This source file includes following definitions.
- dev_get_coherent_memory
- dma_get_device_base
- dma_init_coherent_memory
- dma_release_coherent_memory
- dma_assign_coherent_memory
- dma_declare_coherent_memory
- __dma_alloc_from_coherent
- dma_alloc_from_dev_coherent
- dma_alloc_from_global_coherent
- __dma_release_from_coherent
- dma_release_from_dev_coherent
- dma_release_from_global_coherent
- __dma_mmap_from_coherent
- dma_mmap_from_dev_coherent
- dma_mmap_from_global_coherent
- rmem_dma_device_init
- rmem_dma_device_release
- rmem_dma_setup
- dma_init_reserved_memory
1
2
3
4
5
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11
12 struct dma_coherent_mem {
13 void *virt_base;
14 dma_addr_t device_base;
15 unsigned long pfn_base;
16 int size;
17 unsigned long *bitmap;
18 spinlock_t spinlock;
19 bool use_dev_dma_pfn_offset;
20 };
21
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26 if (dev && dev->dma_mem)
27 return dev->dma_mem;
28 return NULL;
29 }
30
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 struct dma_coherent_mem * mem)
33 {
34 if (mem->use_dev_dma_pfn_offset)
35 return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 else
37 return mem->device_base;
38 }
39
40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 dma_addr_t device_addr, size_t size,
42 struct dma_coherent_mem **mem)
43 {
44 struct dma_coherent_mem *dma_mem = NULL;
45 void *mem_base = NULL;
46 int pages = size >> PAGE_SHIFT;
47 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 int ret;
49
50 if (!size) {
51 ret = -EINVAL;
52 goto out;
53 }
54
55 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 if (!mem_base) {
57 ret = -EINVAL;
58 goto out;
59 }
60 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 if (!dma_mem) {
62 ret = -ENOMEM;
63 goto out;
64 }
65 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 if (!dma_mem->bitmap) {
67 ret = -ENOMEM;
68 goto out;
69 }
70
71 dma_mem->virt_base = mem_base;
72 dma_mem->device_base = device_addr;
73 dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 dma_mem->size = pages;
75 spin_lock_init(&dma_mem->spinlock);
76
77 *mem = dma_mem;
78 return 0;
79
80 out:
81 kfree(dma_mem);
82 if (mem_base)
83 memunmap(mem_base);
84 return ret;
85 }
86
87 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 if (!mem)
90 return;
91
92 memunmap(mem->virt_base);
93 kfree(mem->bitmap);
94 kfree(mem);
95 }
96
97 static int dma_assign_coherent_memory(struct device *dev,
98 struct dma_coherent_mem *mem)
99 {
100 if (!dev)
101 return -ENODEV;
102
103 if (dev->dma_mem)
104 return -EBUSY;
105
106 dev->dma_mem = mem;
107 return 0;
108 }
109
110 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
111 dma_addr_t device_addr, size_t size)
112 {
113 struct dma_coherent_mem *mem;
114 int ret;
115
116 ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
117 if (ret)
118 return ret;
119
120 ret = dma_assign_coherent_memory(dev, mem);
121 if (ret)
122 dma_release_coherent_memory(mem);
123 return ret;
124 }
125
126 static void *__dma_alloc_from_coherent(struct device *dev,
127 struct dma_coherent_mem *mem,
128 ssize_t size, dma_addr_t *dma_handle)
129 {
130 int order = get_order(size);
131 unsigned long flags;
132 int pageno;
133 void *ret;
134
135 spin_lock_irqsave(&mem->spinlock, flags);
136
137 if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
138 goto err;
139
140 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
141 if (unlikely(pageno < 0))
142 goto err;
143
144
145
146
147 *dma_handle = dma_get_device_base(dev, mem) +
148 ((dma_addr_t)pageno << PAGE_SHIFT);
149 ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
150 spin_unlock_irqrestore(&mem->spinlock, flags);
151 memset(ret, 0, size);
152 return ret;
153 err:
154 spin_unlock_irqrestore(&mem->spinlock, flags);
155 return NULL;
156 }
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
173 dma_addr_t *dma_handle, void **ret)
174 {
175 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
176
177 if (!mem)
178 return 0;
179
180 *ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
181 return 1;
182 }
183
184 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
185 dma_addr_t *dma_handle)
186 {
187 if (!dma_coherent_default_memory)
188 return NULL;
189
190 return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
191 dma_handle);
192 }
193
194 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
195 int order, void *vaddr)
196 {
197 if (mem && vaddr >= mem->virt_base && vaddr <
198 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
199 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
200 unsigned long flags;
201
202 spin_lock_irqsave(&mem->spinlock, flags);
203 bitmap_release_region(mem->bitmap, page, order);
204 spin_unlock_irqrestore(&mem->spinlock, flags);
205 return 1;
206 }
207 return 0;
208 }
209
210
211
212
213
214
215
216
217
218
219
220
221
222 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
223 {
224 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
225
226 return __dma_release_from_coherent(mem, order, vaddr);
227 }
228
229 int dma_release_from_global_coherent(int order, void *vaddr)
230 {
231 if (!dma_coherent_default_memory)
232 return 0;
233
234 return __dma_release_from_coherent(dma_coherent_default_memory, order,
235 vaddr);
236 }
237
238 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
239 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
240 {
241 if (mem && vaddr >= mem->virt_base && vaddr + size <=
242 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
243 unsigned long off = vma->vm_pgoff;
244 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
245 unsigned long user_count = vma_pages(vma);
246 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
247
248 *ret = -ENXIO;
249 if (off < count && user_count <= count - off) {
250 unsigned long pfn = mem->pfn_base + start + off;
251 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
252 user_count << PAGE_SHIFT,
253 vma->vm_page_prot);
254 }
255 return 1;
256 }
257 return 0;
258 }
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
276 void *vaddr, size_t size, int *ret)
277 {
278 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
279
280 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
281 }
282
283 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
284 size_t size, int *ret)
285 {
286 if (!dma_coherent_default_memory)
287 return 0;
288
289 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
290 vaddr, size, ret);
291 }
292
293
294
295
296 #ifdef CONFIG_OF_RESERVED_MEM
297 #include <linux/of.h>
298 #include <linux/of_fdt.h>
299 #include <linux/of_reserved_mem.h>
300
301 static struct reserved_mem *dma_reserved_default_memory __initdata;
302
303 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
304 {
305 struct dma_coherent_mem *mem = rmem->priv;
306 int ret;
307
308 if (!mem) {
309 ret = dma_init_coherent_memory(rmem->base, rmem->base,
310 rmem->size, &mem);
311 if (ret) {
312 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
313 &rmem->base, (unsigned long)rmem->size / SZ_1M);
314 return ret;
315 }
316 }
317 mem->use_dev_dma_pfn_offset = true;
318 rmem->priv = mem;
319 dma_assign_coherent_memory(dev, mem);
320 return 0;
321 }
322
323 static void rmem_dma_device_release(struct reserved_mem *rmem,
324 struct device *dev)
325 {
326 if (dev)
327 dev->dma_mem = NULL;
328 }
329
330 static const struct reserved_mem_ops rmem_dma_ops = {
331 .device_init = rmem_dma_device_init,
332 .device_release = rmem_dma_device_release,
333 };
334
335 static int __init rmem_dma_setup(struct reserved_mem *rmem)
336 {
337 unsigned long node = rmem->fdt_node;
338
339 if (of_get_flat_dt_prop(node, "reusable", NULL))
340 return -EINVAL;
341
342 #ifdef CONFIG_ARM
343 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
344 pr_err("Reserved memory: regions without no-map are not yet supported\n");
345 return -EINVAL;
346 }
347
348 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
349 WARN(dma_reserved_default_memory,
350 "Reserved memory: region for default DMA coherent area is redefined\n");
351 dma_reserved_default_memory = rmem;
352 }
353 #endif
354
355 rmem->ops = &rmem_dma_ops;
356 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
357 &rmem->base, (unsigned long)rmem->size / SZ_1M);
358 return 0;
359 }
360
361 static int __init dma_init_reserved_memory(void)
362 {
363 const struct reserved_mem_ops *ops;
364 int ret;
365
366 if (!dma_reserved_default_memory)
367 return -ENOMEM;
368
369 ops = dma_reserved_default_memory->ops;
370
371
372
373
374
375 ret = ops->device_init(dma_reserved_default_memory, NULL);
376
377 if (!ret) {
378 dma_coherent_default_memory = dma_reserved_default_memory->priv;
379 pr_info("DMA: default coherent area is set\n");
380 }
381
382 return ret;
383 }
384
385 core_initcall(dma_init_reserved_memory);
386
387 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
388 #endif