(struct bpf_prog_array *array)
1805 {
1806         struct bpf_prog_array_item *item;
1807         u32 cnt = 0;
1808 
1809         for (item = array->items; item->prog; item++)
1810                 if (item->prog != &dummy_bpf_prog.prog)
1811                         cnt++;
1812         return cnt;
1813 }
1814 
1815 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1816 {
1817         struct bpf_prog_array_item *item;
1818 
1819         for (item = array->items; item->prog; item++)
1820                 if (item->prog != &dummy_bpf_prog.prog)
1821                         return false;
1822         return true;
1823 }
1824 
1825 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1826                                      u32 *prog_ids,
1827                                      u32 request_cnt)
1828 {
1829         struct bpf_prog_array_item *item;
1830         int i = 0;
1831 
1832         for (item = array->items; item->prog; item++) {
1833                 if (item->prog == &dummy_bpf_prog.prog)
1834                         continue;
1835                 prog_ids[i] = item->prog->aux->id;
1836                 if (++i == request_cnt) {
1837                         item++;
1838                         break;
1839                 }
1840         }
1841 
1842         return !!(item->prog);
1843 }
1844 
1845 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1846                                 __u32 __user *prog_ids, u32 cnt)
1847 {
1848         unsigned long err = 0;
1849         bool nospc;
1850         u32 *ids;
1851 
1852         /* users of this function are doing:
1853          * cnt = bpf_prog_array_length();
1854          * if (cnt > 0)
1855          *     bpf_prog_array_copy_to_user(..., cnt);
1856          * so below kcalloc doesn't need extra cnt > 0 check.
1857          */
1858         ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1859         if (!ids)
1860                 return -ENOMEM;
1861         nospc = bpf_prog_array_copy_core(array, ids, cnt);
1862         err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1863         kfree(ids);
1864         if (err)
1865                 return -EFAULT;
1866         if (nospc)
1867                 return -ENOSPC;
1868         return 0;
1869 }
1870 
1871 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1872                                 struct bpf_prog *old_prog)
1873 {
1874         struct bpf_prog_array_item *item;
1875 
1876         for (item = array->items; item->prog; item++)
1877                 if (item->prog == old_prog) {
1878                         WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1879                         break;
1880                 }
1881 }
1882 
1883 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1884                         struct bpf_prog *exclude_prog,
1885                         struct bpf_prog *include_prog,
1886                         struct bpf_prog_array **new_array)
1887 {
1888         int new_prog_cnt, carry_prog_cnt = 0;
1889         struct bpf_prog_array_item *existing;
1890         struct bpf_prog_array *array;
1891         bool found_exclude = false;
1892         int new_prog_idx = 0;
1893 
1894         /* Figure out how many existing progs we need to carry over to
1895          * the new array.
1896          */
1897         if (old_array) {
1898                 existing = old_array->items;
1899                 for (; existing->prog; existing++) {
1900                         if (existing->prog == exclude_prog) {
1901                                 found_exclude = true;
1902                                 continue;
1903                         }
1904                         if (existing->prog != &dummy_bpf_prog.prog)
1905                                 carry_prog_cnt++;
1906                         if (existing->prog == include_prog)
1907                                 return -EEXIST;
1908                 }
1909         }
1910 
1911         if (exclude_prog && !found_exclude)
1912                 return -ENOENT;
1913 
1914         /* How many progs (not NULL) will be in the new array? */
1915         new_prog_cnt = carry_prog_cnt;
1916         if (include_prog)
1917                 new_prog_cnt += 1;
1918 
1919         /* Do we have any prog (not NULL) in the new array? */
1920         if (!new_prog_cnt) {
1921                 *new_array = NULL;
1922                 return 0;
1923         }
1924 
1925         /* +1 as the end of prog_array is marked with NULL */
1926         array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1927         if (!array)
1928                 return -ENOMEM;
1929 
1930         /* Fill in the new prog array */
1931         if (carry_prog_cnt) {
1932                 existing = old_array->items;
1933                 for (; existing->prog; existing++)
1934                         if (existing->prog != exclude_prog &&
1935                             existing->prog != &dummy_bpf_prog.prog) {
1936                                 array->items[new_prog_idx++].prog =
1937                                         existing->prog;
1938                         }
1939         }
1940         if (include_prog)
1941                 array->items[new_prog_idx++].prog = include_prog;
1942         array->items[new_prog_idx].prog = NULL;
1943         *new_array = array;
1944         return 0;
1945 }
1946 
1947 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1948                              u32 *prog_ids, u32 request_cnt,
1949                              u32 *prog_cnt)
1950 {
1951         u32 cnt = 0;
1952 
1953         if (array)
1954                 cnt = bpf_prog_array_length(array);
1955 
1956         *prog_cnt = cnt;
1957 
1958         /* return early if user requested only program count or nothing to copy */
1959         if (!request_cnt || !cnt)
1960                 return 0;
1961 
1962         /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
1963         return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
1964                                                                      : 0;
1965 }
1966 
1967 static void bpf_prog_free_deferred(struct work_struct *work)
1968 {
1969         struct bpf_prog_aux *aux;
1970         int i;
1971 
1972         aux = container_of(work, struct bpf_prog_aux, work);
1973         if (bpf_prog_is_dev_bound(aux))
1974                 bpf_prog_offload_destroy(aux->prog);
1975 #ifdef CONFIG_PERF_EVENTS
1976         if (aux->prog->has_callchain_buf)
1977                 put_callchain_buffers();
1978 #endif
1979         for (i = 0; i < aux->func_cnt; i++)
1980                 bpf_jit_free(aux->func[i]);
1981         if (aux->func_cnt) {
1982                 kfree(aux->func);
1983                 bpf_prog_unlock_free(aux->prog);
1984         } else {
1985                 bpf_jit_free(aux->prog);
1986         }
1987 }
1988 
1989 /* Free internal BPF program */
1990 void bpf_prog_free(struct bpf_prog *fp)
1991 {
1992         struct bpf_prog_aux *aux = fp->aux;
1993 
1994         INIT_WORK(&aux->work, bpf_prog_free_deferred);
1995         schedule_work(&aux->work);
1996 }
1997 EXPORT_SYMBOL_GPL(bpf_prog_free);
1998 
1999 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2000 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2001 
2002 void bpf_user_rnd_init_once(void)
2003 {
2004         prandom_init_once(&bpf_user_rnd_state);
2005 }
2006 
2007 BPF_CALL_0(bpf_user_rnd_u32)
2008 {
2009         /* Should someone ever have the rather unwise idea to use some
2010          * of the registers passed into this function, then note that
2011          * this function is called from native eBPF and classic-to-eBPF
2012          * transformations. Register assignments from both sides are
2013          * different, f.e. classic always sets fn(ctx, A, X) here.
2014          */
2015         struct rnd_state *state;
2016         u32 res;
2017 
2018         state = &get_cpu_var(bpf_user_rnd_state);
2019         res = prandom_u32_state(state);
2020         put_cpu_var(bpf_user_rnd_state);
2021 
2022         return res;
2023 }
2024 
2025 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2026 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2027 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2028 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2029 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2030 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2031 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2032 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2033 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2034 
2035 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2036 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2037 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2038 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2039 
2040 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2041 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2042 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2043 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2044 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2045 
2046 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2047 {
2048         return NULL;
2049 }
2050 
2051 u64 __weak
2052 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2053                  void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2054 {
2055         return -ENOTSUPP;
2056 }
2057 EXPORT_SYMBOL_GPL(bpf_event_output);
2058 
2059 /* Always built-in helper functions. */
2060 const struct bpf_func_proto bpf_tail_call_proto = {
2061         .func           = NULL,
2062         .gpl_only       = false,
2063         .ret_type       = RET_VOID,
2064         .arg1_type      = ARG_PTR_TO_CTX,
2065         .arg2_type      = ARG_CONST_MAP_PTR,
2066         .arg3_type      = ARG_ANYTHING,
2067 };
2068 
2069 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2070  * It is encouraged to implement bpf_int_jit_compile() instead, so that
2071  * eBPF and implicitly also cBPF can get JITed!
2072  */
2073 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2074 {
2075         return prog;
2076 }
2077 
2078 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2079  * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2080  */
2081 void __weak bpf_jit_compile(struct bpf_prog *prog)
2082 {
2083 }
2084 
2085 bool __weak bpf_helper_changes_pkt_data(void *func)
2086 {
2087         return false;
2088 }
2089 
2090 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2091  * analysis code and wants explicit zero extension inserted by verifier.
2092  * Otherwise, return FALSE.
2093  */
2094 bool __weak bpf_jit_needs_zext(void)
2095 {
2096         return false;
2097 }
2098 
2099 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2100  * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2101  */
2102 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2103                          int len)
2104 {
2105         return -EFAULT;
2106 }
2107 
2108 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2109 EXPORT_SYMBOL(bpf_stats_enabled_key);
2110 
2111 /* All definitions of tracepoints related to BPF. */
2112 #define CREATE_TRACE_POINTS
2113 #include <linux/bpf_trace.h>
2114 
2115 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2116 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);

/* [<][>][^][v][top][bottom][index][help] */