root/kernel/rcu/update.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. rcu_read_lock_held_common
  2. rcu_read_lock_sched_held
  3. rcu_gp_is_normal
  4. rcu_gp_is_expedited
  5. rcu_expedite_gp
  6. rcu_unexpedite_gp
  7. rcu_end_inkernel_boot
  8. rcu_test_sync_prims
  9. rcu_set_runtime_mode
  10. debug_lockdep_rcu_enabled
  11. rcu_read_lock_held
  12. rcu_read_lock_bh_held
  13. rcu_read_lock_any_held
  14. wakeme_after_rcu
  15. __wait_rcu_gp
  16. init_rcu_head
  17. destroy_rcu_head
  18. rcuhead_is_static_object
  19. init_rcu_head_on_stack
  20. destroy_rcu_head_on_stack
  21. do_trace_rcu_torture_read
  22. rcutorture_sched_setaffinity
  23. call_rcu_tasks
  24. synchronize_rcu_tasks
  25. rcu_barrier_tasks
  26. check_holdout_task
  27. rcu_tasks_kthread
  28. rcu_spawn_tasks_kthread
  29. exit_tasks_rcu_start
  30. exit_tasks_rcu_finish
  31. rcu_tasks_bootup_oddness
  32. test_callback
  33. early_boot_test_call_rcu
  34. rcu_early_boot_tests
  35. rcu_verify_early_boot_tests
  36. rcu_early_boot_tests
  37. rcupdate_announce_bootup_oddness

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Read-Copy Update mechanism for mutual exclusion
   4  *
   5  * Copyright IBM Corporation, 2001
   6  *
   7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8  *          Manfred Spraul <manfred@colorfullife.com>
   9  *
  10  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  11  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  12  * Papers:
  13  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  14  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  15  *
  16  * For detailed explanation of Read-Copy Update mechanism see -
  17  *              http://lse.sourceforge.net/locking/rcupdate.html
  18  *
  19  */
  20 #include <linux/types.h>
  21 #include <linux/kernel.h>
  22 #include <linux/init.h>
  23 #include <linux/spinlock.h>
  24 #include <linux/smp.h>
  25 #include <linux/interrupt.h>
  26 #include <linux/sched/signal.h>
  27 #include <linux/sched/debug.h>
  28 #include <linux/atomic.h>
  29 #include <linux/bitops.h>
  30 #include <linux/percpu.h>
  31 #include <linux/notifier.h>
  32 #include <linux/cpu.h>
  33 #include <linux/mutex.h>
  34 #include <linux/export.h>
  35 #include <linux/hardirq.h>
  36 #include <linux/delay.h>
  37 #include <linux/moduleparam.h>
  38 #include <linux/kthread.h>
  39 #include <linux/tick.h>
  40 #include <linux/rcupdate_wait.h>
  41 #include <linux/sched/isolation.h>
  42 #include <linux/kprobes.h>
  43 
  44 #define CREATE_TRACE_POINTS
  45 
  46 #include "rcu.h"
  47 
  48 #ifdef MODULE_PARAM_PREFIX
  49 #undef MODULE_PARAM_PREFIX
  50 #endif
  51 #define MODULE_PARAM_PREFIX "rcupdate."
  52 
  53 #ifndef CONFIG_TINY_RCU
  54 extern int rcu_expedited; /* from sysctl */
  55 module_param(rcu_expedited, int, 0);
  56 extern int rcu_normal; /* from sysctl */
  57 module_param(rcu_normal, int, 0);
  58 static int rcu_normal_after_boot;
  59 module_param(rcu_normal_after_boot, int, 0);
  60 #endif /* #ifndef CONFIG_TINY_RCU */
  61 
  62 #ifdef CONFIG_DEBUG_LOCK_ALLOC
  63 /**
  64  * rcu_read_lock_held_common() - might we be in RCU-sched read-side critical section?
  65  * @ret:        Best guess answer if lockdep cannot be relied on
  66  *
  67  * Returns true if lockdep must be ignored, in which case *ret contains
  68  * the best guess described below.  Otherwise returns false, in which
  69  * case *ret tells the caller nothing and the caller should instead
  70  * consult lockdep.
  71  *
  72  * If CONFIG_DEBUG_LOCK_ALLOC is selected, set *ret to nonzero iff in an
  73  * RCU-sched read-side critical section.  In absence of
  74  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
  75  * critical section unless it can prove otherwise.  Note that disabling
  76  * of preemption (including disabling irqs) counts as an RCU-sched
  77  * read-side critical section.  This is useful for debug checks in functions
  78  * that required that they be called within an RCU-sched read-side
  79  * critical section.
  80  *
  81  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
  82  * and while lockdep is disabled.
  83  *
  84  * Note that if the CPU is in the idle loop from an RCU point of view (ie:
  85  * that we are in the section between rcu_idle_enter() and rcu_idle_exit())
  86  * then rcu_read_lock_held() sets *ret to false even if the CPU did an
  87  * rcu_read_lock().  The reason for this is that RCU ignores CPUs that are
  88  * in such a section, considering these as in extended quiescent state,
  89  * so such a CPU is effectively never in an RCU read-side critical section
  90  * regardless of what RCU primitives it invokes.  This state of affairs is
  91  * required --- we need to keep an RCU-free window in idle where the CPU may
  92  * possibly enter into low power mode. This way we can notice an extended
  93  * quiescent state to other CPUs that started a grace period. Otherwise
  94  * we would delay any grace period as long as we run in the idle task.
  95  *
  96  * Similarly, we avoid claiming an RCU read lock held if the current
  97  * CPU is offline.
  98  */
  99 static bool rcu_read_lock_held_common(bool *ret)
 100 {
 101         if (!debug_lockdep_rcu_enabled()) {
 102                 *ret = 1;
 103                 return true;
 104         }
 105         if (!rcu_is_watching()) {
 106                 *ret = 0;
 107                 return true;
 108         }
 109         if (!rcu_lockdep_current_cpu_online()) {
 110                 *ret = 0;
 111                 return true;
 112         }
 113         return false;
 114 }
 115 
 116 int rcu_read_lock_sched_held(void)
 117 {
 118         bool ret;
 119 
 120         if (rcu_read_lock_held_common(&ret))
 121                 return ret;
 122         return lock_is_held(&rcu_sched_lock_map) || !preemptible();
 123 }
 124 EXPORT_SYMBOL(rcu_read_lock_sched_held);
 125 #endif
 126 
 127 #ifndef CONFIG_TINY_RCU
 128 
 129 /*
 130  * Should expedited grace-period primitives always fall back to their
 131  * non-expedited counterparts?  Intended for use within RCU.  Note
 132  * that if the user specifies both rcu_expedited and rcu_normal, then
 133  * rcu_normal wins.  (Except during the time period during boot from
 134  * when the first task is spawned until the rcu_set_runtime_mode()
 135  * core_initcall() is invoked, at which point everything is expedited.)
 136  */
 137 bool rcu_gp_is_normal(void)
 138 {
 139         return READ_ONCE(rcu_normal) &&
 140                rcu_scheduler_active != RCU_SCHEDULER_INIT;
 141 }
 142 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
 143 
 144 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
 145 
 146 /*
 147  * Should normal grace-period primitives be expedited?  Intended for
 148  * use within RCU.  Note that this function takes the rcu_expedited
 149  * sysfs/boot variable and rcu_scheduler_active into account as well
 150  * as the rcu_expedite_gp() nesting.  So looping on rcu_unexpedite_gp()
 151  * until rcu_gp_is_expedited() returns false is a -really- bad idea.
 152  */
 153 bool rcu_gp_is_expedited(void)
 154 {
 155         return rcu_expedited || atomic_read(&rcu_expedited_nesting);
 156 }
 157 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
 158 
 159 /**
 160  * rcu_expedite_gp - Expedite future RCU grace periods
 161  *
 162  * After a call to this function, future calls to synchronize_rcu() and
 163  * friends act as the corresponding synchronize_rcu_expedited() function
 164  * had instead been called.
 165  */
 166 void rcu_expedite_gp(void)
 167 {
 168         atomic_inc(&rcu_expedited_nesting);
 169 }
 170 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
 171 
 172 /**
 173  * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
 174  *
 175  * Undo a prior call to rcu_expedite_gp().  If all prior calls to
 176  * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
 177  * and if the rcu_expedited sysfs/boot parameter is not set, then all
 178  * subsequent calls to synchronize_rcu() and friends will return to
 179  * their normal non-expedited behavior.
 180  */
 181 void rcu_unexpedite_gp(void)
 182 {
 183         atomic_dec(&rcu_expedited_nesting);
 184 }
 185 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
 186 
 187 /*
 188  * Inform RCU of the end of the in-kernel boot sequence.
 189  */
 190 void rcu_end_inkernel_boot(void)
 191 {
 192         rcu_unexpedite_gp();
 193         if (rcu_normal_after_boot)
 194                 WRITE_ONCE(rcu_normal, 1);
 195 }
 196 
 197 #endif /* #ifndef CONFIG_TINY_RCU */
 198 
 199 /*
 200  * Test each non-SRCU synchronous grace-period wait API.  This is
 201  * useful just after a change in mode for these primitives, and
 202  * during early boot.
 203  */
 204 void rcu_test_sync_prims(void)
 205 {
 206         if (!IS_ENABLED(CONFIG_PROVE_RCU))
 207                 return;
 208         synchronize_rcu();
 209         synchronize_rcu_expedited();
 210 }
 211 
 212 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
 213 
 214 /*
 215  * Switch to run-time mode once RCU has fully initialized.
 216  */
 217 static int __init rcu_set_runtime_mode(void)
 218 {
 219         rcu_test_sync_prims();
 220         rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
 221         rcu_test_sync_prims();
 222         return 0;
 223 }
 224 core_initcall(rcu_set_runtime_mode);
 225 
 226 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
 227 
 228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
 229 static struct lock_class_key rcu_lock_key;
 230 struct lockdep_map rcu_lock_map =
 231         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
 232 EXPORT_SYMBOL_GPL(rcu_lock_map);
 233 
 234 static struct lock_class_key rcu_bh_lock_key;
 235 struct lockdep_map rcu_bh_lock_map =
 236         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
 237 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
 238 
 239 static struct lock_class_key rcu_sched_lock_key;
 240 struct lockdep_map rcu_sched_lock_map =
 241         STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
 242 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
 243 
 244 static struct lock_class_key rcu_callback_key;
 245 struct lockdep_map rcu_callback_map =
 246         STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
 247 EXPORT_SYMBOL_GPL(rcu_callback_map);
 248 
 249 int notrace debug_lockdep_rcu_enabled(void)
 250 {
 251         return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
 252                current->lockdep_recursion == 0;
 253 }
 254 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
 255 NOKPROBE_SYMBOL(debug_lockdep_rcu_enabled);
 256 
 257 /**
 258  * rcu_read_lock_held() - might we be in RCU read-side critical section?
 259  *
 260  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
 261  * read-side critical section.  In absence of CONFIG_DEBUG_LOCK_ALLOC,
 262  * this assumes we are in an RCU read-side critical section unless it can
 263  * prove otherwise.  This is useful for debug checks in functions that
 264  * require that they be called within an RCU read-side critical section.
 265  *
 266  * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
 267  * and while lockdep is disabled.
 268  *
 269  * Note that rcu_read_lock() and the matching rcu_read_unlock() must
 270  * occur in the same context, for example, it is illegal to invoke
 271  * rcu_read_unlock() in process context if the matching rcu_read_lock()
 272  * was invoked from within an irq handler.
 273  *
 274  * Note that rcu_read_lock() is disallowed if the CPU is either idle or
 275  * offline from an RCU perspective, so check for those as well.
 276  */
 277 int rcu_read_lock_held(void)
 278 {
 279         bool ret;
 280 
 281         if (rcu_read_lock_held_common(&ret))
 282                 return ret;
 283         return lock_is_held(&rcu_lock_map);
 284 }
 285 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
 286 
 287 /**
 288  * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
 289  *
 290  * Check for bottom half being disabled, which covers both the
 291  * CONFIG_PROVE_RCU and not cases.  Note that if someone uses
 292  * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
 293  * will show the situation.  This is useful for debug checks in functions
 294  * that require that they be called within an RCU read-side critical
 295  * section.
 296  *
 297  * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
 298  *
 299  * Note that rcu_read_lock_bh() is disallowed if the CPU is either idle or
 300  * offline from an RCU perspective, so check for those as well.
 301  */
 302 int rcu_read_lock_bh_held(void)
 303 {
 304         bool ret;
 305 
 306         if (rcu_read_lock_held_common(&ret))
 307                 return ret;
 308         return in_softirq() || irqs_disabled();
 309 }
 310 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
 311 
 312 int rcu_read_lock_any_held(void)
 313 {
 314         bool ret;
 315 
 316         if (rcu_read_lock_held_common(&ret))
 317                 return ret;
 318         if (lock_is_held(&rcu_lock_map) ||
 319             lock_is_held(&rcu_bh_lock_map) ||
 320             lock_is_held(&rcu_sched_lock_map))
 321                 return 1;
 322         return !preemptible();
 323 }
 324 EXPORT_SYMBOL_GPL(rcu_read_lock_any_held);
 325 
 326 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 327 
 328 /**
 329  * wakeme_after_rcu() - Callback function to awaken a task after grace period
 330  * @head: Pointer to rcu_head member within rcu_synchronize structure
 331  *
 332  * Awaken the corresponding task now that a grace period has elapsed.
 333  */
 334 void wakeme_after_rcu(struct rcu_head *head)
 335 {
 336         struct rcu_synchronize *rcu;
 337 
 338         rcu = container_of(head, struct rcu_synchronize, head);
 339         complete(&rcu->completion);
 340 }
 341 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
 342 
 343 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
 344                    struct rcu_synchronize *rs_array)
 345 {
 346         int i;
 347         int j;
 348 
 349         /* Initialize and register callbacks for each crcu_array element. */
 350         for (i = 0; i < n; i++) {
 351                 if (checktiny &&
 352                     (crcu_array[i] == call_rcu)) {
 353                         might_sleep();
 354                         continue;
 355                 }
 356                 init_rcu_head_on_stack(&rs_array[i].head);
 357                 init_completion(&rs_array[i].completion);
 358                 for (j = 0; j < i; j++)
 359                         if (crcu_array[j] == crcu_array[i])
 360                                 break;
 361                 if (j == i)
 362                         (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
 363         }
 364 
 365         /* Wait for all callbacks to be invoked. */
 366         for (i = 0; i < n; i++) {
 367                 if (checktiny &&
 368                     (crcu_array[i] == call_rcu))
 369                         continue;
 370                 for (j = 0; j < i; j++)
 371                         if (crcu_array[j] == crcu_array[i])
 372                                 break;
 373                 if (j == i)
 374                         wait_for_completion(&rs_array[i].completion);
 375                 destroy_rcu_head_on_stack(&rs_array[i].head);
 376         }
 377 }
 378 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
 379 
 380 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 381 void init_rcu_head(struct rcu_head *head)
 382 {
 383         debug_object_init(head, &rcuhead_debug_descr);
 384 }
 385 EXPORT_SYMBOL_GPL(init_rcu_head);
 386 
 387 void destroy_rcu_head(struct rcu_head *head)
 388 {
 389         debug_object_free(head, &rcuhead_debug_descr);
 390 }
 391 EXPORT_SYMBOL_GPL(destroy_rcu_head);
 392 
 393 static bool rcuhead_is_static_object(void *addr)
 394 {
 395         return true;
 396 }
 397 
 398 /**
 399  * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
 400  * @head: pointer to rcu_head structure to be initialized
 401  *
 402  * This function informs debugobjects of a new rcu_head structure that
 403  * has been allocated as an auto variable on the stack.  This function
 404  * is not required for rcu_head structures that are statically defined or
 405  * that are dynamically allocated on the heap.  This function has no
 406  * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 407  */
 408 void init_rcu_head_on_stack(struct rcu_head *head)
 409 {
 410         debug_object_init_on_stack(head, &rcuhead_debug_descr);
 411 }
 412 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
 413 
 414 /**
 415  * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
 416  * @head: pointer to rcu_head structure to be initialized
 417  *
 418  * This function informs debugobjects that an on-stack rcu_head structure
 419  * is about to go out of scope.  As with init_rcu_head_on_stack(), this
 420  * function is not required for rcu_head structures that are statically
 421  * defined or that are dynamically allocated on the heap.  Also as with
 422  * init_rcu_head_on_stack(), this function has no effect for
 423  * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
 424  */
 425 void destroy_rcu_head_on_stack(struct rcu_head *head)
 426 {
 427         debug_object_free(head, &rcuhead_debug_descr);
 428 }
 429 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
 430 
 431 struct debug_obj_descr rcuhead_debug_descr = {
 432         .name = "rcu_head",
 433         .is_static_object = rcuhead_is_static_object,
 434 };
 435 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
 436 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 437 
 438 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
 439 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
 440                                unsigned long secs,
 441                                unsigned long c_old, unsigned long c)
 442 {
 443         trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
 444 }
 445 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
 446 #else
 447 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
 448         do { } while (0)
 449 #endif
 450 
 451 #if IS_ENABLED(CONFIG_RCU_TORTURE_TEST) || IS_MODULE(CONFIG_RCU_TORTURE_TEST)
 452 /* Get rcutorture access to sched_setaffinity(). */
 453 long rcutorture_sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 454 {
 455         int ret;
 456 
 457         ret = sched_setaffinity(pid, in_mask);
 458         WARN_ONCE(ret, "%s: sched_setaffinity() returned %d\n", __func__, ret);
 459         return ret;
 460 }
 461 EXPORT_SYMBOL_GPL(rcutorture_sched_setaffinity);
 462 #endif
 463 
 464 #ifdef CONFIG_RCU_STALL_COMMON
 465 int rcu_cpu_stall_ftrace_dump __read_mostly;
 466 module_param(rcu_cpu_stall_ftrace_dump, int, 0644);
 467 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
 468 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
 469 module_param(rcu_cpu_stall_suppress, int, 0644);
 470 int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
 471 module_param(rcu_cpu_stall_timeout, int, 0644);
 472 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
 473 
 474 #ifdef CONFIG_TASKS_RCU
 475 
 476 /*
 477  * Simple variant of RCU whose quiescent states are voluntary context
 478  * switch, cond_resched_rcu_qs(), user-space execution, and idle.
 479  * As such, grace periods can take one good long time.  There are no
 480  * read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
 481  * because this implementation is intended to get the system into a safe
 482  * state for some of the manipulations involved in tracing and the like.
 483  * Finally, this implementation does not support high call_rcu_tasks()
 484  * rates from multiple CPUs.  If this is required, per-CPU callback lists
 485  * will be needed.
 486  */
 487 
 488 /* Global list of callbacks and associated lock. */
 489 static struct rcu_head *rcu_tasks_cbs_head;
 490 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 491 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
 492 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
 493 
 494 /* Track exiting tasks in order to allow them to be waited for. */
 495 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
 496 
 497 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
 498 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
 499 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
 500 module_param(rcu_task_stall_timeout, int, 0644);
 501 
 502 static struct task_struct *rcu_tasks_kthread_ptr;
 503 
 504 /**
 505  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
 506  * @rhp: structure to be used for queueing the RCU updates.
 507  * @func: actual callback function to be invoked after the grace period
 508  *
 509  * The callback function will be invoked some time after a full grace
 510  * period elapses, in other words after all currently executing RCU
 511  * read-side critical sections have completed. call_rcu_tasks() assumes
 512  * that the read-side critical sections end at a voluntary context
 513  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
 514  * or transition to usermode execution.  As such, there are no read-side
 515  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
 516  * this primitive is intended to determine that all tasks have passed
 517  * through a safe state, not so much for data-strcuture synchronization.
 518  *
 519  * See the description of call_rcu() for more detailed information on
 520  * memory ordering guarantees.
 521  */
 522 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
 523 {
 524         unsigned long flags;
 525         bool needwake;
 526 
 527         rhp->next = NULL;
 528         rhp->func = func;
 529         raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 530         needwake = !rcu_tasks_cbs_head;
 531         *rcu_tasks_cbs_tail = rhp;
 532         rcu_tasks_cbs_tail = &rhp->next;
 533         raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 534         /* We can't create the thread unless interrupts are enabled. */
 535         if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
 536                 wake_up(&rcu_tasks_cbs_wq);
 537 }
 538 EXPORT_SYMBOL_GPL(call_rcu_tasks);
 539 
 540 /**
 541  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
 542  *
 543  * Control will return to the caller some time after a full rcu-tasks
 544  * grace period has elapsed, in other words after all currently
 545  * executing rcu-tasks read-side critical sections have elapsed.  These
 546  * read-side critical sections are delimited by calls to schedule(),
 547  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
 548  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
 549  *
 550  * This is a very specialized primitive, intended only for a few uses in
 551  * tracing and other situations requiring manipulation of function
 552  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
 553  * is not (yet) intended for heavy use from multiple CPUs.
 554  *
 555  * Note that this guarantee implies further memory-ordering guarantees.
 556  * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
 557  * each CPU is guaranteed to have executed a full memory barrier since the
 558  * end of its last RCU-tasks read-side critical section whose beginning
 559  * preceded the call to synchronize_rcu_tasks().  In addition, each CPU
 560  * having an RCU-tasks read-side critical section that extends beyond
 561  * the return from synchronize_rcu_tasks() is guaranteed to have executed
 562  * a full memory barrier after the beginning of synchronize_rcu_tasks()
 563  * and before the beginning of that RCU-tasks read-side critical section.
 564  * Note that these guarantees include CPUs that are offline, idle, or
 565  * executing in user mode, as well as CPUs that are executing in the kernel.
 566  *
 567  * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
 568  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 569  * to have executed a full memory barrier during the execution of
 570  * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
 571  * (but again only if the system has more than one CPU).
 572  */
 573 void synchronize_rcu_tasks(void)
 574 {
 575         /* Complain if the scheduler has not started.  */
 576         RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
 577                          "synchronize_rcu_tasks called too soon");
 578 
 579         /* Wait for the grace period. */
 580         wait_rcu_gp(call_rcu_tasks);
 581 }
 582 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
 583 
 584 /**
 585  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
 586  *
 587  * Although the current implementation is guaranteed to wait, it is not
 588  * obligated to, for example, if there are no pending callbacks.
 589  */
 590 void rcu_barrier_tasks(void)
 591 {
 592         /* There is only one callback queue, so this is easy.  ;-) */
 593         synchronize_rcu_tasks();
 594 }
 595 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
 596 
 597 /* See if tasks are still holding out, complain if so. */
 598 static void check_holdout_task(struct task_struct *t,
 599                                bool needreport, bool *firstreport)
 600 {
 601         int cpu;
 602 
 603         if (!READ_ONCE(t->rcu_tasks_holdout) ||
 604             t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
 605             !READ_ONCE(t->on_rq) ||
 606             (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
 607              !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
 608                 WRITE_ONCE(t->rcu_tasks_holdout, false);
 609                 list_del_init(&t->rcu_tasks_holdout_list);
 610                 put_task_struct(t);
 611                 return;
 612         }
 613         rcu_request_urgent_qs_task(t);
 614         if (!needreport)
 615                 return;
 616         if (*firstreport) {
 617                 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
 618                 *firstreport = false;
 619         }
 620         cpu = task_cpu(t);
 621         pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
 622                  t, ".I"[is_idle_task(t)],
 623                  "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
 624                  t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
 625                  t->rcu_tasks_idle_cpu, cpu);
 626         sched_show_task(t);
 627 }
 628 
 629 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
 630 static int __noreturn rcu_tasks_kthread(void *arg)
 631 {
 632         unsigned long flags;
 633         struct task_struct *g, *t;
 634         unsigned long lastreport;
 635         struct rcu_head *list;
 636         struct rcu_head *next;
 637         LIST_HEAD(rcu_tasks_holdouts);
 638         int fract;
 639 
 640         /* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
 641         housekeeping_affine(current, HK_FLAG_RCU);
 642 
 643         /*
 644          * Each pass through the following loop makes one check for
 645          * newly arrived callbacks, and, if there are some, waits for
 646          * one RCU-tasks grace period and then invokes the callbacks.
 647          * This loop is terminated by the system going down.  ;-)
 648          */
 649         for (;;) {
 650 
 651                 /* Pick up any new callbacks. */
 652                 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
 653                 list = rcu_tasks_cbs_head;
 654                 rcu_tasks_cbs_head = NULL;
 655                 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
 656                 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
 657 
 658                 /* If there were none, wait a bit and start over. */
 659                 if (!list) {
 660                         wait_event_interruptible(rcu_tasks_cbs_wq,
 661                                                  rcu_tasks_cbs_head);
 662                         if (!rcu_tasks_cbs_head) {
 663                                 WARN_ON(signal_pending(current));
 664                                 schedule_timeout_interruptible(HZ/10);
 665                         }
 666                         continue;
 667                 }
 668 
 669                 /*
 670                  * Wait for all pre-existing t->on_rq and t->nvcsw
 671                  * transitions to complete.  Invoking synchronize_rcu()
 672                  * suffices because all these transitions occur with
 673                  * interrupts disabled.  Without this synchronize_rcu(),
 674                  * a read-side critical section that started before the
 675                  * grace period might be incorrectly seen as having started
 676                  * after the grace period.
 677                  *
 678                  * This synchronize_rcu() also dispenses with the
 679                  * need for a memory barrier on the first store to
 680                  * ->rcu_tasks_holdout, as it forces the store to happen
 681                  * after the beginning of the grace period.
 682                  */
 683                 synchronize_rcu();
 684 
 685                 /*
 686                  * There were callbacks, so we need to wait for an
 687                  * RCU-tasks grace period.  Start off by scanning
 688                  * the task list for tasks that are not already
 689                  * voluntarily blocked.  Mark these tasks and make
 690                  * a list of them in rcu_tasks_holdouts.
 691                  */
 692                 rcu_read_lock();
 693                 for_each_process_thread(g, t) {
 694                         if (t != current && READ_ONCE(t->on_rq) &&
 695                             !is_idle_task(t)) {
 696                                 get_task_struct(t);
 697                                 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
 698                                 WRITE_ONCE(t->rcu_tasks_holdout, true);
 699                                 list_add(&t->rcu_tasks_holdout_list,
 700                                          &rcu_tasks_holdouts);
 701                         }
 702                 }
 703                 rcu_read_unlock();
 704 
 705                 /*
 706                  * Wait for tasks that are in the process of exiting.
 707                  * This does only part of the job, ensuring that all
 708                  * tasks that were previously exiting reach the point
 709                  * where they have disabled preemption, allowing the
 710                  * later synchronize_rcu() to finish the job.
 711                  */
 712                 synchronize_srcu(&tasks_rcu_exit_srcu);
 713 
 714                 /*
 715                  * Each pass through the following loop scans the list
 716                  * of holdout tasks, removing any that are no longer
 717                  * holdouts.  When the list is empty, we are done.
 718                  */
 719                 lastreport = jiffies;
 720 
 721                 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
 722                 fract = 10;
 723 
 724                 for (;;) {
 725                         bool firstreport;
 726                         bool needreport;
 727                         int rtst;
 728                         struct task_struct *t1;
 729 
 730                         if (list_empty(&rcu_tasks_holdouts))
 731                                 break;
 732 
 733                         /* Slowly back off waiting for holdouts */
 734                         schedule_timeout_interruptible(HZ/fract);
 735 
 736                         if (fract > 1)
 737                                 fract--;
 738 
 739                         rtst = READ_ONCE(rcu_task_stall_timeout);
 740                         needreport = rtst > 0 &&
 741                                      time_after(jiffies, lastreport + rtst);
 742                         if (needreport)
 743                                 lastreport = jiffies;
 744                         firstreport = true;
 745                         WARN_ON(signal_pending(current));
 746                         list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
 747                                                 rcu_tasks_holdout_list) {
 748                                 check_holdout_task(t, needreport, &firstreport);
 749                                 cond_resched();
 750                         }
 751                 }
 752 
 753                 /*
 754                  * Because ->on_rq and ->nvcsw are not guaranteed
 755                  * to have a full memory barriers prior to them in the
 756                  * schedule() path, memory reordering on other CPUs could
 757                  * cause their RCU-tasks read-side critical sections to
 758                  * extend past the end of the grace period.  However,
 759                  * because these ->nvcsw updates are carried out with
 760                  * interrupts disabled, we can use synchronize_rcu()
 761                  * to force the needed ordering on all such CPUs.
 762                  *
 763                  * This synchronize_rcu() also confines all
 764                  * ->rcu_tasks_holdout accesses to be within the grace
 765                  * period, avoiding the need for memory barriers for
 766                  * ->rcu_tasks_holdout accesses.
 767                  *
 768                  * In addition, this synchronize_rcu() waits for exiting
 769                  * tasks to complete their final preempt_disable() region
 770                  * of execution, cleaning up after the synchronize_srcu()
 771                  * above.
 772                  */
 773                 synchronize_rcu();
 774 
 775                 /* Invoke the callbacks. */
 776                 while (list) {
 777                         next = list->next;
 778                         local_bh_disable();
 779                         list->func(list);
 780                         local_bh_enable();
 781                         list = next;
 782                         cond_resched();
 783                 }
 784                 /* Paranoid sleep to keep this from entering a tight loop */
 785                 schedule_timeout_uninterruptible(HZ/10);
 786         }
 787 }
 788 
 789 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
 790 static int __init rcu_spawn_tasks_kthread(void)
 791 {
 792         struct task_struct *t;
 793 
 794         t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
 795         if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
 796                 return 0;
 797         smp_mb(); /* Ensure others see full kthread. */
 798         WRITE_ONCE(rcu_tasks_kthread_ptr, t);
 799         return 0;
 800 }
 801 core_initcall(rcu_spawn_tasks_kthread);
 802 
 803 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
 804 void exit_tasks_rcu_start(void)
 805 {
 806         preempt_disable();
 807         current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
 808         preempt_enable();
 809 }
 810 
 811 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
 812 void exit_tasks_rcu_finish(void)
 813 {
 814         preempt_disable();
 815         __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
 816         preempt_enable();
 817 }
 818 
 819 #endif /* #ifdef CONFIG_TASKS_RCU */
 820 
 821 #ifndef CONFIG_TINY_RCU
 822 
 823 /*
 824  * Print any non-default Tasks RCU settings.
 825  */
 826 static void __init rcu_tasks_bootup_oddness(void)
 827 {
 828 #ifdef CONFIG_TASKS_RCU
 829         if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
 830                 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
 831         else
 832                 pr_info("\tTasks RCU enabled.\n");
 833 #endif /* #ifdef CONFIG_TASKS_RCU */
 834 }
 835 
 836 #endif /* #ifndef CONFIG_TINY_RCU */
 837 
 838 #ifdef CONFIG_PROVE_RCU
 839 
 840 /*
 841  * Early boot self test parameters.
 842  */
 843 static bool rcu_self_test;
 844 module_param(rcu_self_test, bool, 0444);
 845 
 846 static int rcu_self_test_counter;
 847 
 848 static void test_callback(struct rcu_head *r)
 849 {
 850         rcu_self_test_counter++;
 851         pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
 852 }
 853 
 854 DEFINE_STATIC_SRCU(early_srcu);
 855 
 856 static void early_boot_test_call_rcu(void)
 857 {
 858         static struct rcu_head head;
 859         static struct rcu_head shead;
 860 
 861         call_rcu(&head, test_callback);
 862         if (IS_ENABLED(CONFIG_SRCU))
 863                 call_srcu(&early_srcu, &shead, test_callback);
 864 }
 865 
 866 void rcu_early_boot_tests(void)
 867 {
 868         pr_info("Running RCU self tests\n");
 869 
 870         if (rcu_self_test)
 871                 early_boot_test_call_rcu();
 872         rcu_test_sync_prims();
 873 }
 874 
 875 static int rcu_verify_early_boot_tests(void)
 876 {
 877         int ret = 0;
 878         int early_boot_test_counter = 0;
 879 
 880         if (rcu_self_test) {
 881                 early_boot_test_counter++;
 882                 rcu_barrier();
 883                 if (IS_ENABLED(CONFIG_SRCU)) {
 884                         early_boot_test_counter++;
 885                         srcu_barrier(&early_srcu);
 886                 }
 887         }
 888         if (rcu_self_test_counter != early_boot_test_counter) {
 889                 WARN_ON(1);
 890                 ret = -1;
 891         }
 892 
 893         return ret;
 894 }
 895 late_initcall(rcu_verify_early_boot_tests);
 896 #else
 897 void rcu_early_boot_tests(void) {}
 898 #endif /* CONFIG_PROVE_RCU */
 899 
 900 #ifndef CONFIG_TINY_RCU
 901 
 902 /*
 903  * Print any significant non-default boot-time settings.
 904  */
 905 void __init rcupdate_announce_bootup_oddness(void)
 906 {
 907         if (rcu_normal)
 908                 pr_info("\tNo expedited grace period (rcu_normal).\n");
 909         else if (rcu_normal_after_boot)
 910                 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
 911         else if (rcu_expedited)
 912                 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
 913         if (rcu_cpu_stall_suppress)
 914                 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
 915         if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
 916                 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
 917         rcu_tasks_bootup_oddness();
 918 }
 919 
 920 #endif /* #ifndef CONFIG_TINY_RCU */

/* [<][>][^][v][top][bottom][index][help] */