root/kernel/smpboot.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. idle_thread_get
  2. idle_thread_set_boot_cpu
  3. idle_init
  4. idle_threads_init
  5. smpboot_thread_fn
  6. __smpboot_create_thread
  7. smpboot_create_threads
  8. smpboot_unpark_thread
  9. smpboot_unpark_threads
  10. smpboot_park_thread
  11. smpboot_park_threads
  12. smpboot_destroy_threads
  13. smpboot_register_percpu_thread
  14. smpboot_unregister_percpu_thread
  15. cpu_report_state
  16. cpu_check_up_prepare
  17. cpu_set_state_online
  18. cpu_wait_death
  19. cpu_report_death

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Common SMP CPU bringup/teardown functions
   4  */
   5 #include <linux/cpu.h>
   6 #include <linux/err.h>
   7 #include <linux/smp.h>
   8 #include <linux/delay.h>
   9 #include <linux/init.h>
  10 #include <linux/list.h>
  11 #include <linux/slab.h>
  12 #include <linux/sched.h>
  13 #include <linux/sched/task.h>
  14 #include <linux/export.h>
  15 #include <linux/percpu.h>
  16 #include <linux/kthread.h>
  17 #include <linux/smpboot.h>
  18 
  19 #include "smpboot.h"
  20 
  21 #ifdef CONFIG_SMP
  22 
  23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
  24 /*
  25  * For the hotplug case we keep the task structs around and reuse
  26  * them.
  27  */
  28 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
  29 
  30 struct task_struct *idle_thread_get(unsigned int cpu)
  31 {
  32         struct task_struct *tsk = per_cpu(idle_threads, cpu);
  33 
  34         if (!tsk)
  35                 return ERR_PTR(-ENOMEM);
  36         init_idle(tsk, cpu);
  37         return tsk;
  38 }
  39 
  40 void __init idle_thread_set_boot_cpu(void)
  41 {
  42         per_cpu(idle_threads, smp_processor_id()) = current;
  43 }
  44 
  45 /**
  46  * idle_init - Initialize the idle thread for a cpu
  47  * @cpu:        The cpu for which the idle thread should be initialized
  48  *
  49  * Creates the thread if it does not exist.
  50  */
  51 static inline void idle_init(unsigned int cpu)
  52 {
  53         struct task_struct *tsk = per_cpu(idle_threads, cpu);
  54 
  55         if (!tsk) {
  56                 tsk = fork_idle(cpu);
  57                 if (IS_ERR(tsk))
  58                         pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
  59                 else
  60                         per_cpu(idle_threads, cpu) = tsk;
  61         }
  62 }
  63 
  64 /**
  65  * idle_threads_init - Initialize idle threads for all cpus
  66  */
  67 void __init idle_threads_init(void)
  68 {
  69         unsigned int cpu, boot_cpu;
  70 
  71         boot_cpu = smp_processor_id();
  72 
  73         for_each_possible_cpu(cpu) {
  74                 if (cpu != boot_cpu)
  75                         idle_init(cpu);
  76         }
  77 }
  78 #endif
  79 
  80 #endif /* #ifdef CONFIG_SMP */
  81 
  82 static LIST_HEAD(hotplug_threads);
  83 static DEFINE_MUTEX(smpboot_threads_lock);
  84 
  85 struct smpboot_thread_data {
  86         unsigned int                    cpu;
  87         unsigned int                    status;
  88         struct smp_hotplug_thread       *ht;
  89 };
  90 
  91 enum {
  92         HP_THREAD_NONE = 0,
  93         HP_THREAD_ACTIVE,
  94         HP_THREAD_PARKED,
  95 };
  96 
  97 /**
  98  * smpboot_thread_fn - percpu hotplug thread loop function
  99  * @data:       thread data pointer
 100  *
 101  * Checks for thread stop and park conditions. Calls the necessary
 102  * setup, cleanup, park and unpark functions for the registered
 103  * thread.
 104  *
 105  * Returns 1 when the thread should exit, 0 otherwise.
 106  */
 107 static int smpboot_thread_fn(void *data)
 108 {
 109         struct smpboot_thread_data *td = data;
 110         struct smp_hotplug_thread *ht = td->ht;
 111 
 112         while (1) {
 113                 set_current_state(TASK_INTERRUPTIBLE);
 114                 preempt_disable();
 115                 if (kthread_should_stop()) {
 116                         __set_current_state(TASK_RUNNING);
 117                         preempt_enable();
 118                         /* cleanup must mirror setup */
 119                         if (ht->cleanup && td->status != HP_THREAD_NONE)
 120                                 ht->cleanup(td->cpu, cpu_online(td->cpu));
 121                         kfree(td);
 122                         return 0;
 123                 }
 124 
 125                 if (kthread_should_park()) {
 126                         __set_current_state(TASK_RUNNING);
 127                         preempt_enable();
 128                         if (ht->park && td->status == HP_THREAD_ACTIVE) {
 129                                 BUG_ON(td->cpu != smp_processor_id());
 130                                 ht->park(td->cpu);
 131                                 td->status = HP_THREAD_PARKED;
 132                         }
 133                         kthread_parkme();
 134                         /* We might have been woken for stop */
 135                         continue;
 136                 }
 137 
 138                 BUG_ON(td->cpu != smp_processor_id());
 139 
 140                 /* Check for state change setup */
 141                 switch (td->status) {
 142                 case HP_THREAD_NONE:
 143                         __set_current_state(TASK_RUNNING);
 144                         preempt_enable();
 145                         if (ht->setup)
 146                                 ht->setup(td->cpu);
 147                         td->status = HP_THREAD_ACTIVE;
 148                         continue;
 149 
 150                 case HP_THREAD_PARKED:
 151                         __set_current_state(TASK_RUNNING);
 152                         preempt_enable();
 153                         if (ht->unpark)
 154                                 ht->unpark(td->cpu);
 155                         td->status = HP_THREAD_ACTIVE;
 156                         continue;
 157                 }
 158 
 159                 if (!ht->thread_should_run(td->cpu)) {
 160                         preempt_enable_no_resched();
 161                         schedule();
 162                 } else {
 163                         __set_current_state(TASK_RUNNING);
 164                         preempt_enable();
 165                         ht->thread_fn(td->cpu);
 166                 }
 167         }
 168 }
 169 
 170 static int
 171 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 172 {
 173         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 174         struct smpboot_thread_data *td;
 175 
 176         if (tsk)
 177                 return 0;
 178 
 179         td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
 180         if (!td)
 181                 return -ENOMEM;
 182         td->cpu = cpu;
 183         td->ht = ht;
 184 
 185         tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
 186                                     ht->thread_comm);
 187         if (IS_ERR(tsk)) {
 188                 kfree(td);
 189                 return PTR_ERR(tsk);
 190         }
 191         /*
 192          * Park the thread so that it could start right on the CPU
 193          * when it is available.
 194          */
 195         kthread_park(tsk);
 196         get_task_struct(tsk);
 197         *per_cpu_ptr(ht->store, cpu) = tsk;
 198         if (ht->create) {
 199                 /*
 200                  * Make sure that the task has actually scheduled out
 201                  * into park position, before calling the create
 202                  * callback. At least the migration thread callback
 203                  * requires that the task is off the runqueue.
 204                  */
 205                 if (!wait_task_inactive(tsk, TASK_PARKED))
 206                         WARN_ON(1);
 207                 else
 208                         ht->create(cpu);
 209         }
 210         return 0;
 211 }
 212 
 213 int smpboot_create_threads(unsigned int cpu)
 214 {
 215         struct smp_hotplug_thread *cur;
 216         int ret = 0;
 217 
 218         mutex_lock(&smpboot_threads_lock);
 219         list_for_each_entry(cur, &hotplug_threads, list) {
 220                 ret = __smpboot_create_thread(cur, cpu);
 221                 if (ret)
 222                         break;
 223         }
 224         mutex_unlock(&smpboot_threads_lock);
 225         return ret;
 226 }
 227 
 228 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 229 {
 230         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 231 
 232         if (!ht->selfparking)
 233                 kthread_unpark(tsk);
 234 }
 235 
 236 int smpboot_unpark_threads(unsigned int cpu)
 237 {
 238         struct smp_hotplug_thread *cur;
 239 
 240         mutex_lock(&smpboot_threads_lock);
 241         list_for_each_entry(cur, &hotplug_threads, list)
 242                 smpboot_unpark_thread(cur, cpu);
 243         mutex_unlock(&smpboot_threads_lock);
 244         return 0;
 245 }
 246 
 247 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
 248 {
 249         struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 250 
 251         if (tsk && !ht->selfparking)
 252                 kthread_park(tsk);
 253 }
 254 
 255 int smpboot_park_threads(unsigned int cpu)
 256 {
 257         struct smp_hotplug_thread *cur;
 258 
 259         mutex_lock(&smpboot_threads_lock);
 260         list_for_each_entry_reverse(cur, &hotplug_threads, list)
 261                 smpboot_park_thread(cur, cpu);
 262         mutex_unlock(&smpboot_threads_lock);
 263         return 0;
 264 }
 265 
 266 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
 267 {
 268         unsigned int cpu;
 269 
 270         /* We need to destroy also the parked threads of offline cpus */
 271         for_each_possible_cpu(cpu) {
 272                 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
 273 
 274                 if (tsk) {
 275                         kthread_stop(tsk);
 276                         put_task_struct(tsk);
 277                         *per_cpu_ptr(ht->store, cpu) = NULL;
 278                 }
 279         }
 280 }
 281 
 282 /**
 283  * smpboot_register_percpu_thread - Register a per_cpu thread related
 284  *                                          to hotplug
 285  * @plug_thread:        Hotplug thread descriptor
 286  *
 287  * Creates and starts the threads on all online cpus.
 288  */
 289 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
 290 {
 291         unsigned int cpu;
 292         int ret = 0;
 293 
 294         get_online_cpus();
 295         mutex_lock(&smpboot_threads_lock);
 296         for_each_online_cpu(cpu) {
 297                 ret = __smpboot_create_thread(plug_thread, cpu);
 298                 if (ret) {
 299                         smpboot_destroy_threads(plug_thread);
 300                         goto out;
 301                 }
 302                 smpboot_unpark_thread(plug_thread, cpu);
 303         }
 304         list_add(&plug_thread->list, &hotplug_threads);
 305 out:
 306         mutex_unlock(&smpboot_threads_lock);
 307         put_online_cpus();
 308         return ret;
 309 }
 310 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
 311 
 312 /**
 313  * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
 314  * @plug_thread:        Hotplug thread descriptor
 315  *
 316  * Stops all threads on all possible cpus.
 317  */
 318 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
 319 {
 320         get_online_cpus();
 321         mutex_lock(&smpboot_threads_lock);
 322         list_del(&plug_thread->list);
 323         smpboot_destroy_threads(plug_thread);
 324         mutex_unlock(&smpboot_threads_lock);
 325         put_online_cpus();
 326 }
 327 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
 328 
 329 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
 330 
 331 /*
 332  * Called to poll specified CPU's state, for example, when waiting for
 333  * a CPU to come online.
 334  */
 335 int cpu_report_state(int cpu)
 336 {
 337         return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 338 }
 339 
 340 /*
 341  * If CPU has died properly, set its state to CPU_UP_PREPARE and
 342  * return success.  Otherwise, return -EBUSY if the CPU died after
 343  * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
 344  * if cpu_wait_death() timed out and the CPU still hasn't gotten around
 345  * to dying.  In the latter two cases, the CPU might not be set up
 346  * properly, but it is up to the arch-specific code to decide.
 347  * Finally, -EIO indicates an unanticipated problem.
 348  *
 349  * Note that it is permissible to omit this call entirely, as is
 350  * done in architectures that do no CPU-hotplug error checking.
 351  */
 352 int cpu_check_up_prepare(int cpu)
 353 {
 354         if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
 355                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 356                 return 0;
 357         }
 358 
 359         switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
 360 
 361         case CPU_POST_DEAD:
 362 
 363                 /* The CPU died properly, so just start it up again. */
 364                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
 365                 return 0;
 366 
 367         case CPU_DEAD_FROZEN:
 368 
 369                 /*
 370                  * Timeout during CPU death, so let caller know.
 371                  * The outgoing CPU completed its processing, but after
 372                  * cpu_wait_death() timed out and reported the error. The
 373                  * caller is free to proceed, in which case the state
 374                  * will be reset properly by cpu_set_state_online().
 375                  * Proceeding despite this -EBUSY return makes sense
 376                  * for systems where the outgoing CPUs take themselves
 377                  * offline, with no post-death manipulation required from
 378                  * a surviving CPU.
 379                  */
 380                 return -EBUSY;
 381 
 382         case CPU_BROKEN:
 383 
 384                 /*
 385                  * The most likely reason we got here is that there was
 386                  * a timeout during CPU death, and the outgoing CPU never
 387                  * did complete its processing.  This could happen on
 388                  * a virtualized system if the outgoing VCPU gets preempted
 389                  * for more than five seconds, and the user attempts to
 390                  * immediately online that same CPU.  Trying again later
 391                  * might return -EBUSY above, hence -EAGAIN.
 392                  */
 393                 return -EAGAIN;
 394 
 395         default:
 396 
 397                 /* Should not happen.  Famous last words. */
 398                 return -EIO;
 399         }
 400 }
 401 
 402 /*
 403  * Mark the specified CPU online.
 404  *
 405  * Note that it is permissible to omit this call entirely, as is
 406  * done in architectures that do no CPU-hotplug error checking.
 407  */
 408 void cpu_set_state_online(int cpu)
 409 {
 410         (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
 411 }
 412 
 413 #ifdef CONFIG_HOTPLUG_CPU
 414 
 415 /*
 416  * Wait for the specified CPU to exit the idle loop and die.
 417  */
 418 bool cpu_wait_death(unsigned int cpu, int seconds)
 419 {
 420         int jf_left = seconds * HZ;
 421         int oldstate;
 422         bool ret = true;
 423         int sleep_jf = 1;
 424 
 425         might_sleep();
 426 
 427         /* The outgoing CPU will normally get done quite quickly. */
 428         if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
 429                 goto update_state;
 430         udelay(5);
 431 
 432         /* But if the outgoing CPU dawdles, wait increasingly long times. */
 433         while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
 434                 schedule_timeout_uninterruptible(sleep_jf);
 435                 jf_left -= sleep_jf;
 436                 if (jf_left <= 0)
 437                         break;
 438                 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
 439         }
 440 update_state:
 441         oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 442         if (oldstate == CPU_DEAD) {
 443                 /* Outgoing CPU died normally, update state. */
 444                 smp_mb(); /* atomic_read() before update. */
 445                 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
 446         } else {
 447                 /* Outgoing CPU still hasn't died, set state accordingly. */
 448                 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 449                                    oldstate, CPU_BROKEN) != oldstate)
 450                         goto update_state;
 451                 ret = false;
 452         }
 453         return ret;
 454 }
 455 
 456 /*
 457  * Called by the outgoing CPU to report its successful death.  Return
 458  * false if this report follows the surviving CPU's timing out.
 459  *
 460  * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
 461  * timed out.  This approach allows architectures to omit calls to
 462  * cpu_check_up_prepare() and cpu_set_state_online() without defeating
 463  * the next cpu_wait_death()'s polling loop.
 464  */
 465 bool cpu_report_death(void)
 466 {
 467         int oldstate;
 468         int newstate;
 469         int cpu = smp_processor_id();
 470 
 471         do {
 472                 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 473                 if (oldstate != CPU_BROKEN)
 474                         newstate = CPU_DEAD;
 475                 else
 476                         newstate = CPU_DEAD_FROZEN;
 477         } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
 478                                 oldstate, newstate) != oldstate);
 479         return newstate == CPU_DEAD;
 480 }
 481 
 482 #endif /* #ifdef CONFIG_HOTPLUG_CPU */

/* [<][>][^][v][top][bottom][index][help] */