root/kernel/locking/qspinlock_paravirt.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. pv_hybrid_queued_unfair_trylock
  2. set_pending
  3. trylock_clear_pending
  4. set_pending
  5. trylock_clear_pending
  6. __pv_init_lock_hash
  7. pv_hash
  8. pv_unhash
  9. pv_wait_early
  10. pv_init_node
  11. pv_wait_node
  12. pv_kick_node
  13. pv_wait_head_or_lock
  14. __pv_queued_spin_unlock_slowpath
  15. __pv_queued_spin_unlock

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 #ifndef _GEN_PV_LOCK_SLOWPATH
   3 #error "do not include this file"
   4 #endif
   5 
   6 #include <linux/hash.h>
   7 #include <linux/memblock.h>
   8 #include <linux/debug_locks.h>
   9 
  10 /*
  11  * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
  12  * of spinning them.
  13  *
  14  * This relies on the architecture to provide two paravirt hypercalls:
  15  *
  16  *   pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
  17  *   pv_kick(cpu)             -- wakes a suspended vcpu
  18  *
  19  * Using these we implement __pv_queued_spin_lock_slowpath() and
  20  * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
  21  * native_queued_spin_unlock().
  22  */
  23 
  24 #define _Q_SLOW_VAL     (3U << _Q_LOCKED_OFFSET)
  25 
  26 /*
  27  * Queue Node Adaptive Spinning
  28  *
  29  * A queue node vCPU will stop spinning if the vCPU in the previous node is
  30  * not running. The one lock stealing attempt allowed at slowpath entry
  31  * mitigates the slight slowdown for non-overcommitted guest with this
  32  * aggressive wait-early mechanism.
  33  *
  34  * The status of the previous node will be checked at fixed interval
  35  * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
  36  * pound on the cacheline of the previous node too heavily.
  37  */
  38 #define PV_PREV_CHECK_MASK      0xff
  39 
  40 /*
  41  * Queue node uses: vcpu_running & vcpu_halted.
  42  * Queue head uses: vcpu_running & vcpu_hashed.
  43  */
  44 enum vcpu_state {
  45         vcpu_running = 0,
  46         vcpu_halted,            /* Used only in pv_wait_node */
  47         vcpu_hashed,            /* = pv_hash'ed + vcpu_halted */
  48 };
  49 
  50 struct pv_node {
  51         struct mcs_spinlock     mcs;
  52         int                     cpu;
  53         u8                      state;
  54 };
  55 
  56 /*
  57  * Hybrid PV queued/unfair lock
  58  *
  59  * By replacing the regular queued_spin_trylock() with the function below,
  60  * it will be called once when a lock waiter enter the PV slowpath before
  61  * being queued.
  62  *
  63  * The pending bit is set by the queue head vCPU of the MCS wait queue in
  64  * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
  65  * When that bit becomes visible to the incoming waiters, no lock stealing
  66  * is allowed. The function will return immediately to make the waiters
  67  * enter the MCS wait queue. So lock starvation shouldn't happen as long
  68  * as the queued mode vCPUs are actively running to set the pending bit
  69  * and hence disabling lock stealing.
  70  *
  71  * When the pending bit isn't set, the lock waiters will stay in the unfair
  72  * mode spinning on the lock unless the MCS wait queue is empty. In this
  73  * case, the lock waiters will enter the queued mode slowpath trying to
  74  * become the queue head and set the pending bit.
  75  *
  76  * This hybrid PV queued/unfair lock combines the best attributes of a
  77  * queued lock (no lock starvation) and an unfair lock (good performance
  78  * on not heavily contended locks).
  79  */
  80 #define queued_spin_trylock(l)  pv_hybrid_queued_unfair_trylock(l)
  81 static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
  82 {
  83         /*
  84          * Stay in unfair lock mode as long as queued mode waiters are
  85          * present in the MCS wait queue but the pending bit isn't set.
  86          */
  87         for (;;) {
  88                 int val = atomic_read(&lock->val);
  89 
  90                 if (!(val & _Q_LOCKED_PENDING_MASK) &&
  91                    (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) {
  92                         lockevent_inc(pv_lock_stealing);
  93                         return true;
  94                 }
  95                 if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
  96                         break;
  97 
  98                 cpu_relax();
  99         }
 100 
 101         return false;
 102 }
 103 
 104 /*
 105  * The pending bit is used by the queue head vCPU to indicate that it
 106  * is actively spinning on the lock and no lock stealing is allowed.
 107  */
 108 #if _Q_PENDING_BITS == 8
 109 static __always_inline void set_pending(struct qspinlock *lock)
 110 {
 111         WRITE_ONCE(lock->pending, 1);
 112 }
 113 
 114 /*
 115  * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
 116  * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
 117  * lock just to be sure that it will get it.
 118  */
 119 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
 120 {
 121         return !READ_ONCE(lock->locked) &&
 122                (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL,
 123                                 _Q_LOCKED_VAL) == _Q_PENDING_VAL);
 124 }
 125 #else /* _Q_PENDING_BITS == 8 */
 126 static __always_inline void set_pending(struct qspinlock *lock)
 127 {
 128         atomic_or(_Q_PENDING_VAL, &lock->val);
 129 }
 130 
 131 static __always_inline int trylock_clear_pending(struct qspinlock *lock)
 132 {
 133         int val = atomic_read(&lock->val);
 134 
 135         for (;;) {
 136                 int old, new;
 137 
 138                 if (val  & _Q_LOCKED_MASK)
 139                         break;
 140 
 141                 /*
 142                  * Try to clear pending bit & set locked bit
 143                  */
 144                 old = val;
 145                 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
 146                 val = atomic_cmpxchg_acquire(&lock->val, old, new);
 147 
 148                 if (val == old)
 149                         return 1;
 150         }
 151         return 0;
 152 }
 153 #endif /* _Q_PENDING_BITS == 8 */
 154 
 155 /*
 156  * Lock and MCS node addresses hash table for fast lookup
 157  *
 158  * Hashing is done on a per-cacheline basis to minimize the need to access
 159  * more than one cacheline.
 160  *
 161  * Dynamically allocate a hash table big enough to hold at least 4X the
 162  * number of possible cpus in the system. Allocation is done on page
 163  * granularity. So the minimum number of hash buckets should be at least
 164  * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
 165  *
 166  * Since we should not be holding locks from NMI context (very rare indeed) the
 167  * max load factor is 0.75, which is around the point where open addressing
 168  * breaks down.
 169  *
 170  */
 171 struct pv_hash_entry {
 172         struct qspinlock *lock;
 173         struct pv_node   *node;
 174 };
 175 
 176 #define PV_HE_PER_LINE  (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
 177 #define PV_HE_MIN       (PAGE_SIZE / sizeof(struct pv_hash_entry))
 178 
 179 static struct pv_hash_entry *pv_lock_hash;
 180 static unsigned int pv_lock_hash_bits __read_mostly;
 181 
 182 /*
 183  * Allocate memory for the PV qspinlock hash buckets
 184  *
 185  * This function should be called from the paravirt spinlock initialization
 186  * routine.
 187  */
 188 void __init __pv_init_lock_hash(void)
 189 {
 190         int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
 191 
 192         if (pv_hash_size < PV_HE_MIN)
 193                 pv_hash_size = PV_HE_MIN;
 194 
 195         /*
 196          * Allocate space from bootmem which should be page-size aligned
 197          * and hence cacheline aligned.
 198          */
 199         pv_lock_hash = alloc_large_system_hash("PV qspinlock",
 200                                                sizeof(struct pv_hash_entry),
 201                                                pv_hash_size, 0,
 202                                                HASH_EARLY | HASH_ZERO,
 203                                                &pv_lock_hash_bits, NULL,
 204                                                pv_hash_size, pv_hash_size);
 205 }
 206 
 207 #define for_each_hash_entry(he, offset, hash)                                           \
 208         for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0;       \
 209              offset < (1 << pv_lock_hash_bits);                                         \
 210              offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
 211 
 212 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
 213 {
 214         unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
 215         struct pv_hash_entry *he;
 216         int hopcnt = 0;
 217 
 218         for_each_hash_entry(he, offset, hash) {
 219                 hopcnt++;
 220                 if (!cmpxchg(&he->lock, NULL, lock)) {
 221                         WRITE_ONCE(he->node, node);
 222                         lockevent_pv_hop(hopcnt);
 223                         return &he->lock;
 224                 }
 225         }
 226         /*
 227          * Hard assume there is a free entry for us.
 228          *
 229          * This is guaranteed by ensuring every blocked lock only ever consumes
 230          * a single entry, and since we only have 4 nesting levels per CPU
 231          * and allocated 4*nr_possible_cpus(), this must be so.
 232          *
 233          * The single entry is guaranteed by having the lock owner unhash
 234          * before it releases.
 235          */
 236         BUG();
 237 }
 238 
 239 static struct pv_node *pv_unhash(struct qspinlock *lock)
 240 {
 241         unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
 242         struct pv_hash_entry *he;
 243         struct pv_node *node;
 244 
 245         for_each_hash_entry(he, offset, hash) {
 246                 if (READ_ONCE(he->lock) == lock) {
 247                         node = READ_ONCE(he->node);
 248                         WRITE_ONCE(he->lock, NULL);
 249                         return node;
 250                 }
 251         }
 252         /*
 253          * Hard assume we'll find an entry.
 254          *
 255          * This guarantees a limited lookup time and is itself guaranteed by
 256          * having the lock owner do the unhash -- IFF the unlock sees the
 257          * SLOW flag, there MUST be a hash entry.
 258          */
 259         BUG();
 260 }
 261 
 262 /*
 263  * Return true if when it is time to check the previous node which is not
 264  * in a running state.
 265  */
 266 static inline bool
 267 pv_wait_early(struct pv_node *prev, int loop)
 268 {
 269         if ((loop & PV_PREV_CHECK_MASK) != 0)
 270                 return false;
 271 
 272         return READ_ONCE(prev->state) != vcpu_running;
 273 }
 274 
 275 /*
 276  * Initialize the PV part of the mcs_spinlock node.
 277  */
 278 static void pv_init_node(struct mcs_spinlock *node)
 279 {
 280         struct pv_node *pn = (struct pv_node *)node;
 281 
 282         BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode));
 283 
 284         pn->cpu = smp_processor_id();
 285         pn->state = vcpu_running;
 286 }
 287 
 288 /*
 289  * Wait for node->locked to become true, halt the vcpu after a short spin.
 290  * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
 291  * behalf.
 292  */
 293 static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
 294 {
 295         struct pv_node *pn = (struct pv_node *)node;
 296         struct pv_node *pp = (struct pv_node *)prev;
 297         int loop;
 298         bool wait_early;
 299 
 300         for (;;) {
 301                 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
 302                         if (READ_ONCE(node->locked))
 303                                 return;
 304                         if (pv_wait_early(pp, loop)) {
 305                                 wait_early = true;
 306                                 break;
 307                         }
 308                         cpu_relax();
 309                 }
 310 
 311                 /*
 312                  * Order pn->state vs pn->locked thusly:
 313                  *
 314                  * [S] pn->state = vcpu_halted    [S] next->locked = 1
 315                  *     MB                             MB
 316                  * [L] pn->locked               [RmW] pn->state = vcpu_hashed
 317                  *
 318                  * Matches the cmpxchg() from pv_kick_node().
 319                  */
 320                 smp_store_mb(pn->state, vcpu_halted);
 321 
 322                 if (!READ_ONCE(node->locked)) {
 323                         lockevent_inc(pv_wait_node);
 324                         lockevent_cond_inc(pv_wait_early, wait_early);
 325                         pv_wait(&pn->state, vcpu_halted);
 326                 }
 327 
 328                 /*
 329                  * If pv_kick_node() changed us to vcpu_hashed, retain that
 330                  * value so that pv_wait_head_or_lock() knows to not also try
 331                  * to hash this lock.
 332                  */
 333                 cmpxchg(&pn->state, vcpu_halted, vcpu_running);
 334 
 335                 /*
 336                  * If the locked flag is still not set after wakeup, it is a
 337                  * spurious wakeup and the vCPU should wait again. However,
 338                  * there is a pretty high overhead for CPU halting and kicking.
 339                  * So it is better to spin for a while in the hope that the
 340                  * MCS lock will be released soon.
 341                  */
 342                 lockevent_cond_inc(pv_spurious_wakeup,
 343                                   !READ_ONCE(node->locked));
 344         }
 345 
 346         /*
 347          * By now our node->locked should be 1 and our caller will not actually
 348          * spin-wait for it. We do however rely on our caller to do a
 349          * load-acquire for us.
 350          */
 351 }
 352 
 353 /*
 354  * Called after setting next->locked = 1 when we're the lock owner.
 355  *
 356  * Instead of waking the waiters stuck in pv_wait_node() advance their state
 357  * such that they're waiting in pv_wait_head_or_lock(), this avoids a
 358  * wake/sleep cycle.
 359  */
 360 static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
 361 {
 362         struct pv_node *pn = (struct pv_node *)node;
 363 
 364         /*
 365          * If the vCPU is indeed halted, advance its state to match that of
 366          * pv_wait_node(). If OTOH this fails, the vCPU was running and will
 367          * observe its next->locked value and advance itself.
 368          *
 369          * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
 370          *
 371          * The write to next->locked in arch_mcs_spin_unlock_contended()
 372          * must be ordered before the read of pn->state in the cmpxchg()
 373          * below for the code to work correctly. To guarantee full ordering
 374          * irrespective of the success or failure of the cmpxchg(),
 375          * a relaxed version with explicit barrier is used. The control
 376          * dependency will order the reading of pn->state before any
 377          * subsequent writes.
 378          */
 379         smp_mb__before_atomic();
 380         if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
 381             != vcpu_halted)
 382                 return;
 383 
 384         /*
 385          * Put the lock into the hash table and set the _Q_SLOW_VAL.
 386          *
 387          * As this is the same vCPU that will check the _Q_SLOW_VAL value and
 388          * the hash table later on at unlock time, no atomic instruction is
 389          * needed.
 390          */
 391         WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
 392         (void)pv_hash(lock, pn);
 393 }
 394 
 395 /*
 396  * Wait for l->locked to become clear and acquire the lock;
 397  * halt the vcpu after a short spin.
 398  * __pv_queued_spin_unlock() will wake us.
 399  *
 400  * The current value of the lock will be returned for additional processing.
 401  */
 402 static u32
 403 pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
 404 {
 405         struct pv_node *pn = (struct pv_node *)node;
 406         struct qspinlock **lp = NULL;
 407         int waitcnt = 0;
 408         int loop;
 409 
 410         /*
 411          * If pv_kick_node() already advanced our state, we don't need to
 412          * insert ourselves into the hash table anymore.
 413          */
 414         if (READ_ONCE(pn->state) == vcpu_hashed)
 415                 lp = (struct qspinlock **)1;
 416 
 417         /*
 418          * Tracking # of slowpath locking operations
 419          */
 420         lockevent_inc(lock_slowpath);
 421 
 422         for (;; waitcnt++) {
 423                 /*
 424                  * Set correct vCPU state to be used by queue node wait-early
 425                  * mechanism.
 426                  */
 427                 WRITE_ONCE(pn->state, vcpu_running);
 428 
 429                 /*
 430                  * Set the pending bit in the active lock spinning loop to
 431                  * disable lock stealing before attempting to acquire the lock.
 432                  */
 433                 set_pending(lock);
 434                 for (loop = SPIN_THRESHOLD; loop; loop--) {
 435                         if (trylock_clear_pending(lock))
 436                                 goto gotlock;
 437                         cpu_relax();
 438                 }
 439                 clear_pending(lock);
 440 
 441 
 442                 if (!lp) { /* ONCE */
 443                         lp = pv_hash(lock, pn);
 444 
 445                         /*
 446                          * We must hash before setting _Q_SLOW_VAL, such that
 447                          * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
 448                          * we'll be sure to be able to observe our hash entry.
 449                          *
 450                          *   [S] <hash>                 [Rmw] l->locked == _Q_SLOW_VAL
 451                          *       MB                           RMB
 452                          * [RmW] l->locked = _Q_SLOW_VAL  [L] <unhash>
 453                          *
 454                          * Matches the smp_rmb() in __pv_queued_spin_unlock().
 455                          */
 456                         if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
 457                                 /*
 458                                  * The lock was free and now we own the lock.
 459                                  * Change the lock value back to _Q_LOCKED_VAL
 460                                  * and unhash the table.
 461                                  */
 462                                 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
 463                                 WRITE_ONCE(*lp, NULL);
 464                                 goto gotlock;
 465                         }
 466                 }
 467                 WRITE_ONCE(pn->state, vcpu_hashed);
 468                 lockevent_inc(pv_wait_head);
 469                 lockevent_cond_inc(pv_wait_again, waitcnt);
 470                 pv_wait(&lock->locked, _Q_SLOW_VAL);
 471 
 472                 /*
 473                  * Because of lock stealing, the queue head vCPU may not be
 474                  * able to acquire the lock before it has to wait again.
 475                  */
 476         }
 477 
 478         /*
 479          * The cmpxchg() or xchg() call before coming here provides the
 480          * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
 481          * here is to indicate to the compiler that the value will always
 482          * be nozero to enable better code optimization.
 483          */
 484 gotlock:
 485         return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
 486 }
 487 
 488 /*
 489  * PV versions of the unlock fastpath and slowpath functions to be used
 490  * instead of queued_spin_unlock().
 491  */
 492 __visible void
 493 __pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
 494 {
 495         struct pv_node *node;
 496 
 497         if (unlikely(locked != _Q_SLOW_VAL)) {
 498                 WARN(!debug_locks_silent,
 499                      "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
 500                      (unsigned long)lock, atomic_read(&lock->val));
 501                 return;
 502         }
 503 
 504         /*
 505          * A failed cmpxchg doesn't provide any memory-ordering guarantees,
 506          * so we need a barrier to order the read of the node data in
 507          * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
 508          *
 509          * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
 510          */
 511         smp_rmb();
 512 
 513         /*
 514          * Since the above failed to release, this must be the SLOW path.
 515          * Therefore start by looking up the blocked node and unhashing it.
 516          */
 517         node = pv_unhash(lock);
 518 
 519         /*
 520          * Now that we have a reference to the (likely) blocked pv_node,
 521          * release the lock.
 522          */
 523         smp_store_release(&lock->locked, 0);
 524 
 525         /*
 526          * At this point the memory pointed at by lock can be freed/reused,
 527          * however we can still use the pv_node to kick the CPU.
 528          * The other vCPU may not really be halted, but kicking an active
 529          * vCPU is harmless other than the additional latency in completing
 530          * the unlock.
 531          */
 532         lockevent_inc(pv_kick_unlock);
 533         pv_kick(node->cpu);
 534 }
 535 
 536 /*
 537  * Include the architecture specific callee-save thunk of the
 538  * __pv_queued_spin_unlock(). This thunk is put together with
 539  * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
 540  * function close to each other sharing consecutive instruction cachelines.
 541  * Alternatively, architecture specific version of __pv_queued_spin_unlock()
 542  * can be defined.
 543  */
 544 #include <asm/qspinlock_paravirt.h>
 545 
 546 #ifndef __pv_queued_spin_unlock
 547 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
 548 {
 549         u8 locked;
 550 
 551         /*
 552          * We must not unlock if SLOW, because in that case we must first
 553          * unhash. Otherwise it would be possible to have multiple @lock
 554          * entries, which would be BAD.
 555          */
 556         locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0);
 557         if (likely(locked == _Q_LOCKED_VAL))
 558                 return;
 559 
 560         __pv_queued_spin_unlock_slowpath(lock, locked);
 561 }
 562 #endif /* __pv_queued_spin_unlock */

/* [<][>][^][v][top][bottom][index][help] */