This source file includes following definitions.
- tick_get_tick_sched
- tick_do_update_jiffies64
- tick_init_jiffy_update
- tick_sched_do_timer
- tick_sched_handle
- check_tick_dependency
- can_stop_full_tick
- nohz_full_kick_func
- tick_nohz_full_kick
- tick_nohz_full_kick_cpu
- tick_nohz_full_kick_all
- tick_nohz_dep_set_all
- tick_nohz_dep_set
- tick_nohz_dep_clear
- tick_nohz_dep_set_cpu
- tick_nohz_dep_clear_cpu
- tick_nohz_dep_set_task
- tick_nohz_dep_clear_task
- tick_nohz_dep_set_signal
- tick_nohz_dep_clear_signal
- __tick_nohz_task_switch
- tick_nohz_full_setup
- tick_nohz_cpu_down
- tick_nohz_init
- setup_tick_nohz
- tick_nohz_tick_stopped
- tick_nohz_tick_stopped_cpu
- tick_nohz_update_jiffies
- update_ts_time_stats
- tick_nohz_stop_idle
- tick_nohz_start_idle
- get_cpu_idle_time_us
- get_cpu_iowait_time_us
- tick_nohz_restart
- local_timer_softirq_pending
- tick_nohz_next_event
- tick_nohz_stop_tick
- tick_nohz_retain_tick
- tick_nohz_stop_sched_tick
- tick_nohz_restart_sched_tick
- tick_nohz_full_update_tick
- can_stop_idle_tick
- __tick_nohz_idle_stop_tick
- tick_nohz_idle_stop_tick
- tick_nohz_idle_retain_tick
- tick_nohz_idle_enter
- tick_nohz_irq_exit
- tick_nohz_idle_got_tick
- tick_nohz_get_next_hrtimer
- tick_nohz_get_sleep_length
- tick_nohz_get_idle_calls_cpu
- tick_nohz_get_idle_calls
- tick_nohz_account_idle_ticks
- __tick_nohz_idle_restart_tick
- tick_nohz_idle_restart_tick
- tick_nohz_idle_exit
- tick_nohz_handler
- tick_nohz_activate
- tick_nohz_switch_to_nohz
- tick_nohz_irq_enter
- tick_nohz_switch_to_nohz
- tick_nohz_irq_enter
- tick_nohz_activate
- tick_irq_enter
- tick_sched_timer
- skew_tick
- tick_setup_sched_timer
- tick_cancel_sched_timer
- tick_clock_notify
- tick_oneshot_notify
- tick_check_oneshot_change
1
2
3
4
5
6
7
8
9
10
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28
29 #include <asm/irq_regs.h>
30
31 #include "tick-internal.h"
32
33 #include <trace/events/timer.h>
34
35
36
37
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39
40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 return &per_cpu(tick_cpu_sched, cpu);
43 }
44
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46
47
48
49 static ktime_t last_jiffies_update;
50
51
52
53
54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 unsigned long ticks = 0;
57 ktime_t delta;
58
59
60
61
62
63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 if (delta < tick_period)
65 return;
66
67
68 write_seqlock(&jiffies_lock);
69
70 delta = ktime_sub(now, last_jiffies_update);
71 if (delta >= tick_period) {
72
73 delta = ktime_sub(delta, tick_period);
74
75 WRITE_ONCE(last_jiffies_update,
76 ktime_add(last_jiffies_update, tick_period));
77
78
79 if (unlikely(delta >= tick_period)) {
80 s64 incr = ktime_to_ns(tick_period);
81
82 ticks = ktime_divns(delta, incr);
83
84
85 WRITE_ONCE(last_jiffies_update,
86 ktime_add_ns(last_jiffies_update,
87 incr * ticks));
88 }
89 do_timer(++ticks);
90
91
92 tick_next_period = ktime_add(last_jiffies_update, tick_period);
93 } else {
94 write_sequnlock(&jiffies_lock);
95 return;
96 }
97 write_sequnlock(&jiffies_lock);
98 update_wall_time();
99 }
100
101
102
103
104 static ktime_t tick_init_jiffy_update(void)
105 {
106 ktime_t period;
107
108 write_seqlock(&jiffies_lock);
109
110 if (last_jiffies_update == 0)
111 last_jiffies_update = tick_next_period;
112 period = last_jiffies_update;
113 write_sequnlock(&jiffies_lock);
114 return period;
115 }
116
117 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
118 {
119 int cpu = smp_processor_id();
120
121 #ifdef CONFIG_NO_HZ_COMMON
122
123
124
125
126
127
128
129
130
131
132 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
133 #ifdef CONFIG_NO_HZ_FULL
134 WARN_ON(tick_nohz_full_running);
135 #endif
136 tick_do_timer_cpu = cpu;
137 }
138 #endif
139
140
141 if (tick_do_timer_cpu == cpu)
142 tick_do_update_jiffies64(now);
143
144 if (ts->inidle)
145 ts->got_idle_tick = 1;
146 }
147
148 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
149 {
150 #ifdef CONFIG_NO_HZ_COMMON
151
152
153
154
155
156
157
158
159 if (ts->tick_stopped) {
160 touch_softlockup_watchdog_sched();
161 if (is_idle_task(current))
162 ts->idle_jiffies++;
163
164
165
166
167
168 ts->next_tick = 0;
169 }
170 #endif
171 update_process_times(user_mode(regs));
172 profile_tick(CPU_PROFILING);
173 }
174 #endif
175
176 #ifdef CONFIG_NO_HZ_FULL
177 cpumask_var_t tick_nohz_full_mask;
178 bool tick_nohz_full_running;
179 static atomic_t tick_dep_mask;
180
181 static bool check_tick_dependency(atomic_t *dep)
182 {
183 int val = atomic_read(dep);
184
185 if (val & TICK_DEP_MASK_POSIX_TIMER) {
186 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
187 return true;
188 }
189
190 if (val & TICK_DEP_MASK_PERF_EVENTS) {
191 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
192 return true;
193 }
194
195 if (val & TICK_DEP_MASK_SCHED) {
196 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
197 return true;
198 }
199
200 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
201 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
202 return true;
203 }
204
205 return false;
206 }
207
208 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
209 {
210 lockdep_assert_irqs_disabled();
211
212 if (unlikely(!cpu_online(cpu)))
213 return false;
214
215 if (check_tick_dependency(&tick_dep_mask))
216 return false;
217
218 if (check_tick_dependency(&ts->tick_dep_mask))
219 return false;
220
221 if (check_tick_dependency(¤t->tick_dep_mask))
222 return false;
223
224 if (check_tick_dependency(¤t->signal->tick_dep_mask))
225 return false;
226
227 return true;
228 }
229
230 static void nohz_full_kick_func(struct irq_work *work)
231 {
232
233 }
234
235 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
236 .func = nohz_full_kick_func,
237 };
238
239
240
241
242
243
244
245 static void tick_nohz_full_kick(void)
246 {
247 if (!tick_nohz_full_cpu(smp_processor_id()))
248 return;
249
250 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
251 }
252
253
254
255
256
257 void tick_nohz_full_kick_cpu(int cpu)
258 {
259 if (!tick_nohz_full_cpu(cpu))
260 return;
261
262 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
263 }
264
265
266
267
268
269 static void tick_nohz_full_kick_all(void)
270 {
271 int cpu;
272
273 if (!tick_nohz_full_running)
274 return;
275
276 preempt_disable();
277 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
278 tick_nohz_full_kick_cpu(cpu);
279 preempt_enable();
280 }
281
282 static void tick_nohz_dep_set_all(atomic_t *dep,
283 enum tick_dep_bits bit)
284 {
285 int prev;
286
287 prev = atomic_fetch_or(BIT(bit), dep);
288 if (!prev)
289 tick_nohz_full_kick_all();
290 }
291
292
293
294
295
296 void tick_nohz_dep_set(enum tick_dep_bits bit)
297 {
298 tick_nohz_dep_set_all(&tick_dep_mask, bit);
299 }
300
301 void tick_nohz_dep_clear(enum tick_dep_bits bit)
302 {
303 atomic_andnot(BIT(bit), &tick_dep_mask);
304 }
305
306
307
308
309
310 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
311 {
312 int prev;
313 struct tick_sched *ts;
314
315 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
316
317 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
318 if (!prev) {
319 preempt_disable();
320
321 if (cpu == smp_processor_id()) {
322 tick_nohz_full_kick();
323 } else {
324
325 if (!WARN_ON_ONCE(in_nmi()))
326 tick_nohz_full_kick_cpu(cpu);
327 }
328 preempt_enable();
329 }
330 }
331
332 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
333 {
334 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
335
336 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
337 }
338
339
340
341
342
343 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
344 {
345
346
347
348
349 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
350 }
351
352 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
353 {
354 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
355 }
356
357
358
359
360
361 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
362 {
363 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
364 }
365
366 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
367 {
368 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
369 }
370
371
372
373
374
375
376 void __tick_nohz_task_switch(void)
377 {
378 unsigned long flags;
379 struct tick_sched *ts;
380
381 local_irq_save(flags);
382
383 if (!tick_nohz_full_cpu(smp_processor_id()))
384 goto out;
385
386 ts = this_cpu_ptr(&tick_cpu_sched);
387
388 if (ts->tick_stopped) {
389 if (atomic_read(¤t->tick_dep_mask) ||
390 atomic_read(¤t->signal->tick_dep_mask))
391 tick_nohz_full_kick();
392 }
393 out:
394 local_irq_restore(flags);
395 }
396
397
398 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
399 {
400 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
401 cpumask_copy(tick_nohz_full_mask, cpumask);
402 tick_nohz_full_running = true;
403 }
404
405 static int tick_nohz_cpu_down(unsigned int cpu)
406 {
407
408
409
410
411
412 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
413 return -EBUSY;
414 return 0;
415 }
416
417 void __init tick_nohz_init(void)
418 {
419 int cpu, ret;
420
421 if (!tick_nohz_full_running)
422 return;
423
424
425
426
427
428
429 if (!arch_irq_work_has_interrupt()) {
430 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
431 cpumask_clear(tick_nohz_full_mask);
432 tick_nohz_full_running = false;
433 return;
434 }
435
436 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
437 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
438 cpu = smp_processor_id();
439
440 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
441 pr_warn("NO_HZ: Clearing %d from nohz_full range "
442 "for timekeeping\n", cpu);
443 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
444 }
445 }
446
447 for_each_cpu(cpu, tick_nohz_full_mask)
448 context_tracking_cpu_set(cpu);
449
450 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
451 "kernel/nohz:predown", NULL,
452 tick_nohz_cpu_down);
453 WARN_ON(ret < 0);
454 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
455 cpumask_pr_args(tick_nohz_full_mask));
456 }
457 #endif
458
459
460
461
462 #ifdef CONFIG_NO_HZ_COMMON
463
464
465
466 bool tick_nohz_enabled __read_mostly = true;
467 unsigned long tick_nohz_active __read_mostly;
468
469
470
471 static int __init setup_tick_nohz(char *str)
472 {
473 return (kstrtobool(str, &tick_nohz_enabled) == 0);
474 }
475
476 __setup("nohz=", setup_tick_nohz);
477
478 bool tick_nohz_tick_stopped(void)
479 {
480 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
481
482 return ts->tick_stopped;
483 }
484
485 bool tick_nohz_tick_stopped_cpu(int cpu)
486 {
487 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
488
489 return ts->tick_stopped;
490 }
491
492
493
494
495
496
497
498
499
500
501
502 static void tick_nohz_update_jiffies(ktime_t now)
503 {
504 unsigned long flags;
505
506 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
507
508 local_irq_save(flags);
509 tick_do_update_jiffies64(now);
510 local_irq_restore(flags);
511
512 touch_softlockup_watchdog_sched();
513 }
514
515
516
517
518 static void
519 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
520 {
521 ktime_t delta;
522
523 if (ts->idle_active) {
524 delta = ktime_sub(now, ts->idle_entrytime);
525 if (nr_iowait_cpu(cpu) > 0)
526 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
527 else
528 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
529 ts->idle_entrytime = now;
530 }
531
532 if (last_update_time)
533 *last_update_time = ktime_to_us(now);
534
535 }
536
537 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
538 {
539 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
540 ts->idle_active = 0;
541
542 sched_clock_idle_wakeup_event();
543 }
544
545 static void tick_nohz_start_idle(struct tick_sched *ts)
546 {
547 ts->idle_entrytime = ktime_get();
548 ts->idle_active = 1;
549 sched_clock_idle_sleep_event();
550 }
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
567 {
568 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
569 ktime_t now, idle;
570
571 if (!tick_nohz_active)
572 return -1;
573
574 now = ktime_get();
575 if (last_update_time) {
576 update_ts_time_stats(cpu, ts, now, last_update_time);
577 idle = ts->idle_sleeptime;
578 } else {
579 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
580 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
581
582 idle = ktime_add(ts->idle_sleeptime, delta);
583 } else {
584 idle = ts->idle_sleeptime;
585 }
586 }
587
588 return ktime_to_us(idle);
589
590 }
591 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
608 {
609 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
610 ktime_t now, iowait;
611
612 if (!tick_nohz_active)
613 return -1;
614
615 now = ktime_get();
616 if (last_update_time) {
617 update_ts_time_stats(cpu, ts, now, last_update_time);
618 iowait = ts->iowait_sleeptime;
619 } else {
620 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
621 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
622
623 iowait = ktime_add(ts->iowait_sleeptime, delta);
624 } else {
625 iowait = ts->iowait_sleeptime;
626 }
627 }
628
629 return ktime_to_us(iowait);
630 }
631 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
632
633 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
634 {
635 hrtimer_cancel(&ts->sched_timer);
636 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
637
638
639 hrtimer_forward(&ts->sched_timer, now, tick_period);
640
641 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
642 hrtimer_start_expires(&ts->sched_timer,
643 HRTIMER_MODE_ABS_PINNED_HARD);
644 } else {
645 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
646 }
647
648
649
650
651
652 ts->next_tick = 0;
653 }
654
655 static inline bool local_timer_softirq_pending(void)
656 {
657 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
658 }
659
660 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
661 {
662 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
663 unsigned long basejiff;
664 unsigned int seq;
665
666
667 do {
668 seq = read_seqbegin(&jiffies_lock);
669 basemono = last_jiffies_update;
670 basejiff = jiffies;
671 } while (read_seqretry(&jiffies_lock, seq));
672 ts->last_jiffies = basejiff;
673 ts->timer_expires_base = basemono;
674
675
676
677
678
679
680
681
682
683
684
685 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
686 irq_work_needs_cpu() || local_timer_softirq_pending()) {
687 next_tick = basemono + TICK_NSEC;
688 } else {
689
690
691
692
693
694
695
696 next_tmr = get_next_timer_interrupt(basejiff, basemono);
697 ts->next_timer = next_tmr;
698
699 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
700 }
701
702
703
704
705
706 delta = next_tick - basemono;
707 if (delta <= (u64)TICK_NSEC) {
708
709
710
711
712 timer_clear_idle();
713
714
715
716
717 if (!ts->tick_stopped) {
718 ts->timer_expires = 0;
719 goto out;
720 }
721 }
722
723
724
725
726
727
728 delta = timekeeping_max_deferment();
729 if (cpu != tick_do_timer_cpu &&
730 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
731 delta = KTIME_MAX;
732
733
734 if (delta < (KTIME_MAX - basemono))
735 expires = basemono + delta;
736 else
737 expires = KTIME_MAX;
738
739 ts->timer_expires = min_t(u64, expires, next_tick);
740
741 out:
742 return ts->timer_expires;
743 }
744
745 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
746 {
747 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
748 u64 basemono = ts->timer_expires_base;
749 u64 expires = ts->timer_expires;
750 ktime_t tick = expires;
751
752
753 ts->timer_expires_base = 0;
754
755
756
757
758
759
760
761
762
763 if (cpu == tick_do_timer_cpu) {
764 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
765 ts->do_timer_last = 1;
766 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
767 ts->do_timer_last = 0;
768 }
769
770
771 if (ts->tick_stopped && (expires == ts->next_tick)) {
772
773 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
774 return;
775
776 WARN_ON_ONCE(1);
777 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
778 basemono, ts->next_tick, dev->next_event,
779 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
780 }
781
782
783
784
785
786
787
788
789 if (!ts->tick_stopped) {
790 calc_load_nohz_start();
791 quiet_vmstat();
792
793 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
794 ts->tick_stopped = 1;
795 trace_tick_stop(1, TICK_DEP_MASK_NONE);
796 }
797
798 ts->next_tick = tick;
799
800
801
802
803
804 if (unlikely(expires == KTIME_MAX)) {
805 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
806 hrtimer_cancel(&ts->sched_timer);
807 return;
808 }
809
810 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
811 hrtimer_start(&ts->sched_timer, tick,
812 HRTIMER_MODE_ABS_PINNED_HARD);
813 } else {
814 hrtimer_set_expires(&ts->sched_timer, tick);
815 tick_program_event(tick, 1);
816 }
817 }
818
819 static void tick_nohz_retain_tick(struct tick_sched *ts)
820 {
821 ts->timer_expires_base = 0;
822 }
823
824 #ifdef CONFIG_NO_HZ_FULL
825 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
826 {
827 if (tick_nohz_next_event(ts, cpu))
828 tick_nohz_stop_tick(ts, cpu);
829 else
830 tick_nohz_retain_tick(ts);
831 }
832 #endif
833
834 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
835 {
836
837 tick_do_update_jiffies64(now);
838
839
840
841
842
843 timer_clear_idle();
844
845 calc_load_nohz_stop();
846 touch_softlockup_watchdog_sched();
847
848
849
850 ts->tick_stopped = 0;
851 ts->idle_exittime = now;
852
853 tick_nohz_restart(ts, now);
854 }
855
856 static void tick_nohz_full_update_tick(struct tick_sched *ts)
857 {
858 #ifdef CONFIG_NO_HZ_FULL
859 int cpu = smp_processor_id();
860
861 if (!tick_nohz_full_cpu(cpu))
862 return;
863
864 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
865 return;
866
867 if (can_stop_full_tick(cpu, ts))
868 tick_nohz_stop_sched_tick(ts, cpu);
869 else if (ts->tick_stopped)
870 tick_nohz_restart_sched_tick(ts, ktime_get());
871 #endif
872 }
873
874 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
875 {
876
877
878
879
880
881
882
883 if (unlikely(!cpu_online(cpu))) {
884 if (cpu == tick_do_timer_cpu)
885 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
886
887
888
889
890 ts->next_tick = 0;
891 return false;
892 }
893
894 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
895 return false;
896
897 if (need_resched())
898 return false;
899
900 if (unlikely(local_softirq_pending())) {
901 static int ratelimit;
902
903 if (ratelimit < 10 &&
904 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
905 pr_warn("NOHZ: local_softirq_pending %02x\n",
906 (unsigned int) local_softirq_pending());
907 ratelimit++;
908 }
909 return false;
910 }
911
912 if (tick_nohz_full_enabled()) {
913
914
915
916
917 if (tick_do_timer_cpu == cpu)
918 return false;
919
920
921
922
923
924 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
925 return false;
926
927
928 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
929 return false;
930 }
931
932 return true;
933 }
934
935 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
936 {
937 ktime_t expires;
938 int cpu = smp_processor_id();
939
940
941
942
943
944 if (ts->timer_expires_base)
945 expires = ts->timer_expires;
946 else if (can_stop_idle_tick(cpu, ts))
947 expires = tick_nohz_next_event(ts, cpu);
948 else
949 return;
950
951 ts->idle_calls++;
952
953 if (expires > 0LL) {
954 int was_stopped = ts->tick_stopped;
955
956 tick_nohz_stop_tick(ts, cpu);
957
958 ts->idle_sleeps++;
959 ts->idle_expires = expires;
960
961 if (!was_stopped && ts->tick_stopped) {
962 ts->idle_jiffies = ts->last_jiffies;
963 nohz_balance_enter_idle(cpu);
964 }
965 } else {
966 tick_nohz_retain_tick(ts);
967 }
968 }
969
970
971
972
973
974
975 void tick_nohz_idle_stop_tick(void)
976 {
977 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
978 }
979
980 void tick_nohz_idle_retain_tick(void)
981 {
982 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
983
984
985
986
987 timer_clear_idle();
988 }
989
990
991
992
993
994
995 void tick_nohz_idle_enter(void)
996 {
997 struct tick_sched *ts;
998
999 lockdep_assert_irqs_enabled();
1000
1001 local_irq_disable();
1002
1003 ts = this_cpu_ptr(&tick_cpu_sched);
1004
1005 WARN_ON_ONCE(ts->timer_expires_base);
1006
1007 ts->inidle = 1;
1008 tick_nohz_start_idle(ts);
1009
1010 local_irq_enable();
1011 }
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021 void tick_nohz_irq_exit(void)
1022 {
1023 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1024
1025 if (ts->inidle)
1026 tick_nohz_start_idle(ts);
1027 else
1028 tick_nohz_full_update_tick(ts);
1029 }
1030
1031
1032
1033
1034 bool tick_nohz_idle_got_tick(void)
1035 {
1036 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1037
1038 if (ts->got_idle_tick) {
1039 ts->got_idle_tick = 0;
1040 return true;
1041 }
1042 return false;
1043 }
1044
1045
1046
1047
1048
1049
1050
1051
1052 ktime_t tick_nohz_get_next_hrtimer(void)
1053 {
1054 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1055 }
1056
1057
1058
1059
1060
1061
1062
1063 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1064 {
1065 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1066 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1067 int cpu = smp_processor_id();
1068
1069
1070
1071
1072 ktime_t now = ts->idle_entrytime;
1073 ktime_t next_event;
1074
1075 WARN_ON_ONCE(!ts->inidle);
1076
1077 *delta_next = ktime_sub(dev->next_event, now);
1078
1079 if (!can_stop_idle_tick(cpu, ts))
1080 return *delta_next;
1081
1082 next_event = tick_nohz_next_event(ts, cpu);
1083 if (!next_event)
1084 return *delta_next;
1085
1086
1087
1088
1089
1090 next_event = min_t(u64, next_event,
1091 hrtimer_next_event_without(&ts->sched_timer));
1092
1093 return ktime_sub(next_event, now);
1094 }
1095
1096
1097
1098
1099
1100
1101
1102 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1103 {
1104 struct tick_sched *ts = tick_get_tick_sched(cpu);
1105
1106 return ts->idle_calls;
1107 }
1108
1109
1110
1111
1112
1113
1114 unsigned long tick_nohz_get_idle_calls(void)
1115 {
1116 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1117
1118 return ts->idle_calls;
1119 }
1120
1121 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1122 {
1123 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1124 unsigned long ticks;
1125
1126 if (vtime_accounting_cpu_enabled())
1127 return;
1128
1129
1130
1131
1132
1133 ticks = jiffies - ts->idle_jiffies;
1134
1135
1136
1137 if (ticks && ticks < LONG_MAX)
1138 account_idle_ticks(ticks);
1139 #endif
1140 }
1141
1142 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1143 {
1144 tick_nohz_restart_sched_tick(ts, now);
1145 tick_nohz_account_idle_ticks(ts);
1146 }
1147
1148 void tick_nohz_idle_restart_tick(void)
1149 {
1150 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1151
1152 if (ts->tick_stopped)
1153 __tick_nohz_idle_restart_tick(ts, ktime_get());
1154 }
1155
1156
1157
1158
1159
1160
1161
1162
1163 void tick_nohz_idle_exit(void)
1164 {
1165 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1166 bool idle_active, tick_stopped;
1167 ktime_t now;
1168
1169 local_irq_disable();
1170
1171 WARN_ON_ONCE(!ts->inidle);
1172 WARN_ON_ONCE(ts->timer_expires_base);
1173
1174 ts->inidle = 0;
1175 idle_active = ts->idle_active;
1176 tick_stopped = ts->tick_stopped;
1177
1178 if (idle_active || tick_stopped)
1179 now = ktime_get();
1180
1181 if (idle_active)
1182 tick_nohz_stop_idle(ts, now);
1183
1184 if (tick_stopped)
1185 __tick_nohz_idle_restart_tick(ts, now);
1186
1187 local_irq_enable();
1188 }
1189
1190
1191
1192
1193 static void tick_nohz_handler(struct clock_event_device *dev)
1194 {
1195 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1196 struct pt_regs *regs = get_irq_regs();
1197 ktime_t now = ktime_get();
1198
1199 dev->next_event = KTIME_MAX;
1200
1201 tick_sched_do_timer(ts, now);
1202 tick_sched_handle(ts, regs);
1203
1204
1205 if (unlikely(ts->tick_stopped))
1206 return;
1207
1208 hrtimer_forward(&ts->sched_timer, now, tick_period);
1209 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1210 }
1211
1212 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1213 {
1214 if (!tick_nohz_enabled)
1215 return;
1216 ts->nohz_mode = mode;
1217
1218 if (!test_and_set_bit(0, &tick_nohz_active))
1219 timers_update_nohz();
1220 }
1221
1222
1223
1224
1225 static void tick_nohz_switch_to_nohz(void)
1226 {
1227 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1228 ktime_t next;
1229
1230 if (!tick_nohz_enabled)
1231 return;
1232
1233 if (tick_switch_to_oneshot(tick_nohz_handler))
1234 return;
1235
1236
1237
1238
1239
1240 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1241
1242 next = tick_init_jiffy_update();
1243
1244 hrtimer_set_expires(&ts->sched_timer, next);
1245 hrtimer_forward_now(&ts->sched_timer, tick_period);
1246 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1247 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1248 }
1249
1250 static inline void tick_nohz_irq_enter(void)
1251 {
1252 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253 ktime_t now;
1254
1255 if (!ts->idle_active && !ts->tick_stopped)
1256 return;
1257 now = ktime_get();
1258 if (ts->idle_active)
1259 tick_nohz_stop_idle(ts, now);
1260 if (ts->tick_stopped)
1261 tick_nohz_update_jiffies(now);
1262 }
1263
1264 #else
1265
1266 static inline void tick_nohz_switch_to_nohz(void) { }
1267 static inline void tick_nohz_irq_enter(void) { }
1268 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1269
1270 #endif
1271
1272
1273
1274
1275 void tick_irq_enter(void)
1276 {
1277 tick_check_oneshot_broadcast_this_cpu();
1278 tick_nohz_irq_enter();
1279 }
1280
1281
1282
1283
1284 #ifdef CONFIG_HIGH_RES_TIMERS
1285
1286
1287
1288
1289 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1290 {
1291 struct tick_sched *ts =
1292 container_of(timer, struct tick_sched, sched_timer);
1293 struct pt_regs *regs = get_irq_regs();
1294 ktime_t now = ktime_get();
1295
1296 tick_sched_do_timer(ts, now);
1297
1298
1299
1300
1301
1302 if (regs)
1303 tick_sched_handle(ts, regs);
1304 else
1305 ts->next_tick = 0;
1306
1307
1308 if (unlikely(ts->tick_stopped))
1309 return HRTIMER_NORESTART;
1310
1311 hrtimer_forward(timer, now, tick_period);
1312
1313 return HRTIMER_RESTART;
1314 }
1315
1316 static int sched_skew_tick;
1317
1318 static int __init skew_tick(char *str)
1319 {
1320 get_option(&str, &sched_skew_tick);
1321
1322 return 0;
1323 }
1324 early_param("skew_tick", skew_tick);
1325
1326
1327
1328
1329 void tick_setup_sched_timer(void)
1330 {
1331 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1332 ktime_t now = ktime_get();
1333
1334
1335
1336
1337 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1338 ts->sched_timer.function = tick_sched_timer;
1339
1340
1341 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1342
1343
1344 if (sched_skew_tick) {
1345 u64 offset = ktime_to_ns(tick_period) >> 1;
1346 do_div(offset, num_possible_cpus());
1347 offset *= smp_processor_id();
1348 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1349 }
1350
1351 hrtimer_forward(&ts->sched_timer, now, tick_period);
1352 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1353 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1354 }
1355 #endif
1356
1357 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1358 void tick_cancel_sched_timer(int cpu)
1359 {
1360 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1361
1362 # ifdef CONFIG_HIGH_RES_TIMERS
1363 if (ts->sched_timer.base)
1364 hrtimer_cancel(&ts->sched_timer);
1365 # endif
1366
1367 memset(ts, 0, sizeof(*ts));
1368 }
1369 #endif
1370
1371
1372
1373
1374 void tick_clock_notify(void)
1375 {
1376 int cpu;
1377
1378 for_each_possible_cpu(cpu)
1379 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1380 }
1381
1382
1383
1384
1385 void tick_oneshot_notify(void)
1386 {
1387 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1388
1389 set_bit(0, &ts->check_clocks);
1390 }
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400 int tick_check_oneshot_change(int allow_nohz)
1401 {
1402 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1403
1404 if (!test_and_clear_bit(0, &ts->check_clocks))
1405 return 0;
1406
1407 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1408 return 0;
1409
1410 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1411 return 0;
1412
1413 if (!allow_nohz)
1414 return 1;
1415
1416 tick_nohz_switch_to_nohz();
1417 return 0;
1418 }