This source file includes following definitions.
- audit_match_perm
- audit_match_filetype
- audit_set_auditable
- put_tree_ref
- grow_tree_refs
- unroll_tree_refs
- free_tree_refs
- match_tree_refs
- audit_compare_uid
- audit_compare_gid
- audit_field_compare
- audit_filter_rules
- audit_filter_task
- audit_in_mask
- audit_filter_syscall
- audit_filter_inode_name
- audit_filter_inodes
- audit_proctitle_free
- audit_free_module
- audit_free_names
- audit_free_aux
- audit_alloc_context
- audit_alloc
- audit_free_context
- audit_log_pid_context
- audit_log_execve_info
- audit_log_cap
- audit_log_fcaps
- show_special
- audit_proctitle_rtrim
- audit_log_name
- audit_log_proctitle
- audit_log_exit
- __audit_free
- __audit_syscall_entry
- __audit_syscall_exit
- handle_one
- handle_path
- audit_alloc_name
- __audit_reusename
- __audit_getname
- audit_copy_fcaps
- audit_copy_inode
- __audit_inode
- __audit_file
- __audit_inode_child
- auditsc_get_stamp
- __audit_mq_open
- __audit_mq_sendrecv
- __audit_mq_notify
- __audit_mq_getsetattr
- __audit_ipc_obj
- __audit_ipc_set_perm
- __audit_bprm
- __audit_socketcall
- __audit_fd_pair
- __audit_sockaddr
- __audit_ptrace
- audit_signal_info_syscall
- __audit_log_bprm_fcaps
- __audit_log_capset
- __audit_mmap_fd
- __audit_log_kern_module
- __audit_fanotify
- __audit_tk_injoffset
- audit_log_ntp_val
- __audit_ntp_log
- audit_log_task
- audit_core_dumps
- audit_seccomp
- audit_seccomp_actions_logged
- audit_killed_trees
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86
87
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93
94 int audit_n_rules;
95
96
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0:
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1:
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2:
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3:
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4:
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5:
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193
194
195
196
197
198
199
200
201
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254
255 p = ctx->first_trees;
256 count = 31;
257
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310 {
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359 {
360 switch (f->val) {
361
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430
431
432
433
434
435
436
437
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name) {
605 result = audit_watch_compare(rule->watch,
606 name->ino,
607 name->dev);
608 if (f->op == Audit_not_equal)
609 result = !result;
610 }
611 break;
612 case AUDIT_DIR:
613 if (ctx) {
614 result = match_tree_refs(ctx, rule->tree);
615 if (f->op == Audit_not_equal)
616 result = !result;
617 }
618 break;
619 case AUDIT_LOGINUID:
620 result = audit_uid_comparator(audit_get_loginuid(tsk),
621 f->op, f->uid);
622 break;
623 case AUDIT_LOGINUID_SET:
624 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
625 break;
626 case AUDIT_SADDR_FAM:
627 if (ctx->sockaddr)
628 result = audit_comparator(ctx->sockaddr->ss_family,
629 f->op, f->val);
630 break;
631 case AUDIT_SUBJ_USER:
632 case AUDIT_SUBJ_ROLE:
633 case AUDIT_SUBJ_TYPE:
634 case AUDIT_SUBJ_SEN:
635 case AUDIT_SUBJ_CLR:
636
637
638
639
640
641 if (f->lsm_rule) {
642 if (need_sid) {
643 security_task_getsecid(tsk, &sid);
644 need_sid = 0;
645 }
646 result = security_audit_rule_match(sid, f->type,
647 f->op,
648 f->lsm_rule);
649 }
650 break;
651 case AUDIT_OBJ_USER:
652 case AUDIT_OBJ_ROLE:
653 case AUDIT_OBJ_TYPE:
654 case AUDIT_OBJ_LEV_LOW:
655 case AUDIT_OBJ_LEV_HIGH:
656
657
658 if (f->lsm_rule) {
659
660 if (name) {
661 result = security_audit_rule_match(
662 name->osid,
663 f->type,
664 f->op,
665 f->lsm_rule);
666 } else if (ctx) {
667 list_for_each_entry(n, &ctx->names_list, list) {
668 if (security_audit_rule_match(
669 n->osid,
670 f->type,
671 f->op,
672 f->lsm_rule)) {
673 ++result;
674 break;
675 }
676 }
677 }
678
679 if (!ctx || ctx->type != AUDIT_IPC)
680 break;
681 if (security_audit_rule_match(ctx->ipc.osid,
682 f->type, f->op,
683 f->lsm_rule))
684 ++result;
685 }
686 break;
687 case AUDIT_ARG0:
688 case AUDIT_ARG1:
689 case AUDIT_ARG2:
690 case AUDIT_ARG3:
691 if (ctx)
692 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
693 break;
694 case AUDIT_FILTERKEY:
695
696 result = 1;
697 break;
698 case AUDIT_PERM:
699 result = audit_match_perm(ctx, f->val);
700 if (f->op == Audit_not_equal)
701 result = !result;
702 break;
703 case AUDIT_FILETYPE:
704 result = audit_match_filetype(ctx, f->val);
705 if (f->op == Audit_not_equal)
706 result = !result;
707 break;
708 case AUDIT_FIELD_COMPARE:
709 result = audit_field_compare(tsk, cred, f, ctx, name);
710 break;
711 }
712 if (!result)
713 return 0;
714 }
715
716 if (ctx) {
717 if (rule->prio <= ctx->prio)
718 return 0;
719 if (rule->filterkey) {
720 kfree(ctx->filterkey);
721 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
722 }
723 ctx->prio = rule->prio;
724 }
725 switch (rule->action) {
726 case AUDIT_NEVER:
727 *state = AUDIT_DISABLED;
728 break;
729 case AUDIT_ALWAYS:
730 *state = AUDIT_RECORD_CONTEXT;
731 break;
732 }
733 return 1;
734 }
735
736
737
738
739
740 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
741 {
742 struct audit_entry *e;
743 enum audit_state state;
744
745 rcu_read_lock();
746 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
747 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
748 &state, true)) {
749 if (state == AUDIT_RECORD_CONTEXT)
750 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
751 rcu_read_unlock();
752 return state;
753 }
754 }
755 rcu_read_unlock();
756 return AUDIT_BUILD_CONTEXT;
757 }
758
759 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
760 {
761 int word, bit;
762
763 if (val > 0xffffffff)
764 return false;
765
766 word = AUDIT_WORD(val);
767 if (word >= AUDIT_BITMASK_SIZE)
768 return false;
769
770 bit = AUDIT_BIT(val);
771
772 return rule->mask[word] & bit;
773 }
774
775
776
777
778
779
780 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
781 struct audit_context *ctx,
782 struct list_head *list)
783 {
784 struct audit_entry *e;
785 enum audit_state state;
786
787 if (auditd_test_task(tsk))
788 return AUDIT_DISABLED;
789
790 rcu_read_lock();
791 list_for_each_entry_rcu(e, list, list) {
792 if (audit_in_mask(&e->rule, ctx->major) &&
793 audit_filter_rules(tsk, &e->rule, ctx, NULL,
794 &state, false)) {
795 rcu_read_unlock();
796 ctx->current_state = state;
797 return state;
798 }
799 }
800 rcu_read_unlock();
801 return AUDIT_BUILD_CONTEXT;
802 }
803
804
805
806
807
808 static int audit_filter_inode_name(struct task_struct *tsk,
809 struct audit_names *n,
810 struct audit_context *ctx) {
811 int h = audit_hash_ino((u32)n->ino);
812 struct list_head *list = &audit_inode_hash[h];
813 struct audit_entry *e;
814 enum audit_state state;
815
816 list_for_each_entry_rcu(e, list, list) {
817 if (audit_in_mask(&e->rule, ctx->major) &&
818 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
819 ctx->current_state = state;
820 return 1;
821 }
822 }
823 return 0;
824 }
825
826
827
828
829
830
831 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
832 {
833 struct audit_names *n;
834
835 if (auditd_test_task(tsk))
836 return;
837
838 rcu_read_lock();
839
840 list_for_each_entry(n, &ctx->names_list, list) {
841 if (audit_filter_inode_name(tsk, n, ctx))
842 break;
843 }
844 rcu_read_unlock();
845 }
846
847 static inline void audit_proctitle_free(struct audit_context *context)
848 {
849 kfree(context->proctitle.value);
850 context->proctitle.value = NULL;
851 context->proctitle.len = 0;
852 }
853
854 static inline void audit_free_module(struct audit_context *context)
855 {
856 if (context->type == AUDIT_KERN_MODULE) {
857 kfree(context->module.name);
858 context->module.name = NULL;
859 }
860 }
861 static inline void audit_free_names(struct audit_context *context)
862 {
863 struct audit_names *n, *next;
864
865 list_for_each_entry_safe(n, next, &context->names_list, list) {
866 list_del(&n->list);
867 if (n->name)
868 putname(n->name);
869 if (n->should_free)
870 kfree(n);
871 }
872 context->name_count = 0;
873 path_put(&context->pwd);
874 context->pwd.dentry = NULL;
875 context->pwd.mnt = NULL;
876 }
877
878 static inline void audit_free_aux(struct audit_context *context)
879 {
880 struct audit_aux_data *aux;
881
882 while ((aux = context->aux)) {
883 context->aux = aux->next;
884 kfree(aux);
885 }
886 while ((aux = context->aux_pids)) {
887 context->aux_pids = aux->next;
888 kfree(aux);
889 }
890 }
891
892 static inline struct audit_context *audit_alloc_context(enum audit_state state)
893 {
894 struct audit_context *context;
895
896 context = kzalloc(sizeof(*context), GFP_KERNEL);
897 if (!context)
898 return NULL;
899 context->state = state;
900 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
901 INIT_LIST_HEAD(&context->killed_trees);
902 INIT_LIST_HEAD(&context->names_list);
903 return context;
904 }
905
906
907
908
909
910
911
912
913
914
915 int audit_alloc(struct task_struct *tsk)
916 {
917 struct audit_context *context;
918 enum audit_state state;
919 char *key = NULL;
920
921 if (likely(!audit_ever_enabled))
922 return 0;
923
924 state = audit_filter_task(tsk, &key);
925 if (state == AUDIT_DISABLED) {
926 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
927 return 0;
928 }
929
930 if (!(context = audit_alloc_context(state))) {
931 kfree(key);
932 audit_log_lost("out of memory in audit_alloc");
933 return -ENOMEM;
934 }
935 context->filterkey = key;
936
937 audit_set_context(tsk, context);
938 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939 return 0;
940 }
941
942 static inline void audit_free_context(struct audit_context *context)
943 {
944 audit_free_module(context);
945 audit_free_names(context);
946 unroll_tree_refs(context, NULL, 0);
947 free_tree_refs(context);
948 audit_free_aux(context);
949 kfree(context->filterkey);
950 kfree(context->sockaddr);
951 audit_proctitle_free(context);
952 kfree(context);
953 }
954
955 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
956 kuid_t auid, kuid_t uid, unsigned int sessionid,
957 u32 sid, char *comm)
958 {
959 struct audit_buffer *ab;
960 char *ctx = NULL;
961 u32 len;
962 int rc = 0;
963
964 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
965 if (!ab)
966 return rc;
967
968 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
969 from_kuid(&init_user_ns, auid),
970 from_kuid(&init_user_ns, uid), sessionid);
971 if (sid) {
972 if (security_secid_to_secctx(sid, &ctx, &len)) {
973 audit_log_format(ab, " obj=(none)");
974 rc = 1;
975 } else {
976 audit_log_format(ab, " obj=%s", ctx);
977 security_release_secctx(ctx, len);
978 }
979 }
980 audit_log_format(ab, " ocomm=");
981 audit_log_untrustedstring(ab, comm);
982 audit_log_end(ab);
983
984 return rc;
985 }
986
987 static void audit_log_execve_info(struct audit_context *context,
988 struct audit_buffer **ab)
989 {
990 long len_max;
991 long len_rem;
992 long len_full;
993 long len_buf;
994 long len_abuf = 0;
995 long len_tmp;
996 bool require_data;
997 bool encode;
998 unsigned int iter;
999 unsigned int arg;
1000 char *buf_head;
1001 char *buf;
1002 const char __user *p = (const char __user *)current->mm->arg_start;
1003
1004
1005
1006
1007 char abuf[96];
1008
1009
1010
1011
1012
1013 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1014 len_max = MAX_EXECVE_AUDIT_LEN;
1015
1016
1017 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1018 if (!buf_head) {
1019 audit_panic("out of memory for argv string");
1020 return;
1021 }
1022 buf = buf_head;
1023
1024 audit_log_format(*ab, "argc=%d", context->execve.argc);
1025
1026 len_rem = len_max;
1027 len_buf = 0;
1028 len_full = 0;
1029 require_data = true;
1030 encode = false;
1031 iter = 0;
1032 arg = 0;
1033 do {
1034
1035
1036
1037
1038
1039
1040
1041 if (len_full == 0)
1042 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1043
1044
1045 if (require_data) {
1046
1047 if (buf != buf_head) {
1048 memmove(buf_head, buf, len_buf);
1049 buf = buf_head;
1050 }
1051
1052
1053 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1054 len_max - len_buf);
1055 if (len_tmp == -EFAULT) {
1056
1057 send_sig(SIGKILL, current, 0);
1058 goto out;
1059 } else if (len_tmp == (len_max - len_buf)) {
1060
1061 require_data = true;
1062
1063
1064
1065
1066 encode = true;
1067 len_full = len_full * 2;
1068 p += len_tmp;
1069 } else {
1070 require_data = false;
1071 if (!encode)
1072 encode = audit_string_contains_control(
1073 buf, len_tmp);
1074
1075 if (len_full < len_max)
1076 len_full = (encode ?
1077 len_tmp * 2 : len_tmp);
1078 p += len_tmp + 1;
1079 }
1080 len_buf += len_tmp;
1081 buf_head[len_buf] = '\0';
1082
1083
1084 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1085 }
1086
1087
1088 if (len_buf >= 0) {
1089
1090
1091
1092
1093 if ((sizeof(abuf) + 8) > len_rem) {
1094 len_rem = len_max;
1095 audit_log_end(*ab);
1096 *ab = audit_log_start(context,
1097 GFP_KERNEL, AUDIT_EXECVE);
1098 if (!*ab)
1099 goto out;
1100 }
1101
1102
1103 len_tmp = 0;
1104 if (require_data || (iter > 0) ||
1105 ((len_abuf + sizeof(abuf)) > len_rem)) {
1106 if (iter == 0) {
1107 len_tmp += snprintf(&abuf[len_tmp],
1108 sizeof(abuf) - len_tmp,
1109 " a%d_len=%lu",
1110 arg, len_full);
1111 }
1112 len_tmp += snprintf(&abuf[len_tmp],
1113 sizeof(abuf) - len_tmp,
1114 " a%d[%d]=", arg, iter++);
1115 } else
1116 len_tmp += snprintf(&abuf[len_tmp],
1117 sizeof(abuf) - len_tmp,
1118 " a%d=", arg);
1119 WARN_ON(len_tmp >= sizeof(abuf));
1120 abuf[sizeof(abuf) - 1] = '\0';
1121
1122
1123 audit_log_format(*ab, "%s", abuf);
1124 len_rem -= len_tmp;
1125 len_tmp = len_buf;
1126 if (encode) {
1127 if (len_abuf > len_rem)
1128 len_tmp = len_rem / 2;
1129 audit_log_n_hex(*ab, buf, len_tmp);
1130 len_rem -= len_tmp * 2;
1131 len_abuf -= len_tmp * 2;
1132 } else {
1133 if (len_abuf > len_rem)
1134 len_tmp = len_rem - 2;
1135 audit_log_n_string(*ab, buf, len_tmp);
1136 len_rem -= len_tmp + 2;
1137
1138
1139 len_abuf -= len_tmp;
1140 }
1141 len_buf -= len_tmp;
1142 buf += len_tmp;
1143 }
1144
1145
1146 if ((len_buf == 0) && !require_data) {
1147 arg++;
1148 iter = 0;
1149 len_full = 0;
1150 require_data = true;
1151 encode = false;
1152 }
1153 } while (arg < context->execve.argc);
1154
1155
1156
1157 out:
1158 kfree(buf_head);
1159 }
1160
1161 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1162 kernel_cap_t *cap)
1163 {
1164 int i;
1165
1166 if (cap_isclear(*cap)) {
1167 audit_log_format(ab, " %s=0", prefix);
1168 return;
1169 }
1170 audit_log_format(ab, " %s=", prefix);
1171 CAP_FOR_EACH_U32(i)
1172 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1173 }
1174
1175 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1176 {
1177 if (name->fcap_ver == -1) {
1178 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1179 return;
1180 }
1181 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1182 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1183 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1184 name->fcap.fE, name->fcap_ver,
1185 from_kuid(&init_user_ns, name->fcap.rootid));
1186 }
1187
1188 static void show_special(struct audit_context *context, int *call_panic)
1189 {
1190 struct audit_buffer *ab;
1191 int i;
1192
1193 ab = audit_log_start(context, GFP_KERNEL, context->type);
1194 if (!ab)
1195 return;
1196
1197 switch (context->type) {
1198 case AUDIT_SOCKETCALL: {
1199 int nargs = context->socketcall.nargs;
1200 audit_log_format(ab, "nargs=%d", nargs);
1201 for (i = 0; i < nargs; i++)
1202 audit_log_format(ab, " a%d=%lx", i,
1203 context->socketcall.args[i]);
1204 break; }
1205 case AUDIT_IPC: {
1206 u32 osid = context->ipc.osid;
1207
1208 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1209 from_kuid(&init_user_ns, context->ipc.uid),
1210 from_kgid(&init_user_ns, context->ipc.gid),
1211 context->ipc.mode);
1212 if (osid) {
1213 char *ctx = NULL;
1214 u32 len;
1215 if (security_secid_to_secctx(osid, &ctx, &len)) {
1216 audit_log_format(ab, " osid=%u", osid);
1217 *call_panic = 1;
1218 } else {
1219 audit_log_format(ab, " obj=%s", ctx);
1220 security_release_secctx(ctx, len);
1221 }
1222 }
1223 if (context->ipc.has_perm) {
1224 audit_log_end(ab);
1225 ab = audit_log_start(context, GFP_KERNEL,
1226 AUDIT_IPC_SET_PERM);
1227 if (unlikely(!ab))
1228 return;
1229 audit_log_format(ab,
1230 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1231 context->ipc.qbytes,
1232 context->ipc.perm_uid,
1233 context->ipc.perm_gid,
1234 context->ipc.perm_mode);
1235 }
1236 break; }
1237 case AUDIT_MQ_OPEN:
1238 audit_log_format(ab,
1239 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1240 "mq_msgsize=%ld mq_curmsgs=%ld",
1241 context->mq_open.oflag, context->mq_open.mode,
1242 context->mq_open.attr.mq_flags,
1243 context->mq_open.attr.mq_maxmsg,
1244 context->mq_open.attr.mq_msgsize,
1245 context->mq_open.attr.mq_curmsgs);
1246 break;
1247 case AUDIT_MQ_SENDRECV:
1248 audit_log_format(ab,
1249 "mqdes=%d msg_len=%zd msg_prio=%u "
1250 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1251 context->mq_sendrecv.mqdes,
1252 context->mq_sendrecv.msg_len,
1253 context->mq_sendrecv.msg_prio,
1254 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1255 context->mq_sendrecv.abs_timeout.tv_nsec);
1256 break;
1257 case AUDIT_MQ_NOTIFY:
1258 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1259 context->mq_notify.mqdes,
1260 context->mq_notify.sigev_signo);
1261 break;
1262 case AUDIT_MQ_GETSETATTR: {
1263 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1264 audit_log_format(ab,
1265 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1266 "mq_curmsgs=%ld ",
1267 context->mq_getsetattr.mqdes,
1268 attr->mq_flags, attr->mq_maxmsg,
1269 attr->mq_msgsize, attr->mq_curmsgs);
1270 break; }
1271 case AUDIT_CAPSET:
1272 audit_log_format(ab, "pid=%d", context->capset.pid);
1273 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1274 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1275 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1276 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1277 break;
1278 case AUDIT_MMAP:
1279 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1280 context->mmap.flags);
1281 break;
1282 case AUDIT_EXECVE:
1283 audit_log_execve_info(context, &ab);
1284 break;
1285 case AUDIT_KERN_MODULE:
1286 audit_log_format(ab, "name=");
1287 if (context->module.name) {
1288 audit_log_untrustedstring(ab, context->module.name);
1289 } else
1290 audit_log_format(ab, "(null)");
1291
1292 break;
1293 }
1294 audit_log_end(ab);
1295 }
1296
1297 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1298 {
1299 char *end = proctitle + len - 1;
1300 while (end > proctitle && !isprint(*end))
1301 end--;
1302
1303
1304 len = end - proctitle + 1;
1305 len -= isprint(proctitle[len-1]) == 0;
1306 return len;
1307 }
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1318 const struct path *path, int record_num, int *call_panic)
1319 {
1320 struct audit_buffer *ab;
1321
1322 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1323 if (!ab)
1324 return;
1325
1326 audit_log_format(ab, "item=%d", record_num);
1327
1328 if (path)
1329 audit_log_d_path(ab, " name=", path);
1330 else if (n->name) {
1331 switch (n->name_len) {
1332 case AUDIT_NAME_FULL:
1333
1334 audit_log_format(ab, " name=");
1335 audit_log_untrustedstring(ab, n->name->name);
1336 break;
1337 case 0:
1338
1339
1340
1341 audit_log_d_path(ab, " name=", &context->pwd);
1342 break;
1343 default:
1344
1345 audit_log_format(ab, " name=");
1346 audit_log_n_untrustedstring(ab, n->name->name,
1347 n->name_len);
1348 }
1349 } else
1350 audit_log_format(ab, " name=(null)");
1351
1352 if (n->ino != AUDIT_INO_UNSET)
1353 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1354 n->ino,
1355 MAJOR(n->dev),
1356 MINOR(n->dev),
1357 n->mode,
1358 from_kuid(&init_user_ns, n->uid),
1359 from_kgid(&init_user_ns, n->gid),
1360 MAJOR(n->rdev),
1361 MINOR(n->rdev));
1362 if (n->osid != 0) {
1363 char *ctx = NULL;
1364 u32 len;
1365
1366 if (security_secid_to_secctx(
1367 n->osid, &ctx, &len)) {
1368 audit_log_format(ab, " osid=%u", n->osid);
1369 if (call_panic)
1370 *call_panic = 2;
1371 } else {
1372 audit_log_format(ab, " obj=%s", ctx);
1373 security_release_secctx(ctx, len);
1374 }
1375 }
1376
1377
1378 switch (n->type) {
1379 case AUDIT_TYPE_NORMAL:
1380 audit_log_format(ab, " nametype=NORMAL");
1381 break;
1382 case AUDIT_TYPE_PARENT:
1383 audit_log_format(ab, " nametype=PARENT");
1384 break;
1385 case AUDIT_TYPE_CHILD_DELETE:
1386 audit_log_format(ab, " nametype=DELETE");
1387 break;
1388 case AUDIT_TYPE_CHILD_CREATE:
1389 audit_log_format(ab, " nametype=CREATE");
1390 break;
1391 default:
1392 audit_log_format(ab, " nametype=UNKNOWN");
1393 break;
1394 }
1395
1396 audit_log_fcaps(ab, n);
1397 audit_log_end(ab);
1398 }
1399
1400 static void audit_log_proctitle(void)
1401 {
1402 int res;
1403 char *buf;
1404 char *msg = "(null)";
1405 int len = strlen(msg);
1406 struct audit_context *context = audit_context();
1407 struct audit_buffer *ab;
1408
1409 if (!context || context->dummy)
1410 return;
1411
1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1413 if (!ab)
1414 return;
1415
1416 audit_log_format(ab, "proctitle=");
1417
1418
1419 if (!context->proctitle.value) {
1420 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1421 if (!buf)
1422 goto out;
1423
1424 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1425 if (res == 0) {
1426 kfree(buf);
1427 goto out;
1428 }
1429 res = audit_proctitle_rtrim(buf, res);
1430 if (res == 0) {
1431 kfree(buf);
1432 goto out;
1433 }
1434 context->proctitle.value = buf;
1435 context->proctitle.len = res;
1436 }
1437 msg = context->proctitle.value;
1438 len = context->proctitle.len;
1439 out:
1440 audit_log_n_untrustedstring(ab, msg, len);
1441 audit_log_end(ab);
1442 }
1443
1444 static void audit_log_exit(void)
1445 {
1446 int i, call_panic = 0;
1447 struct audit_context *context = audit_context();
1448 struct audit_buffer *ab;
1449 struct audit_aux_data *aux;
1450 struct audit_names *n;
1451
1452 context->personality = current->personality;
1453
1454 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1455 if (!ab)
1456 return;
1457 audit_log_format(ab, "arch=%x syscall=%d",
1458 context->arch, context->major);
1459 if (context->personality != PER_LINUX)
1460 audit_log_format(ab, " per=%lx", context->personality);
1461 if (context->return_valid)
1462 audit_log_format(ab, " success=%s exit=%ld",
1463 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1464 context->return_code);
1465
1466 audit_log_format(ab,
1467 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1468 context->argv[0],
1469 context->argv[1],
1470 context->argv[2],
1471 context->argv[3],
1472 context->name_count);
1473
1474 audit_log_task_info(ab);
1475 audit_log_key(ab, context->filterkey);
1476 audit_log_end(ab);
1477
1478 for (aux = context->aux; aux; aux = aux->next) {
1479
1480 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1481 if (!ab)
1482 continue;
1483
1484 switch (aux->type) {
1485
1486 case AUDIT_BPRM_FCAPS: {
1487 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1488 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1489 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1490 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1491 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1492 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1493 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1494 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1495 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1496 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1497 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1498 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1499 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1500 audit_log_format(ab, " frootid=%d",
1501 from_kuid(&init_user_ns,
1502 axs->fcap.rootid));
1503 break; }
1504
1505 }
1506 audit_log_end(ab);
1507 }
1508
1509 if (context->type)
1510 show_special(context, &call_panic);
1511
1512 if (context->fds[0] >= 0) {
1513 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1514 if (ab) {
1515 audit_log_format(ab, "fd0=%d fd1=%d",
1516 context->fds[0], context->fds[1]);
1517 audit_log_end(ab);
1518 }
1519 }
1520
1521 if (context->sockaddr_len) {
1522 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1523 if (ab) {
1524 audit_log_format(ab, "saddr=");
1525 audit_log_n_hex(ab, (void *)context->sockaddr,
1526 context->sockaddr_len);
1527 audit_log_end(ab);
1528 }
1529 }
1530
1531 for (aux = context->aux_pids; aux; aux = aux->next) {
1532 struct audit_aux_data_pids *axs = (void *)aux;
1533
1534 for (i = 0; i < axs->pid_count; i++)
1535 if (audit_log_pid_context(context, axs->target_pid[i],
1536 axs->target_auid[i],
1537 axs->target_uid[i],
1538 axs->target_sessionid[i],
1539 axs->target_sid[i],
1540 axs->target_comm[i]))
1541 call_panic = 1;
1542 }
1543
1544 if (context->target_pid &&
1545 audit_log_pid_context(context, context->target_pid,
1546 context->target_auid, context->target_uid,
1547 context->target_sessionid,
1548 context->target_sid, context->target_comm))
1549 call_panic = 1;
1550
1551 if (context->pwd.dentry && context->pwd.mnt) {
1552 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1553 if (ab) {
1554 audit_log_d_path(ab, "cwd=", &context->pwd);
1555 audit_log_end(ab);
1556 }
1557 }
1558
1559 i = 0;
1560 list_for_each_entry(n, &context->names_list, list) {
1561 if (n->hidden)
1562 continue;
1563 audit_log_name(context, n, NULL, i++, &call_panic);
1564 }
1565
1566 audit_log_proctitle();
1567
1568
1569 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1570 if (ab)
1571 audit_log_end(ab);
1572 if (call_panic)
1573 audit_panic("error converting sid to string");
1574 }
1575
1576
1577
1578
1579
1580
1581
1582 void __audit_free(struct task_struct *tsk)
1583 {
1584 struct audit_context *context = tsk->audit_context;
1585
1586 if (!context)
1587 return;
1588
1589 if (!list_empty(&context->killed_trees))
1590 audit_kill_trees(context);
1591
1592
1593
1594
1595
1596
1597 if (tsk == current && !context->dummy && context->in_syscall) {
1598 context->return_valid = 0;
1599 context->return_code = 0;
1600
1601 audit_filter_syscall(tsk, context,
1602 &audit_filter_list[AUDIT_FILTER_EXIT]);
1603 audit_filter_inodes(tsk, context);
1604 if (context->current_state == AUDIT_RECORD_CONTEXT)
1605 audit_log_exit();
1606 }
1607
1608 audit_set_context(tsk, NULL);
1609 audit_free_context(context);
1610 }
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1629 unsigned long a3, unsigned long a4)
1630 {
1631 struct audit_context *context = audit_context();
1632 enum audit_state state;
1633
1634 if (!audit_enabled || !context)
1635 return;
1636
1637 BUG_ON(context->in_syscall || context->name_count);
1638
1639 state = context->state;
1640 if (state == AUDIT_DISABLED)
1641 return;
1642
1643 context->dummy = !audit_n_rules;
1644 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1645 context->prio = 0;
1646 if (auditd_test_task(current))
1647 return;
1648 }
1649
1650 context->arch = syscall_get_arch(current);
1651 context->major = major;
1652 context->argv[0] = a1;
1653 context->argv[1] = a2;
1654 context->argv[2] = a3;
1655 context->argv[3] = a4;
1656 context->serial = 0;
1657 context->in_syscall = 1;
1658 context->current_state = state;
1659 context->ppid = 0;
1660 ktime_get_coarse_real_ts64(&context->ctime);
1661 }
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674 void __audit_syscall_exit(int success, long return_code)
1675 {
1676 struct audit_context *context;
1677
1678 context = audit_context();
1679 if (!context)
1680 return;
1681
1682 if (!list_empty(&context->killed_trees))
1683 audit_kill_trees(context);
1684
1685 if (!context->dummy && context->in_syscall) {
1686 if (success)
1687 context->return_valid = AUDITSC_SUCCESS;
1688 else
1689 context->return_valid = AUDITSC_FAILURE;
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702 if (unlikely(return_code <= -ERESTARTSYS) &&
1703 (return_code >= -ERESTART_RESTARTBLOCK) &&
1704 (return_code != -ENOIOCTLCMD))
1705 context->return_code = -EINTR;
1706 else
1707 context->return_code = return_code;
1708
1709 audit_filter_syscall(current, context,
1710 &audit_filter_list[AUDIT_FILTER_EXIT]);
1711 audit_filter_inodes(current, context);
1712 if (context->current_state == AUDIT_RECORD_CONTEXT)
1713 audit_log_exit();
1714 }
1715
1716 context->in_syscall = 0;
1717 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1718
1719 audit_free_module(context);
1720 audit_free_names(context);
1721 unroll_tree_refs(context, NULL, 0);
1722 audit_free_aux(context);
1723 context->aux = NULL;
1724 context->aux_pids = NULL;
1725 context->target_pid = 0;
1726 context->target_sid = 0;
1727 context->sockaddr_len = 0;
1728 context->type = 0;
1729 context->fds[0] = -1;
1730 if (context->state != AUDIT_RECORD_CONTEXT) {
1731 kfree(context->filterkey);
1732 context->filterkey = NULL;
1733 }
1734 }
1735
1736 static inline void handle_one(const struct inode *inode)
1737 {
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 struct audit_chunk *chunk;
1741 int count;
1742 if (likely(!inode->i_fsnotify_marks))
1743 return;
1744 context = audit_context();
1745 p = context->trees;
1746 count = context->tree_count;
1747 rcu_read_lock();
1748 chunk = audit_tree_lookup(inode);
1749 rcu_read_unlock();
1750 if (!chunk)
1751 return;
1752 if (likely(put_tree_ref(context, chunk)))
1753 return;
1754 if (unlikely(!grow_tree_refs(context))) {
1755 pr_warn("out of memory, audit has lost a tree reference\n");
1756 audit_set_auditable(context);
1757 audit_put_chunk(chunk);
1758 unroll_tree_refs(context, p, count);
1759 return;
1760 }
1761 put_tree_ref(context, chunk);
1762 }
1763
1764 static void handle_path(const struct dentry *dentry)
1765 {
1766 struct audit_context *context;
1767 struct audit_tree_refs *p;
1768 const struct dentry *d, *parent;
1769 struct audit_chunk *drop;
1770 unsigned long seq;
1771 int count;
1772
1773 context = audit_context();
1774 p = context->trees;
1775 count = context->tree_count;
1776 retry:
1777 drop = NULL;
1778 d = dentry;
1779 rcu_read_lock();
1780 seq = read_seqbegin(&rename_lock);
1781 for(;;) {
1782 struct inode *inode = d_backing_inode(d);
1783 if (inode && unlikely(inode->i_fsnotify_marks)) {
1784 struct audit_chunk *chunk;
1785 chunk = audit_tree_lookup(inode);
1786 if (chunk) {
1787 if (unlikely(!put_tree_ref(context, chunk))) {
1788 drop = chunk;
1789 break;
1790 }
1791 }
1792 }
1793 parent = d->d_parent;
1794 if (parent == d)
1795 break;
1796 d = parent;
1797 }
1798 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {
1799 rcu_read_unlock();
1800 if (!drop) {
1801
1802 unroll_tree_refs(context, p, count);
1803 goto retry;
1804 }
1805 audit_put_chunk(drop);
1806 if (grow_tree_refs(context)) {
1807
1808 unroll_tree_refs(context, p, count);
1809 goto retry;
1810 }
1811
1812 pr_warn("out of memory, audit has lost a tree reference\n");
1813 unroll_tree_refs(context, p, count);
1814 audit_set_auditable(context);
1815 return;
1816 }
1817 rcu_read_unlock();
1818 }
1819
1820 static struct audit_names *audit_alloc_name(struct audit_context *context,
1821 unsigned char type)
1822 {
1823 struct audit_names *aname;
1824
1825 if (context->name_count < AUDIT_NAMES) {
1826 aname = &context->preallocated_names[context->name_count];
1827 memset(aname, 0, sizeof(*aname));
1828 } else {
1829 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1830 if (!aname)
1831 return NULL;
1832 aname->should_free = true;
1833 }
1834
1835 aname->ino = AUDIT_INO_UNSET;
1836 aname->type = type;
1837 list_add_tail(&aname->list, &context->names_list);
1838
1839 context->name_count++;
1840 return aname;
1841 }
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851 struct filename *
1852 __audit_reusename(const __user char *uptr)
1853 {
1854 struct audit_context *context = audit_context();
1855 struct audit_names *n;
1856
1857 list_for_each_entry(n, &context->names_list, list) {
1858 if (!n->name)
1859 continue;
1860 if (n->name->uptr == uptr) {
1861 n->name->refcnt++;
1862 return n->name;
1863 }
1864 }
1865 return NULL;
1866 }
1867
1868
1869
1870
1871
1872
1873
1874
1875 void __audit_getname(struct filename *name)
1876 {
1877 struct audit_context *context = audit_context();
1878 struct audit_names *n;
1879
1880 if (!context->in_syscall)
1881 return;
1882
1883 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1884 if (!n)
1885 return;
1886
1887 n->name = name;
1888 n->name_len = AUDIT_NAME_FULL;
1889 name->aname = n;
1890 name->refcnt++;
1891
1892 if (!context->pwd.dentry)
1893 get_fs_pwd(current->fs, &context->pwd);
1894 }
1895
1896 static inline int audit_copy_fcaps(struct audit_names *name,
1897 const struct dentry *dentry)
1898 {
1899 struct cpu_vfs_cap_data caps;
1900 int rc;
1901
1902 if (!dentry)
1903 return 0;
1904
1905 rc = get_vfs_caps_from_disk(dentry, &caps);
1906 if (rc)
1907 return rc;
1908
1909 name->fcap.permitted = caps.permitted;
1910 name->fcap.inheritable = caps.inheritable;
1911 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1912 name->fcap.rootid = caps.rootid;
1913 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1914 VFS_CAP_REVISION_SHIFT;
1915
1916 return 0;
1917 }
1918
1919
1920 static void audit_copy_inode(struct audit_names *name,
1921 const struct dentry *dentry,
1922 struct inode *inode, unsigned int flags)
1923 {
1924 name->ino = inode->i_ino;
1925 name->dev = inode->i_sb->s_dev;
1926 name->mode = inode->i_mode;
1927 name->uid = inode->i_uid;
1928 name->gid = inode->i_gid;
1929 name->rdev = inode->i_rdev;
1930 security_inode_getsecid(inode, &name->osid);
1931 if (flags & AUDIT_INODE_NOEVAL) {
1932 name->fcap_ver = -1;
1933 return;
1934 }
1935 audit_copy_fcaps(name, dentry);
1936 }
1937
1938
1939
1940
1941
1942
1943
1944 void __audit_inode(struct filename *name, const struct dentry *dentry,
1945 unsigned int flags)
1946 {
1947 struct audit_context *context = audit_context();
1948 struct inode *inode = d_backing_inode(dentry);
1949 struct audit_names *n;
1950 bool parent = flags & AUDIT_INODE_PARENT;
1951 struct audit_entry *e;
1952 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1953 int i;
1954
1955 if (!context->in_syscall)
1956 return;
1957
1958 rcu_read_lock();
1959 list_for_each_entry_rcu(e, list, list) {
1960 for (i = 0; i < e->rule.field_count; i++) {
1961 struct audit_field *f = &e->rule.fields[i];
1962
1963 if (f->type == AUDIT_FSTYPE
1964 && audit_comparator(inode->i_sb->s_magic,
1965 f->op, f->val)
1966 && e->rule.action == AUDIT_NEVER) {
1967 rcu_read_unlock();
1968 return;
1969 }
1970 }
1971 }
1972 rcu_read_unlock();
1973
1974 if (!name)
1975 goto out_alloc;
1976
1977
1978
1979
1980
1981 n = name->aname;
1982 if (n) {
1983 if (parent) {
1984 if (n->type == AUDIT_TYPE_PARENT ||
1985 n->type == AUDIT_TYPE_UNKNOWN)
1986 goto out;
1987 } else {
1988 if (n->type != AUDIT_TYPE_PARENT)
1989 goto out;
1990 }
1991 }
1992
1993 list_for_each_entry_reverse(n, &context->names_list, list) {
1994 if (n->ino) {
1995
1996 if (n->ino != inode->i_ino ||
1997 n->dev != inode->i_sb->s_dev)
1998 continue;
1999 } else if (n->name) {
2000
2001 if (strcmp(n->name->name, name->name))
2002 continue;
2003 } else
2004
2005 continue;
2006
2007
2008 if (parent) {
2009 if (n->type == AUDIT_TYPE_PARENT ||
2010 n->type == AUDIT_TYPE_UNKNOWN)
2011 goto out;
2012 } else {
2013 if (n->type != AUDIT_TYPE_PARENT)
2014 goto out;
2015 }
2016 }
2017
2018 out_alloc:
2019
2020 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2021 if (!n)
2022 return;
2023 if (name) {
2024 n->name = name;
2025 name->refcnt++;
2026 }
2027
2028 out:
2029 if (parent) {
2030 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2031 n->type = AUDIT_TYPE_PARENT;
2032 if (flags & AUDIT_INODE_HIDDEN)
2033 n->hidden = true;
2034 } else {
2035 n->name_len = AUDIT_NAME_FULL;
2036 n->type = AUDIT_TYPE_NORMAL;
2037 }
2038 handle_path(dentry);
2039 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2040 }
2041
2042 void __audit_file(const struct file *file)
2043 {
2044 __audit_inode(NULL, file->f_path.dentry, 0);
2045 }
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061 void __audit_inode_child(struct inode *parent,
2062 const struct dentry *dentry,
2063 const unsigned char type)
2064 {
2065 struct audit_context *context = audit_context();
2066 struct inode *inode = d_backing_inode(dentry);
2067 const struct qstr *dname = &dentry->d_name;
2068 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2069 struct audit_entry *e;
2070 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2071 int i;
2072
2073 if (!context->in_syscall)
2074 return;
2075
2076 rcu_read_lock();
2077 list_for_each_entry_rcu(e, list, list) {
2078 for (i = 0; i < e->rule.field_count; i++) {
2079 struct audit_field *f = &e->rule.fields[i];
2080
2081 if (f->type == AUDIT_FSTYPE
2082 && audit_comparator(parent->i_sb->s_magic,
2083 f->op, f->val)
2084 && e->rule.action == AUDIT_NEVER) {
2085 rcu_read_unlock();
2086 return;
2087 }
2088 }
2089 }
2090 rcu_read_unlock();
2091
2092 if (inode)
2093 handle_one(inode);
2094
2095
2096 list_for_each_entry(n, &context->names_list, list) {
2097 if (!n->name ||
2098 (n->type != AUDIT_TYPE_PARENT &&
2099 n->type != AUDIT_TYPE_UNKNOWN))
2100 continue;
2101
2102 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2103 !audit_compare_dname_path(dname,
2104 n->name->name, n->name_len)) {
2105 if (n->type == AUDIT_TYPE_UNKNOWN)
2106 n->type = AUDIT_TYPE_PARENT;
2107 found_parent = n;
2108 break;
2109 }
2110 }
2111
2112
2113 list_for_each_entry(n, &context->names_list, list) {
2114
2115 if (!n->name ||
2116 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2117 continue;
2118
2119 if (!strcmp(dname->name, n->name->name) ||
2120 !audit_compare_dname_path(dname, n->name->name,
2121 found_parent ?
2122 found_parent->name_len :
2123 AUDIT_NAME_FULL)) {
2124 if (n->type == AUDIT_TYPE_UNKNOWN)
2125 n->type = type;
2126 found_child = n;
2127 break;
2128 }
2129 }
2130
2131 if (!found_parent) {
2132
2133 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2134 if (!n)
2135 return;
2136 audit_copy_inode(n, NULL, parent, 0);
2137 }
2138
2139 if (!found_child) {
2140 found_child = audit_alloc_name(context, type);
2141 if (!found_child)
2142 return;
2143
2144
2145
2146
2147 if (found_parent) {
2148 found_child->name = found_parent->name;
2149 found_child->name_len = AUDIT_NAME_FULL;
2150 found_child->name->refcnt++;
2151 }
2152 }
2153
2154 if (inode)
2155 audit_copy_inode(found_child, dentry, inode, 0);
2156 else
2157 found_child->ino = AUDIT_INO_UNSET;
2158 }
2159 EXPORT_SYMBOL_GPL(__audit_inode_child);
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169 int auditsc_get_stamp(struct audit_context *ctx,
2170 struct timespec64 *t, unsigned int *serial)
2171 {
2172 if (!ctx->in_syscall)
2173 return 0;
2174 if (!ctx->serial)
2175 ctx->serial = audit_serial();
2176 t->tv_sec = ctx->ctime.tv_sec;
2177 t->tv_nsec = ctx->ctime.tv_nsec;
2178 *serial = ctx->serial;
2179 if (!ctx->prio) {
2180 ctx->prio = 1;
2181 ctx->current_state = AUDIT_RECORD_CONTEXT;
2182 }
2183 return 1;
2184 }
2185
2186
2187
2188
2189
2190
2191
2192
2193 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2194 {
2195 struct audit_context *context = audit_context();
2196
2197 if (attr)
2198 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2199 else
2200 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2201
2202 context->mq_open.oflag = oflag;
2203 context->mq_open.mode = mode;
2204
2205 context->type = AUDIT_MQ_OPEN;
2206 }
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2217 const struct timespec64 *abs_timeout)
2218 {
2219 struct audit_context *context = audit_context();
2220 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2221
2222 if (abs_timeout)
2223 memcpy(p, abs_timeout, sizeof(*p));
2224 else
2225 memset(p, 0, sizeof(*p));
2226
2227 context->mq_sendrecv.mqdes = mqdes;
2228 context->mq_sendrecv.msg_len = msg_len;
2229 context->mq_sendrecv.msg_prio = msg_prio;
2230
2231 context->type = AUDIT_MQ_SENDRECV;
2232 }
2233
2234
2235
2236
2237
2238
2239
2240
2241 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2242 {
2243 struct audit_context *context = audit_context();
2244
2245 if (notification)
2246 context->mq_notify.sigev_signo = notification->sigev_signo;
2247 else
2248 context->mq_notify.sigev_signo = 0;
2249
2250 context->mq_notify.mqdes = mqdes;
2251 context->type = AUDIT_MQ_NOTIFY;
2252 }
2253
2254
2255
2256
2257
2258
2259
2260 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2261 {
2262 struct audit_context *context = audit_context();
2263 context->mq_getsetattr.mqdes = mqdes;
2264 context->mq_getsetattr.mqstat = *mqstat;
2265 context->type = AUDIT_MQ_GETSETATTR;
2266 }
2267
2268
2269
2270
2271
2272
2273 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2274 {
2275 struct audit_context *context = audit_context();
2276 context->ipc.uid = ipcp->uid;
2277 context->ipc.gid = ipcp->gid;
2278 context->ipc.mode = ipcp->mode;
2279 context->ipc.has_perm = 0;
2280 security_ipc_getsecid(ipcp, &context->ipc.osid);
2281 context->type = AUDIT_IPC;
2282 }
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2294 {
2295 struct audit_context *context = audit_context();
2296
2297 context->ipc.qbytes = qbytes;
2298 context->ipc.perm_uid = uid;
2299 context->ipc.perm_gid = gid;
2300 context->ipc.perm_mode = mode;
2301 context->ipc.has_perm = 1;
2302 }
2303
2304 void __audit_bprm(struct linux_binprm *bprm)
2305 {
2306 struct audit_context *context = audit_context();
2307
2308 context->type = AUDIT_EXECVE;
2309 context->execve.argc = bprm->argc;
2310 }
2311
2312
2313
2314
2315
2316
2317
2318
2319 int __audit_socketcall(int nargs, unsigned long *args)
2320 {
2321 struct audit_context *context = audit_context();
2322
2323 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2324 return -EINVAL;
2325 context->type = AUDIT_SOCKETCALL;
2326 context->socketcall.nargs = nargs;
2327 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2328 return 0;
2329 }
2330
2331
2332
2333
2334
2335
2336
2337 void __audit_fd_pair(int fd1, int fd2)
2338 {
2339 struct audit_context *context = audit_context();
2340 context->fds[0] = fd1;
2341 context->fds[1] = fd2;
2342 }
2343
2344
2345
2346
2347
2348
2349
2350
2351 int __audit_sockaddr(int len, void *a)
2352 {
2353 struct audit_context *context = audit_context();
2354
2355 if (!context->sockaddr) {
2356 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2357 if (!p)
2358 return -ENOMEM;
2359 context->sockaddr = p;
2360 }
2361
2362 context->sockaddr_len = len;
2363 memcpy(context->sockaddr, a, len);
2364 return 0;
2365 }
2366
2367 void __audit_ptrace(struct task_struct *t)
2368 {
2369 struct audit_context *context = audit_context();
2370
2371 context->target_pid = task_tgid_nr(t);
2372 context->target_auid = audit_get_loginuid(t);
2373 context->target_uid = task_uid(t);
2374 context->target_sessionid = audit_get_sessionid(t);
2375 security_task_getsecid(t, &context->target_sid);
2376 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2377 }
2378
2379
2380
2381
2382
2383
2384
2385
2386 int audit_signal_info_syscall(struct task_struct *t)
2387 {
2388 struct audit_aux_data_pids *axp;
2389 struct audit_context *ctx = audit_context();
2390 kuid_t t_uid = task_uid(t);
2391
2392 if (!audit_signals || audit_dummy_context())
2393 return 0;
2394
2395
2396
2397 if (!ctx->target_pid) {
2398 ctx->target_pid = task_tgid_nr(t);
2399 ctx->target_auid = audit_get_loginuid(t);
2400 ctx->target_uid = t_uid;
2401 ctx->target_sessionid = audit_get_sessionid(t);
2402 security_task_getsecid(t, &ctx->target_sid);
2403 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2404 return 0;
2405 }
2406
2407 axp = (void *)ctx->aux_pids;
2408 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2409 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2410 if (!axp)
2411 return -ENOMEM;
2412
2413 axp->d.type = AUDIT_OBJ_PID;
2414 axp->d.next = ctx->aux_pids;
2415 ctx->aux_pids = (void *)axp;
2416 }
2417 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2418
2419 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2420 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2421 axp->target_uid[axp->pid_count] = t_uid;
2422 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2423 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2424 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2425 axp->pid_count++;
2426
2427 return 0;
2428 }
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2442 const struct cred *new, const struct cred *old)
2443 {
2444 struct audit_aux_data_bprm_fcaps *ax;
2445 struct audit_context *context = audit_context();
2446 struct cpu_vfs_cap_data vcaps;
2447
2448 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2449 if (!ax)
2450 return -ENOMEM;
2451
2452 ax->d.type = AUDIT_BPRM_FCAPS;
2453 ax->d.next = context->aux;
2454 context->aux = (void *)ax;
2455
2456 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2457
2458 ax->fcap.permitted = vcaps.permitted;
2459 ax->fcap.inheritable = vcaps.inheritable;
2460 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2461 ax->fcap.rootid = vcaps.rootid;
2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464 ax->old_pcap.permitted = old->cap_permitted;
2465 ax->old_pcap.inheritable = old->cap_inheritable;
2466 ax->old_pcap.effective = old->cap_effective;
2467 ax->old_pcap.ambient = old->cap_ambient;
2468
2469 ax->new_pcap.permitted = new->cap_permitted;
2470 ax->new_pcap.inheritable = new->cap_inheritable;
2471 ax->new_pcap.effective = new->cap_effective;
2472 ax->new_pcap.ambient = new->cap_ambient;
2473 return 0;
2474 }
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484 void __audit_log_capset(const struct cred *new, const struct cred *old)
2485 {
2486 struct audit_context *context = audit_context();
2487 context->capset.pid = task_tgid_nr(current);
2488 context->capset.cap.effective = new->cap_effective;
2489 context->capset.cap.inheritable = new->cap_effective;
2490 context->capset.cap.permitted = new->cap_permitted;
2491 context->capset.cap.ambient = new->cap_ambient;
2492 context->type = AUDIT_CAPSET;
2493 }
2494
2495 void __audit_mmap_fd(int fd, int flags)
2496 {
2497 struct audit_context *context = audit_context();
2498 context->mmap.fd = fd;
2499 context->mmap.flags = flags;
2500 context->type = AUDIT_MMAP;
2501 }
2502
2503 void __audit_log_kern_module(char *name)
2504 {
2505 struct audit_context *context = audit_context();
2506
2507 context->module.name = kstrdup(name, GFP_KERNEL);
2508 if (!context->module.name)
2509 audit_log_lost("out of memory in __audit_log_kern_module");
2510 context->type = AUDIT_KERN_MODULE;
2511 }
2512
2513 void __audit_fanotify(unsigned int response)
2514 {
2515 audit_log(audit_context(), GFP_KERNEL,
2516 AUDIT_FANOTIFY, "resp=%u", response);
2517 }
2518
2519 void __audit_tk_injoffset(struct timespec64 offset)
2520 {
2521 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2522 "sec=%lli nsec=%li",
2523 (long long)offset.tv_sec, offset.tv_nsec);
2524 }
2525
2526 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2527 const char *op, enum audit_ntp_type type)
2528 {
2529 const struct audit_ntp_val *val = &ad->vals[type];
2530
2531 if (val->newval == val->oldval)
2532 return;
2533
2534 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2535 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2536 }
2537
2538 void __audit_ntp_log(const struct audit_ntp_data *ad)
2539 {
2540 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2541 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2542 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2543 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2544 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2545 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2546 }
2547
2548 static void audit_log_task(struct audit_buffer *ab)
2549 {
2550 kuid_t auid, uid;
2551 kgid_t gid;
2552 unsigned int sessionid;
2553 char comm[sizeof(current->comm)];
2554
2555 auid = audit_get_loginuid(current);
2556 sessionid = audit_get_sessionid(current);
2557 current_uid_gid(&uid, &gid);
2558
2559 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2560 from_kuid(&init_user_ns, auid),
2561 from_kuid(&init_user_ns, uid),
2562 from_kgid(&init_user_ns, gid),
2563 sessionid);
2564 audit_log_task_context(ab);
2565 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2566 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2567 audit_log_d_path_exe(ab, current->mm);
2568 }
2569
2570
2571
2572
2573
2574
2575
2576
2577 void audit_core_dumps(long signr)
2578 {
2579 struct audit_buffer *ab;
2580
2581 if (!audit_enabled)
2582 return;
2583
2584 if (signr == SIGQUIT)
2585 return;
2586
2587 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2588 if (unlikely(!ab))
2589 return;
2590 audit_log_task(ab);
2591 audit_log_format(ab, " sig=%ld res=1", signr);
2592 audit_log_end(ab);
2593 }
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607 void audit_seccomp(unsigned long syscall, long signr, int code)
2608 {
2609 struct audit_buffer *ab;
2610
2611 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2612 if (unlikely(!ab))
2613 return;
2614 audit_log_task(ab);
2615 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2616 signr, syscall_get_arch(current), syscall,
2617 in_compat_syscall(), KSTK_EIP(current), code);
2618 audit_log_end(ab);
2619 }
2620
2621 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2622 int res)
2623 {
2624 struct audit_buffer *ab;
2625
2626 if (!audit_enabled)
2627 return;
2628
2629 ab = audit_log_start(audit_context(), GFP_KERNEL,
2630 AUDIT_CONFIG_CHANGE);
2631 if (unlikely(!ab))
2632 return;
2633
2634 audit_log_format(ab,
2635 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2636 names, old_names, res);
2637 audit_log_end(ab);
2638 }
2639
2640 struct list_head *audit_killed_trees(void)
2641 {
2642 struct audit_context *ctx = audit_context();
2643 if (likely(!ctx || !ctx->in_syscall))
2644 return NULL;
2645 return &ctx->killed_trees;
2646 }