root/block/bio.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bio_find_or_create_slab
  2. bio_put_slab
  3. bvec_nr_vecs
  4. bvec_free
  5. bvec_alloc
  6. bio_uninit
  7. bio_free
  8. bio_init
  9. bio_reset
  10. __bio_chain_endio
  11. bio_chain_endio
  12. bio_chain
  13. bio_alloc_rescue
  14. punt_bios_to_rescuer
  15. bio_alloc_bioset
  16. zero_fill_bio_iter
  17. bio_truncate
  18. bio_put
  19. __bio_clone_fast
  20. bio_clone_fast
  21. page_is_mergeable
  22. bio_try_merge_pc_page
  23. __bio_add_pc_page
  24. bio_add_pc_page
  25. __bio_try_merge_page
  26. __bio_add_page
  27. bio_add_page
  28. bio_release_pages
  29. __bio_iov_bvec_add_pages
  30. bio_iov_iter_get_pages
  31. submit_bio_wait_endio
  32. submit_bio_wait
  33. bio_advance
  34. bio_copy_data_iter
  35. bio_copy_data
  36. bio_list_copy_data
  37. bio_alloc_map_data
  38. bio_copy_from_iter
  39. bio_copy_to_iter
  40. bio_free_pages
  41. bio_uncopy_user
  42. bio_copy_user_iov
  43. bio_map_user_iov
  44. bio_unmap_user
  45. bio_invalidate_vmalloc_pages
  46. bio_map_kern_endio
  47. bio_map_kern
  48. bio_copy_kern_endio
  49. bio_copy_kern_endio_read
  50. bio_copy_kern
  51. bio_set_pages_dirty
  52. bio_dirty_fn
  53. bio_check_pages_dirty
  54. update_io_ticks
  55. generic_start_io_acct
  56. generic_end_io_acct
  57. bio_remaining_done
  58. bio_endio
  59. bio_split
  60. bio_trim
  61. biovec_init_pool
  62. bioset_exit
  63. bioset_init
  64. bioset_init_from_src
  65. bio_disassociate_blkg
  66. __bio_associate_blkg
  67. bio_associate_blkg_from_css
  68. bio_associate_blkg_from_page
  69. bio_associate_blkg
  70. bio_clone_blkg_association
  71. biovec_init_slabs
  72. init_bio

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
   4  */
   5 #include <linux/mm.h>
   6 #include <linux/swap.h>
   7 #include <linux/bio.h>
   8 #include <linux/blkdev.h>
   9 #include <linux/uio.h>
  10 #include <linux/iocontext.h>
  11 #include <linux/slab.h>
  12 #include <linux/init.h>
  13 #include <linux/kernel.h>
  14 #include <linux/export.h>
  15 #include <linux/mempool.h>
  16 #include <linux/workqueue.h>
  17 #include <linux/cgroup.h>
  18 #include <linux/blk-cgroup.h>
  19 #include <linux/highmem.h>
  20 
  21 #include <trace/events/block.h>
  22 #include "blk.h"
  23 #include "blk-rq-qos.h"
  24 
  25 /*
  26  * Test patch to inline a certain number of bi_io_vec's inside the bio
  27  * itself, to shrink a bio data allocation from two mempool calls to one
  28  */
  29 #define BIO_INLINE_VECS         4
  30 
  31 /*
  32  * if you change this list, also change bvec_alloc or things will
  33  * break badly! cannot be bigger than what you can fit into an
  34  * unsigned short
  35  */
  36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
  37 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
  38         BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
  39 };
  40 #undef BV
  41 
  42 /*
  43  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  44  * IO code that does not need private memory pools.
  45  */
  46 struct bio_set fs_bio_set;
  47 EXPORT_SYMBOL(fs_bio_set);
  48 
  49 /*
  50  * Our slab pool management
  51  */
  52 struct bio_slab {
  53         struct kmem_cache *slab;
  54         unsigned int slab_ref;
  55         unsigned int slab_size;
  56         char name[8];
  57 };
  58 static DEFINE_MUTEX(bio_slab_lock);
  59 static struct bio_slab *bio_slabs;
  60 static unsigned int bio_slab_nr, bio_slab_max;
  61 
  62 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  63 {
  64         unsigned int sz = sizeof(struct bio) + extra_size;
  65         struct kmem_cache *slab = NULL;
  66         struct bio_slab *bslab, *new_bio_slabs;
  67         unsigned int new_bio_slab_max;
  68         unsigned int i, entry = -1;
  69 
  70         mutex_lock(&bio_slab_lock);
  71 
  72         i = 0;
  73         while (i < bio_slab_nr) {
  74                 bslab = &bio_slabs[i];
  75 
  76                 if (!bslab->slab && entry == -1)
  77                         entry = i;
  78                 else if (bslab->slab_size == sz) {
  79                         slab = bslab->slab;
  80                         bslab->slab_ref++;
  81                         break;
  82                 }
  83                 i++;
  84         }
  85 
  86         if (slab)
  87                 goto out_unlock;
  88 
  89         if (bio_slab_nr == bio_slab_max && entry == -1) {
  90                 new_bio_slab_max = bio_slab_max << 1;
  91                 new_bio_slabs = krealloc(bio_slabs,
  92                                          new_bio_slab_max * sizeof(struct bio_slab),
  93                                          GFP_KERNEL);
  94                 if (!new_bio_slabs)
  95                         goto out_unlock;
  96                 bio_slab_max = new_bio_slab_max;
  97                 bio_slabs = new_bio_slabs;
  98         }
  99         if (entry == -1)
 100                 entry = bio_slab_nr++;
 101 
 102         bslab = &bio_slabs[entry];
 103 
 104         snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
 105         slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
 106                                  SLAB_HWCACHE_ALIGN, NULL);
 107         if (!slab)
 108                 goto out_unlock;
 109 
 110         bslab->slab = slab;
 111         bslab->slab_ref = 1;
 112         bslab->slab_size = sz;
 113 out_unlock:
 114         mutex_unlock(&bio_slab_lock);
 115         return slab;
 116 }
 117 
 118 static void bio_put_slab(struct bio_set *bs)
 119 {
 120         struct bio_slab *bslab = NULL;
 121         unsigned int i;
 122 
 123         mutex_lock(&bio_slab_lock);
 124 
 125         for (i = 0; i < bio_slab_nr; i++) {
 126                 if (bs->bio_slab == bio_slabs[i].slab) {
 127                         bslab = &bio_slabs[i];
 128                         break;
 129                 }
 130         }
 131 
 132         if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
 133                 goto out;
 134 
 135         WARN_ON(!bslab->slab_ref);
 136 
 137         if (--bslab->slab_ref)
 138                 goto out;
 139 
 140         kmem_cache_destroy(bslab->slab);
 141         bslab->slab = NULL;
 142 
 143 out:
 144         mutex_unlock(&bio_slab_lock);
 145 }
 146 
 147 unsigned int bvec_nr_vecs(unsigned short idx)
 148 {
 149         return bvec_slabs[--idx].nr_vecs;
 150 }
 151 
 152 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
 153 {
 154         if (!idx)
 155                 return;
 156         idx--;
 157 
 158         BIO_BUG_ON(idx >= BVEC_POOL_NR);
 159 
 160         if (idx == BVEC_POOL_MAX) {
 161                 mempool_free(bv, pool);
 162         } else {
 163                 struct biovec_slab *bvs = bvec_slabs + idx;
 164 
 165                 kmem_cache_free(bvs->slab, bv);
 166         }
 167 }
 168 
 169 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
 170                            mempool_t *pool)
 171 {
 172         struct bio_vec *bvl;
 173 
 174         /*
 175          * see comment near bvec_array define!
 176          */
 177         switch (nr) {
 178         case 1:
 179                 *idx = 0;
 180                 break;
 181         case 2 ... 4:
 182                 *idx = 1;
 183                 break;
 184         case 5 ... 16:
 185                 *idx = 2;
 186                 break;
 187         case 17 ... 64:
 188                 *idx = 3;
 189                 break;
 190         case 65 ... 128:
 191                 *idx = 4;
 192                 break;
 193         case 129 ... BIO_MAX_PAGES:
 194                 *idx = 5;
 195                 break;
 196         default:
 197                 return NULL;
 198         }
 199 
 200         /*
 201          * idx now points to the pool we want to allocate from. only the
 202          * 1-vec entry pool is mempool backed.
 203          */
 204         if (*idx == BVEC_POOL_MAX) {
 205 fallback:
 206                 bvl = mempool_alloc(pool, gfp_mask);
 207         } else {
 208                 struct biovec_slab *bvs = bvec_slabs + *idx;
 209                 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
 210 
 211                 /*
 212                  * Make this allocation restricted and don't dump info on
 213                  * allocation failures, since we'll fallback to the mempool
 214                  * in case of failure.
 215                  */
 216                 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
 217 
 218                 /*
 219                  * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
 220                  * is set, retry with the 1-entry mempool
 221                  */
 222                 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
 223                 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
 224                         *idx = BVEC_POOL_MAX;
 225                         goto fallback;
 226                 }
 227         }
 228 
 229         (*idx)++;
 230         return bvl;
 231 }
 232 
 233 void bio_uninit(struct bio *bio)
 234 {
 235         bio_disassociate_blkg(bio);
 236 
 237         if (bio_integrity(bio))
 238                 bio_integrity_free(bio);
 239 }
 240 EXPORT_SYMBOL(bio_uninit);
 241 
 242 static void bio_free(struct bio *bio)
 243 {
 244         struct bio_set *bs = bio->bi_pool;
 245         void *p;
 246 
 247         bio_uninit(bio);
 248 
 249         if (bs) {
 250                 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
 251 
 252                 /*
 253                  * If we have front padding, adjust the bio pointer before freeing
 254                  */
 255                 p = bio;
 256                 p -= bs->front_pad;
 257 
 258                 mempool_free(p, &bs->bio_pool);
 259         } else {
 260                 /* Bio was allocated by bio_kmalloc() */
 261                 kfree(bio);
 262         }
 263 }
 264 
 265 /*
 266  * Users of this function have their own bio allocation. Subsequently,
 267  * they must remember to pair any call to bio_init() with bio_uninit()
 268  * when IO has completed, or when the bio is released.
 269  */
 270 void bio_init(struct bio *bio, struct bio_vec *table,
 271               unsigned short max_vecs)
 272 {
 273         memset(bio, 0, sizeof(*bio));
 274         atomic_set(&bio->__bi_remaining, 1);
 275         atomic_set(&bio->__bi_cnt, 1);
 276 
 277         bio->bi_io_vec = table;
 278         bio->bi_max_vecs = max_vecs;
 279 }
 280 EXPORT_SYMBOL(bio_init);
 281 
 282 /**
 283  * bio_reset - reinitialize a bio
 284  * @bio:        bio to reset
 285  *
 286  * Description:
 287  *   After calling bio_reset(), @bio will be in the same state as a freshly
 288  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 289  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 290  *   comment in struct bio.
 291  */
 292 void bio_reset(struct bio *bio)
 293 {
 294         unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
 295 
 296         bio_uninit(bio);
 297 
 298         memset(bio, 0, BIO_RESET_BYTES);
 299         bio->bi_flags = flags;
 300         atomic_set(&bio->__bi_remaining, 1);
 301 }
 302 EXPORT_SYMBOL(bio_reset);
 303 
 304 static struct bio *__bio_chain_endio(struct bio *bio)
 305 {
 306         struct bio *parent = bio->bi_private;
 307 
 308         if (!parent->bi_status)
 309                 parent->bi_status = bio->bi_status;
 310         bio_put(bio);
 311         return parent;
 312 }
 313 
 314 static void bio_chain_endio(struct bio *bio)
 315 {
 316         bio_endio(__bio_chain_endio(bio));
 317 }
 318 
 319 /**
 320  * bio_chain - chain bio completions
 321  * @bio: the target bio
 322  * @parent: the @bio's parent bio
 323  *
 324  * The caller won't have a bi_end_io called when @bio completes - instead,
 325  * @parent's bi_end_io won't be called until both @parent and @bio have
 326  * completed; the chained bio will also be freed when it completes.
 327  *
 328  * The caller must not set bi_private or bi_end_io in @bio.
 329  */
 330 void bio_chain(struct bio *bio, struct bio *parent)
 331 {
 332         BUG_ON(bio->bi_private || bio->bi_end_io);
 333 
 334         bio->bi_private = parent;
 335         bio->bi_end_io  = bio_chain_endio;
 336         bio_inc_remaining(parent);
 337 }
 338 EXPORT_SYMBOL(bio_chain);
 339 
 340 static void bio_alloc_rescue(struct work_struct *work)
 341 {
 342         struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
 343         struct bio *bio;
 344 
 345         while (1) {
 346                 spin_lock(&bs->rescue_lock);
 347                 bio = bio_list_pop(&bs->rescue_list);
 348                 spin_unlock(&bs->rescue_lock);
 349 
 350                 if (!bio)
 351                         break;
 352 
 353                 generic_make_request(bio);
 354         }
 355 }
 356 
 357 static void punt_bios_to_rescuer(struct bio_set *bs)
 358 {
 359         struct bio_list punt, nopunt;
 360         struct bio *bio;
 361 
 362         if (WARN_ON_ONCE(!bs->rescue_workqueue))
 363                 return;
 364         /*
 365          * In order to guarantee forward progress we must punt only bios that
 366          * were allocated from this bio_set; otherwise, if there was a bio on
 367          * there for a stacking driver higher up in the stack, processing it
 368          * could require allocating bios from this bio_set, and doing that from
 369          * our own rescuer would be bad.
 370          *
 371          * Since bio lists are singly linked, pop them all instead of trying to
 372          * remove from the middle of the list:
 373          */
 374 
 375         bio_list_init(&punt);
 376         bio_list_init(&nopunt);
 377 
 378         while ((bio = bio_list_pop(&current->bio_list[0])))
 379                 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 380         current->bio_list[0] = nopunt;
 381 
 382         bio_list_init(&nopunt);
 383         while ((bio = bio_list_pop(&current->bio_list[1])))
 384                 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
 385         current->bio_list[1] = nopunt;
 386 
 387         spin_lock(&bs->rescue_lock);
 388         bio_list_merge(&bs->rescue_list, &punt);
 389         spin_unlock(&bs->rescue_lock);
 390 
 391         queue_work(bs->rescue_workqueue, &bs->rescue_work);
 392 }
 393 
 394 /**
 395  * bio_alloc_bioset - allocate a bio for I/O
 396  * @gfp_mask:   the GFP_* mask given to the slab allocator
 397  * @nr_iovecs:  number of iovecs to pre-allocate
 398  * @bs:         the bio_set to allocate from.
 399  *
 400  * Description:
 401  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 402  *   backed by the @bs's mempool.
 403  *
 404  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
 405  *   always be able to allocate a bio. This is due to the mempool guarantees.
 406  *   To make this work, callers must never allocate more than 1 bio at a time
 407  *   from this pool. Callers that need to allocate more than 1 bio must always
 408  *   submit the previously allocated bio for IO before attempting to allocate
 409  *   a new one. Failure to do so can cause deadlocks under memory pressure.
 410  *
 411  *   Note that when running under generic_make_request() (i.e. any block
 412  *   driver), bios are not submitted until after you return - see the code in
 413  *   generic_make_request() that converts recursion into iteration, to prevent
 414  *   stack overflows.
 415  *
 416  *   This would normally mean allocating multiple bios under
 417  *   generic_make_request() would be susceptible to deadlocks, but we have
 418  *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 419  *   thread.
 420  *
 421  *   However, we do not guarantee forward progress for allocations from other
 422  *   mempools. Doing multiple allocations from the same mempool under
 423  *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 424  *   for per bio allocations.
 425  *
 426  *   RETURNS:
 427  *   Pointer to new bio on success, NULL on failure.
 428  */
 429 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
 430                              struct bio_set *bs)
 431 {
 432         gfp_t saved_gfp = gfp_mask;
 433         unsigned front_pad;
 434         unsigned inline_vecs;
 435         struct bio_vec *bvl = NULL;
 436         struct bio *bio;
 437         void *p;
 438 
 439         if (!bs) {
 440                 if (nr_iovecs > UIO_MAXIOV)
 441                         return NULL;
 442 
 443                 p = kmalloc(sizeof(struct bio) +
 444                             nr_iovecs * sizeof(struct bio_vec),
 445                             gfp_mask);
 446                 front_pad = 0;
 447                 inline_vecs = nr_iovecs;
 448         } else {
 449                 /* should not use nobvec bioset for nr_iovecs > 0 */
 450                 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
 451                                  nr_iovecs > 0))
 452                         return NULL;
 453                 /*
 454                  * generic_make_request() converts recursion to iteration; this
 455                  * means if we're running beneath it, any bios we allocate and
 456                  * submit will not be submitted (and thus freed) until after we
 457                  * return.
 458                  *
 459                  * This exposes us to a potential deadlock if we allocate
 460                  * multiple bios from the same bio_set() while running
 461                  * underneath generic_make_request(). If we were to allocate
 462                  * multiple bios (say a stacking block driver that was splitting
 463                  * bios), we would deadlock if we exhausted the mempool's
 464                  * reserve.
 465                  *
 466                  * We solve this, and guarantee forward progress, with a rescuer
 467                  * workqueue per bio_set. If we go to allocate and there are
 468                  * bios on current->bio_list, we first try the allocation
 469                  * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
 470                  * bios we would be blocking to the rescuer workqueue before
 471                  * we retry with the original gfp_flags.
 472                  */
 473 
 474                 if (current->bio_list &&
 475                     (!bio_list_empty(&current->bio_list[0]) ||
 476                      !bio_list_empty(&current->bio_list[1])) &&
 477                     bs->rescue_workqueue)
 478                         gfp_mask &= ~__GFP_DIRECT_RECLAIM;
 479 
 480                 p = mempool_alloc(&bs->bio_pool, gfp_mask);
 481                 if (!p && gfp_mask != saved_gfp) {
 482                         punt_bios_to_rescuer(bs);
 483                         gfp_mask = saved_gfp;
 484                         p = mempool_alloc(&bs->bio_pool, gfp_mask);
 485                 }
 486 
 487                 front_pad = bs->front_pad;
 488                 inline_vecs = BIO_INLINE_VECS;
 489         }
 490 
 491         if (unlikely(!p))
 492                 return NULL;
 493 
 494         bio = p + front_pad;
 495         bio_init(bio, NULL, 0);
 496 
 497         if (nr_iovecs > inline_vecs) {
 498                 unsigned long idx = 0;
 499 
 500                 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
 501                 if (!bvl && gfp_mask != saved_gfp) {
 502                         punt_bios_to_rescuer(bs);
 503                         gfp_mask = saved_gfp;
 504                         bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
 505                 }
 506 
 507                 if (unlikely(!bvl))
 508                         goto err_free;
 509 
 510                 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
 511         } else if (nr_iovecs) {
 512                 bvl = bio->bi_inline_vecs;
 513         }
 514 
 515         bio->bi_pool = bs;
 516         bio->bi_max_vecs = nr_iovecs;
 517         bio->bi_io_vec = bvl;
 518         return bio;
 519 
 520 err_free:
 521         mempool_free(p, &bs->bio_pool);
 522         return NULL;
 523 }
 524 EXPORT_SYMBOL(bio_alloc_bioset);
 525 
 526 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
 527 {
 528         unsigned long flags;
 529         struct bio_vec bv;
 530         struct bvec_iter iter;
 531 
 532         __bio_for_each_segment(bv, bio, iter, start) {
 533                 char *data = bvec_kmap_irq(&bv, &flags);
 534                 memset(data, 0, bv.bv_len);
 535                 flush_dcache_page(bv.bv_page);
 536                 bvec_kunmap_irq(data, &flags);
 537         }
 538 }
 539 EXPORT_SYMBOL(zero_fill_bio_iter);
 540 
 541 /**
 542  * bio_truncate - truncate the bio to small size of @new_size
 543  * @bio:        the bio to be truncated
 544  * @new_size:   new size for truncating the bio
 545  *
 546  * Description:
 547  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 548  *   REQ_OP_READ, zero the truncated part. This function should only
 549  *   be used for handling corner cases, such as bio eod.
 550  */
 551 void bio_truncate(struct bio *bio, unsigned new_size)
 552 {
 553         struct bio_vec bv;
 554         struct bvec_iter iter;
 555         unsigned int done = 0;
 556         bool truncated = false;
 557 
 558         if (new_size >= bio->bi_iter.bi_size)
 559                 return;
 560 
 561         if (bio_op(bio) != REQ_OP_READ)
 562                 goto exit;
 563 
 564         bio_for_each_segment(bv, bio, iter) {
 565                 if (done + bv.bv_len > new_size) {
 566                         unsigned offset;
 567 
 568                         if (!truncated)
 569                                 offset = new_size - done;
 570                         else
 571                                 offset = 0;
 572                         zero_user(bv.bv_page, offset, bv.bv_len - offset);
 573                         truncated = true;
 574                 }
 575                 done += bv.bv_len;
 576         }
 577 
 578  exit:
 579         /*
 580          * Don't touch bvec table here and make it really immutable, since
 581          * fs bio user has to retrieve all pages via bio_for_each_segment_all
 582          * in its .end_bio() callback.
 583          *
 584          * It is enough to truncate bio by updating .bi_size since we can make
 585          * correct bvec with the updated .bi_size for drivers.
 586          */
 587         bio->bi_iter.bi_size = new_size;
 588 }
 589 
 590 /**
 591  * bio_put - release a reference to a bio
 592  * @bio:   bio to release reference to
 593  *
 594  * Description:
 595  *   Put a reference to a &struct bio, either one you have gotten with
 596  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 597  **/
 598 void bio_put(struct bio *bio)
 599 {
 600         if (!bio_flagged(bio, BIO_REFFED))
 601                 bio_free(bio);
 602         else {
 603                 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
 604 
 605                 /*
 606                  * last put frees it
 607                  */
 608                 if (atomic_dec_and_test(&bio->__bi_cnt))
 609                         bio_free(bio);
 610         }
 611 }
 612 EXPORT_SYMBOL(bio_put);
 613 
 614 /**
 615  *      __bio_clone_fast - clone a bio that shares the original bio's biovec
 616  *      @bio: destination bio
 617  *      @bio_src: bio to clone
 618  *
 619  *      Clone a &bio. Caller will own the returned bio, but not
 620  *      the actual data it points to. Reference count of returned
 621  *      bio will be one.
 622  *
 623  *      Caller must ensure that @bio_src is not freed before @bio.
 624  */
 625 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
 626 {
 627         BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
 628 
 629         /*
 630          * most users will be overriding ->bi_disk with a new target,
 631          * so we don't set nor calculate new physical/hw segment counts here
 632          */
 633         bio->bi_disk = bio_src->bi_disk;
 634         bio->bi_partno = bio_src->bi_partno;
 635         bio_set_flag(bio, BIO_CLONED);
 636         if (bio_flagged(bio_src, BIO_THROTTLED))
 637                 bio_set_flag(bio, BIO_THROTTLED);
 638         bio->bi_opf = bio_src->bi_opf;
 639         bio->bi_ioprio = bio_src->bi_ioprio;
 640         bio->bi_write_hint = bio_src->bi_write_hint;
 641         bio->bi_iter = bio_src->bi_iter;
 642         bio->bi_io_vec = bio_src->bi_io_vec;
 643 
 644         bio_clone_blkg_association(bio, bio_src);
 645         blkcg_bio_issue_init(bio);
 646 }
 647 EXPORT_SYMBOL(__bio_clone_fast);
 648 
 649 /**
 650  *      bio_clone_fast - clone a bio that shares the original bio's biovec
 651  *      @bio: bio to clone
 652  *      @gfp_mask: allocation priority
 653  *      @bs: bio_set to allocate from
 654  *
 655  *      Like __bio_clone_fast, only also allocates the returned bio
 656  */
 657 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
 658 {
 659         struct bio *b;
 660 
 661         b = bio_alloc_bioset(gfp_mask, 0, bs);
 662         if (!b)
 663                 return NULL;
 664 
 665         __bio_clone_fast(b, bio);
 666 
 667         if (bio_integrity(bio)) {
 668                 int ret;
 669 
 670                 ret = bio_integrity_clone(b, bio, gfp_mask);
 671 
 672                 if (ret < 0) {
 673                         bio_put(b);
 674                         return NULL;
 675                 }
 676         }
 677 
 678         return b;
 679 }
 680 EXPORT_SYMBOL(bio_clone_fast);
 681 
 682 static inline bool page_is_mergeable(const struct bio_vec *bv,
 683                 struct page *page, unsigned int len, unsigned int off,
 684                 bool *same_page)
 685 {
 686         phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
 687                 bv->bv_offset + bv->bv_len - 1;
 688         phys_addr_t page_addr = page_to_phys(page);
 689 
 690         if (vec_end_addr + 1 != page_addr + off)
 691                 return false;
 692         if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
 693                 return false;
 694 
 695         *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
 696         if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
 697                 return false;
 698         return true;
 699 }
 700 
 701 static bool bio_try_merge_pc_page(struct request_queue *q, struct bio *bio,
 702                 struct page *page, unsigned len, unsigned offset,
 703                 bool *same_page)
 704 {
 705         struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 706         unsigned long mask = queue_segment_boundary(q);
 707         phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
 708         phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
 709 
 710         if ((addr1 | mask) != (addr2 | mask))
 711                 return false;
 712         if (bv->bv_len + len > queue_max_segment_size(q))
 713                 return false;
 714         return __bio_try_merge_page(bio, page, len, offset, same_page);
 715 }
 716 
 717 /**
 718  *      __bio_add_pc_page       - attempt to add page to passthrough bio
 719  *      @q: the target queue
 720  *      @bio: destination bio
 721  *      @page: page to add
 722  *      @len: vec entry length
 723  *      @offset: vec entry offset
 724  *      @same_page: return if the merge happen inside the same page
 725  *
 726  *      Attempt to add a page to the bio_vec maplist. This can fail for a
 727  *      number of reasons, such as the bio being full or target block device
 728  *      limitations. The target block device must allow bio's up to PAGE_SIZE,
 729  *      so it is always possible to add a single page to an empty bio.
 730  *
 731  *      This should only be used by passthrough bios.
 732  */
 733 static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
 734                 struct page *page, unsigned int len, unsigned int offset,
 735                 bool *same_page)
 736 {
 737         struct bio_vec *bvec;
 738 
 739         /*
 740          * cloned bio must not modify vec list
 741          */
 742         if (unlikely(bio_flagged(bio, BIO_CLONED)))
 743                 return 0;
 744 
 745         if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
 746                 return 0;
 747 
 748         if (bio->bi_vcnt > 0) {
 749                 if (bio_try_merge_pc_page(q, bio, page, len, offset, same_page))
 750                         return len;
 751 
 752                 /*
 753                  * If the queue doesn't support SG gaps and adding this segment
 754                  * would create a gap, disallow it.
 755                  */
 756                 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
 757                 if (bvec_gap_to_prev(q, bvec, offset))
 758                         return 0;
 759         }
 760 
 761         if (bio_full(bio, len))
 762                 return 0;
 763 
 764         if (bio->bi_vcnt >= queue_max_segments(q))
 765                 return 0;
 766 
 767         bvec = &bio->bi_io_vec[bio->bi_vcnt];
 768         bvec->bv_page = page;
 769         bvec->bv_len = len;
 770         bvec->bv_offset = offset;
 771         bio->bi_vcnt++;
 772         bio->bi_iter.bi_size += len;
 773         return len;
 774 }
 775 
 776 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
 777                 struct page *page, unsigned int len, unsigned int offset)
 778 {
 779         bool same_page = false;
 780         return __bio_add_pc_page(q, bio, page, len, offset, &same_page);
 781 }
 782 EXPORT_SYMBOL(bio_add_pc_page);
 783 
 784 /**
 785  * __bio_try_merge_page - try appending data to an existing bvec.
 786  * @bio: destination bio
 787  * @page: start page to add
 788  * @len: length of the data to add
 789  * @off: offset of the data relative to @page
 790  * @same_page: return if the segment has been merged inside the same page
 791  *
 792  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 793  * a useful optimisation for file systems with a block size smaller than the
 794  * page size.
 795  *
 796  * Warn if (@len, @off) crosses pages in case that @same_page is true.
 797  *
 798  * Return %true on success or %false on failure.
 799  */
 800 bool __bio_try_merge_page(struct bio *bio, struct page *page,
 801                 unsigned int len, unsigned int off, bool *same_page)
 802 {
 803         if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
 804                 return false;
 805 
 806         if (bio->bi_vcnt > 0) {
 807                 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
 808 
 809                 if (page_is_mergeable(bv, page, len, off, same_page)) {
 810                         if (bio->bi_iter.bi_size > UINT_MAX - len)
 811                                 return false;
 812                         bv->bv_len += len;
 813                         bio->bi_iter.bi_size += len;
 814                         return true;
 815                 }
 816         }
 817         return false;
 818 }
 819 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
 820 
 821 /**
 822  * __bio_add_page - add page(s) to a bio in a new segment
 823  * @bio: destination bio
 824  * @page: start page to add
 825  * @len: length of the data to add, may cross pages
 826  * @off: offset of the data relative to @page, may cross pages
 827  *
 828  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 829  * that @bio has space for another bvec.
 830  */
 831 void __bio_add_page(struct bio *bio, struct page *page,
 832                 unsigned int len, unsigned int off)
 833 {
 834         struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
 835 
 836         WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
 837         WARN_ON_ONCE(bio_full(bio, len));
 838 
 839         bv->bv_page = page;
 840         bv->bv_offset = off;
 841         bv->bv_len = len;
 842 
 843         bio->bi_iter.bi_size += len;
 844         bio->bi_vcnt++;
 845 
 846         if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
 847                 bio_set_flag(bio, BIO_WORKINGSET);
 848 }
 849 EXPORT_SYMBOL_GPL(__bio_add_page);
 850 
 851 /**
 852  *      bio_add_page    -       attempt to add page(s) to bio
 853  *      @bio: destination bio
 854  *      @page: start page to add
 855  *      @len: vec entry length, may cross pages
 856  *      @offset: vec entry offset relative to @page, may cross pages
 857  *
 858  *      Attempt to add page(s) to the bio_vec maplist. This will only fail
 859  *      if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 860  */
 861 int bio_add_page(struct bio *bio, struct page *page,
 862                  unsigned int len, unsigned int offset)
 863 {
 864         bool same_page = false;
 865 
 866         if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
 867                 if (bio_full(bio, len))
 868                         return 0;
 869                 __bio_add_page(bio, page, len, offset);
 870         }
 871         return len;
 872 }
 873 EXPORT_SYMBOL(bio_add_page);
 874 
 875 void bio_release_pages(struct bio *bio, bool mark_dirty)
 876 {
 877         struct bvec_iter_all iter_all;
 878         struct bio_vec *bvec;
 879 
 880         if (bio_flagged(bio, BIO_NO_PAGE_REF))
 881                 return;
 882 
 883         bio_for_each_segment_all(bvec, bio, iter_all) {
 884                 if (mark_dirty && !PageCompound(bvec->bv_page))
 885                         set_page_dirty_lock(bvec->bv_page);
 886                 put_page(bvec->bv_page);
 887         }
 888 }
 889 
 890 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
 891 {
 892         const struct bio_vec *bv = iter->bvec;
 893         unsigned int len;
 894         size_t size;
 895 
 896         if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
 897                 return -EINVAL;
 898 
 899         len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
 900         size = bio_add_page(bio, bv->bv_page, len,
 901                                 bv->bv_offset + iter->iov_offset);
 902         if (unlikely(size != len))
 903                 return -EINVAL;
 904         iov_iter_advance(iter, size);
 905         return 0;
 906 }
 907 
 908 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
 909 
 910 /**
 911  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 912  * @bio: bio to add pages to
 913  * @iter: iov iterator describing the region to be mapped
 914  *
 915  * Pins pages from *iter and appends them to @bio's bvec array. The
 916  * pages will have to be released using put_page() when done.
 917  * For multi-segment *iter, this function only adds pages from the
 918  * the next non-empty segment of the iov iterator.
 919  */
 920 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 921 {
 922         unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
 923         unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
 924         struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
 925         struct page **pages = (struct page **)bv;
 926         bool same_page = false;
 927         ssize_t size, left;
 928         unsigned len, i;
 929         size_t offset;
 930 
 931         /*
 932          * Move page array up in the allocated memory for the bio vecs as far as
 933          * possible so that we can start filling biovecs from the beginning
 934          * without overwriting the temporary page array.
 935         */
 936         BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
 937         pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
 938 
 939         size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
 940         if (unlikely(size <= 0))
 941                 return size ? size : -EFAULT;
 942 
 943         for (left = size, i = 0; left > 0; left -= len, i++) {
 944                 struct page *page = pages[i];
 945 
 946                 len = min_t(size_t, PAGE_SIZE - offset, left);
 947 
 948                 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
 949                         if (same_page)
 950                                 put_page(page);
 951                 } else {
 952                         if (WARN_ON_ONCE(bio_full(bio, len)))
 953                                 return -EINVAL;
 954                         __bio_add_page(bio, page, len, offset);
 955                 }
 956                 offset = 0;
 957         }
 958 
 959         iov_iter_advance(iter, size);
 960         return 0;
 961 }
 962 
 963 /**
 964  * bio_iov_iter_get_pages - add user or kernel pages to a bio
 965  * @bio: bio to add pages to
 966  * @iter: iov iterator describing the region to be added
 967  *
 968  * This takes either an iterator pointing to user memory, or one pointing to
 969  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 970  * map them into the kernel. On IO completion, the caller should put those
 971  * pages. If we're adding kernel pages, and the caller told us it's safe to
 972  * do so, we just have to add the pages to the bio directly. We don't grab an
 973  * extra reference to those pages (the user should already have that), and we
 974  * don't put the page on IO completion. The caller needs to check if the bio is
 975  * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
 976  * released.
 977  *
 978  * The function tries, but does not guarantee, to pin as many pages as
 979  * fit into the bio, or are requested in *iter, whatever is smaller. If
 980  * MM encounters an error pinning the requested pages, it stops. Error
 981  * is returned only if 0 pages could be pinned.
 982  */
 983 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
 984 {
 985         const bool is_bvec = iov_iter_is_bvec(iter);
 986         int ret;
 987 
 988         if (WARN_ON_ONCE(bio->bi_vcnt))
 989                 return -EINVAL;
 990 
 991         do {
 992                 if (is_bvec)
 993                         ret = __bio_iov_bvec_add_pages(bio, iter);
 994                 else
 995                         ret = __bio_iov_iter_get_pages(bio, iter);
 996         } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
 997 
 998         if (is_bvec)
 999                 bio_set_flag(bio, BIO_NO_PAGE_REF);
1000         return bio->bi_vcnt ? 0 : ret;
1001 }
1002 
1003 static void submit_bio_wait_endio(struct bio *bio)
1004 {
1005         complete(bio->bi_private);
1006 }
1007 
1008 /**
1009  * submit_bio_wait - submit a bio, and wait until it completes
1010  * @bio: The &struct bio which describes the I/O
1011  *
1012  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1013  * bio_endio() on failure.
1014  *
1015  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1016  * result in bio reference to be consumed. The caller must drop the reference
1017  * on his own.
1018  */
1019 int submit_bio_wait(struct bio *bio)
1020 {
1021         DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
1022 
1023         bio->bi_private = &done;
1024         bio->bi_end_io = submit_bio_wait_endio;
1025         bio->bi_opf |= REQ_SYNC;
1026         submit_bio(bio);
1027         wait_for_completion_io(&done);
1028 
1029         return blk_status_to_errno(bio->bi_status);
1030 }
1031 EXPORT_SYMBOL(submit_bio_wait);
1032 
1033 /**
1034  * bio_advance - increment/complete a bio by some number of bytes
1035  * @bio:        bio to advance
1036  * @bytes:      number of bytes to complete
1037  *
1038  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1039  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1040  * be updated on the last bvec as well.
1041  *
1042  * @bio will then represent the remaining, uncompleted portion of the io.
1043  */
1044 void bio_advance(struct bio *bio, unsigned bytes)
1045 {
1046         if (bio_integrity(bio))
1047                 bio_integrity_advance(bio, bytes);
1048 
1049         bio_advance_iter(bio, &bio->bi_iter, bytes);
1050 }
1051 EXPORT_SYMBOL(bio_advance);
1052 
1053 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1054                         struct bio *src, struct bvec_iter *src_iter)
1055 {
1056         struct bio_vec src_bv, dst_bv;
1057         void *src_p, *dst_p;
1058         unsigned bytes;
1059 
1060         while (src_iter->bi_size && dst_iter->bi_size) {
1061                 src_bv = bio_iter_iovec(src, *src_iter);
1062                 dst_bv = bio_iter_iovec(dst, *dst_iter);
1063 
1064                 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1065 
1066                 src_p = kmap_atomic(src_bv.bv_page);
1067                 dst_p = kmap_atomic(dst_bv.bv_page);
1068 
1069                 memcpy(dst_p + dst_bv.bv_offset,
1070                        src_p + src_bv.bv_offset,
1071                        bytes);
1072 
1073                 kunmap_atomic(dst_p);
1074                 kunmap_atomic(src_p);
1075 
1076                 flush_dcache_page(dst_bv.bv_page);
1077 
1078                 bio_advance_iter(src, src_iter, bytes);
1079                 bio_advance_iter(dst, dst_iter, bytes);
1080         }
1081 }
1082 EXPORT_SYMBOL(bio_copy_data_iter);
1083 
1084 /**
1085  * bio_copy_data - copy contents of data buffers from one bio to another
1086  * @src: source bio
1087  * @dst: destination bio
1088  *
1089  * Stops when it reaches the end of either @src or @dst - that is, copies
1090  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1091  */
1092 void bio_copy_data(struct bio *dst, struct bio *src)
1093 {
1094         struct bvec_iter src_iter = src->bi_iter;
1095         struct bvec_iter dst_iter = dst->bi_iter;
1096 
1097         bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1098 }
1099 EXPORT_SYMBOL(bio_copy_data);
1100 
1101 /**
1102  * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1103  * another
1104  * @src: source bio list
1105  * @dst: destination bio list
1106  *
1107  * Stops when it reaches the end of either the @src list or @dst list - that is,
1108  * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1109  * bios).
1110  */
1111 void bio_list_copy_data(struct bio *dst, struct bio *src)
1112 {
1113         struct bvec_iter src_iter = src->bi_iter;
1114         struct bvec_iter dst_iter = dst->bi_iter;
1115 
1116         while (1) {
1117                 if (!src_iter.bi_size) {
1118                         src = src->bi_next;
1119                         if (!src)
1120                                 break;
1121 
1122                         src_iter = src->bi_iter;
1123                 }
1124 
1125                 if (!dst_iter.bi_size) {
1126                         dst = dst->bi_next;
1127                         if (!dst)
1128                                 break;
1129 
1130                         dst_iter = dst->bi_iter;
1131                 }
1132 
1133                 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1134         }
1135 }
1136 EXPORT_SYMBOL(bio_list_copy_data);
1137 
1138 struct bio_map_data {
1139         int is_our_pages;
1140         struct iov_iter iter;
1141         struct iovec iov[];
1142 };
1143 
1144 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1145                                                gfp_t gfp_mask)
1146 {
1147         struct bio_map_data *bmd;
1148         if (data->nr_segs > UIO_MAXIOV)
1149                 return NULL;
1150 
1151         bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
1152         if (!bmd)
1153                 return NULL;
1154         memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1155         bmd->iter = *data;
1156         bmd->iter.iov = bmd->iov;
1157         return bmd;
1158 }
1159 
1160 /**
1161  * bio_copy_from_iter - copy all pages from iov_iter to bio
1162  * @bio: The &struct bio which describes the I/O as destination
1163  * @iter: iov_iter as source
1164  *
1165  * Copy all pages from iov_iter to bio.
1166  * Returns 0 on success, or error on failure.
1167  */
1168 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1169 {
1170         struct bio_vec *bvec;
1171         struct bvec_iter_all iter_all;
1172 
1173         bio_for_each_segment_all(bvec, bio, iter_all) {
1174                 ssize_t ret;
1175 
1176                 ret = copy_page_from_iter(bvec->bv_page,
1177                                           bvec->bv_offset,
1178                                           bvec->bv_len,
1179                                           iter);
1180 
1181                 if (!iov_iter_count(iter))
1182                         break;
1183 
1184                 if (ret < bvec->bv_len)
1185                         return -EFAULT;
1186         }
1187 
1188         return 0;
1189 }
1190 
1191 /**
1192  * bio_copy_to_iter - copy all pages from bio to iov_iter
1193  * @bio: The &struct bio which describes the I/O as source
1194  * @iter: iov_iter as destination
1195  *
1196  * Copy all pages from bio to iov_iter.
1197  * Returns 0 on success, or error on failure.
1198  */
1199 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1200 {
1201         struct bio_vec *bvec;
1202         struct bvec_iter_all iter_all;
1203 
1204         bio_for_each_segment_all(bvec, bio, iter_all) {
1205                 ssize_t ret;
1206 
1207                 ret = copy_page_to_iter(bvec->bv_page,
1208                                         bvec->bv_offset,
1209                                         bvec->bv_len,
1210                                         &iter);
1211 
1212                 if (!iov_iter_count(&iter))
1213                         break;
1214 
1215                 if (ret < bvec->bv_len)
1216                         return -EFAULT;
1217         }
1218 
1219         return 0;
1220 }
1221 
1222 void bio_free_pages(struct bio *bio)
1223 {
1224         struct bio_vec *bvec;
1225         struct bvec_iter_all iter_all;
1226 
1227         bio_for_each_segment_all(bvec, bio, iter_all)
1228                 __free_page(bvec->bv_page);
1229 }
1230 EXPORT_SYMBOL(bio_free_pages);
1231 
1232 /**
1233  *      bio_uncopy_user -       finish previously mapped bio
1234  *      @bio: bio being terminated
1235  *
1236  *      Free pages allocated from bio_copy_user_iov() and write back data
1237  *      to user space in case of a read.
1238  */
1239 int bio_uncopy_user(struct bio *bio)
1240 {
1241         struct bio_map_data *bmd = bio->bi_private;
1242         int ret = 0;
1243 
1244         if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1245                 /*
1246                  * if we're in a workqueue, the request is orphaned, so
1247                  * don't copy into a random user address space, just free
1248                  * and return -EINTR so user space doesn't expect any data.
1249                  */
1250                 if (!current->mm)
1251                         ret = -EINTR;
1252                 else if (bio_data_dir(bio) == READ)
1253                         ret = bio_copy_to_iter(bio, bmd->iter);
1254                 if (bmd->is_our_pages)
1255                         bio_free_pages(bio);
1256         }
1257         kfree(bmd);
1258         bio_put(bio);
1259         return ret;
1260 }
1261 
1262 /**
1263  *      bio_copy_user_iov       -       copy user data to bio
1264  *      @q:             destination block queue
1265  *      @map_data:      pointer to the rq_map_data holding pages (if necessary)
1266  *      @iter:          iovec iterator
1267  *      @gfp_mask:      memory allocation flags
1268  *
1269  *      Prepares and returns a bio for indirect user io, bouncing data
1270  *      to/from kernel pages as necessary. Must be paired with
1271  *      call bio_uncopy_user() on io completion.
1272  */
1273 struct bio *bio_copy_user_iov(struct request_queue *q,
1274                               struct rq_map_data *map_data,
1275                               struct iov_iter *iter,
1276                               gfp_t gfp_mask)
1277 {
1278         struct bio_map_data *bmd;
1279         struct page *page;
1280         struct bio *bio;
1281         int i = 0, ret;
1282         int nr_pages;
1283         unsigned int len = iter->count;
1284         unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1285 
1286         bmd = bio_alloc_map_data(iter, gfp_mask);
1287         if (!bmd)
1288                 return ERR_PTR(-ENOMEM);
1289 
1290         /*
1291          * We need to do a deep copy of the iov_iter including the iovecs.
1292          * The caller provided iov might point to an on-stack or otherwise
1293          * shortlived one.
1294          */
1295         bmd->is_our_pages = map_data ? 0 : 1;
1296 
1297         nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1298         if (nr_pages > BIO_MAX_PAGES)
1299                 nr_pages = BIO_MAX_PAGES;
1300 
1301         ret = -ENOMEM;
1302         bio = bio_kmalloc(gfp_mask, nr_pages);
1303         if (!bio)
1304                 goto out_bmd;
1305 
1306         ret = 0;
1307 
1308         if (map_data) {
1309                 nr_pages = 1 << map_data->page_order;
1310                 i = map_data->offset / PAGE_SIZE;
1311         }
1312         while (len) {
1313                 unsigned int bytes = PAGE_SIZE;
1314 
1315                 bytes -= offset;
1316 
1317                 if (bytes > len)
1318                         bytes = len;
1319 
1320                 if (map_data) {
1321                         if (i == map_data->nr_entries * nr_pages) {
1322                                 ret = -ENOMEM;
1323                                 break;
1324                         }
1325 
1326                         page = map_data->pages[i / nr_pages];
1327                         page += (i % nr_pages);
1328 
1329                         i++;
1330                 } else {
1331                         page = alloc_page(q->bounce_gfp | gfp_mask);
1332                         if (!page) {
1333                                 ret = -ENOMEM;
1334                                 break;
1335                         }
1336                 }
1337 
1338                 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1339                         if (!map_data)
1340                                 __free_page(page);
1341                         break;
1342                 }
1343 
1344                 len -= bytes;
1345                 offset = 0;
1346         }
1347 
1348         if (ret)
1349                 goto cleanup;
1350 
1351         if (map_data)
1352                 map_data->offset += bio->bi_iter.bi_size;
1353 
1354         /*
1355          * success
1356          */
1357         if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1358             (map_data && map_data->from_user)) {
1359                 ret = bio_copy_from_iter(bio, iter);
1360                 if (ret)
1361                         goto cleanup;
1362         } else {
1363                 if (bmd->is_our_pages)
1364                         zero_fill_bio(bio);
1365                 iov_iter_advance(iter, bio->bi_iter.bi_size);
1366         }
1367 
1368         bio->bi_private = bmd;
1369         if (map_data && map_data->null_mapped)
1370                 bio_set_flag(bio, BIO_NULL_MAPPED);
1371         return bio;
1372 cleanup:
1373         if (!map_data)
1374                 bio_free_pages(bio);
1375         bio_put(bio);
1376 out_bmd:
1377         kfree(bmd);
1378         return ERR_PTR(ret);
1379 }
1380 
1381 /**
1382  *      bio_map_user_iov - map user iovec into bio
1383  *      @q:             the struct request_queue for the bio
1384  *      @iter:          iovec iterator
1385  *      @gfp_mask:      memory allocation flags
1386  *
1387  *      Map the user space address into a bio suitable for io to a block
1388  *      device. Returns an error pointer in case of error.
1389  */
1390 struct bio *bio_map_user_iov(struct request_queue *q,
1391                              struct iov_iter *iter,
1392                              gfp_t gfp_mask)
1393 {
1394         int j;
1395         struct bio *bio;
1396         int ret;
1397 
1398         if (!iov_iter_count(iter))
1399                 return ERR_PTR(-EINVAL);
1400 
1401         bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1402         if (!bio)
1403                 return ERR_PTR(-ENOMEM);
1404 
1405         while (iov_iter_count(iter)) {
1406                 struct page **pages;
1407                 ssize_t bytes;
1408                 size_t offs, added = 0;
1409                 int npages;
1410 
1411                 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1412                 if (unlikely(bytes <= 0)) {
1413                         ret = bytes ? bytes : -EFAULT;
1414                         goto out_unmap;
1415                 }
1416 
1417                 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1418 
1419                 if (unlikely(offs & queue_dma_alignment(q))) {
1420                         ret = -EINVAL;
1421                         j = 0;
1422                 } else {
1423                         for (j = 0; j < npages; j++) {
1424                                 struct page *page = pages[j];
1425                                 unsigned int n = PAGE_SIZE - offs;
1426                                 bool same_page = false;
1427 
1428                                 if (n > bytes)
1429                                         n = bytes;
1430 
1431                                 if (!__bio_add_pc_page(q, bio, page, n, offs,
1432                                                 &same_page)) {
1433                                         if (same_page)
1434                                                 put_page(page);
1435                                         break;
1436                                 }
1437 
1438                                 added += n;
1439                                 bytes -= n;
1440                                 offs = 0;
1441                         }
1442                         iov_iter_advance(iter, added);
1443                 }
1444                 /*
1445                  * release the pages we didn't map into the bio, if any
1446                  */
1447                 while (j < npages)
1448                         put_page(pages[j++]);
1449                 kvfree(pages);
1450                 /* couldn't stuff something into bio? */
1451                 if (bytes)
1452                         break;
1453         }
1454 
1455         bio_set_flag(bio, BIO_USER_MAPPED);
1456 
1457         /*
1458          * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1459          * it would normally disappear when its bi_end_io is run.
1460          * however, we need it for the unmap, so grab an extra
1461          * reference to it
1462          */
1463         bio_get(bio);
1464         return bio;
1465 
1466  out_unmap:
1467         bio_release_pages(bio, false);
1468         bio_put(bio);
1469         return ERR_PTR(ret);
1470 }
1471 
1472 /**
1473  *      bio_unmap_user  -       unmap a bio
1474  *      @bio:           the bio being unmapped
1475  *
1476  *      Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1477  *      process context.
1478  *
1479  *      bio_unmap_user() may sleep.
1480  */
1481 void bio_unmap_user(struct bio *bio)
1482 {
1483         bio_release_pages(bio, bio_data_dir(bio) == READ);
1484         bio_put(bio);
1485         bio_put(bio);
1486 }
1487 
1488 static void bio_invalidate_vmalloc_pages(struct bio *bio)
1489 {
1490 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1491         if (bio->bi_private && !op_is_write(bio_op(bio))) {
1492                 unsigned long i, len = 0;
1493 
1494                 for (i = 0; i < bio->bi_vcnt; i++)
1495                         len += bio->bi_io_vec[i].bv_len;
1496                 invalidate_kernel_vmap_range(bio->bi_private, len);
1497         }
1498 #endif
1499 }
1500 
1501 static void bio_map_kern_endio(struct bio *bio)
1502 {
1503         bio_invalidate_vmalloc_pages(bio);
1504         bio_put(bio);
1505 }
1506 
1507 /**
1508  *      bio_map_kern    -       map kernel address into bio
1509  *      @q: the struct request_queue for the bio
1510  *      @data: pointer to buffer to map
1511  *      @len: length in bytes
1512  *      @gfp_mask: allocation flags for bio allocation
1513  *
1514  *      Map the kernel address into a bio suitable for io to a block
1515  *      device. Returns an error pointer in case of error.
1516  */
1517 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1518                          gfp_t gfp_mask)
1519 {
1520         unsigned long kaddr = (unsigned long)data;
1521         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1522         unsigned long start = kaddr >> PAGE_SHIFT;
1523         const int nr_pages = end - start;
1524         bool is_vmalloc = is_vmalloc_addr(data);
1525         struct page *page;
1526         int offset, i;
1527         struct bio *bio;
1528 
1529         bio = bio_kmalloc(gfp_mask, nr_pages);
1530         if (!bio)
1531                 return ERR_PTR(-ENOMEM);
1532 
1533         if (is_vmalloc) {
1534                 flush_kernel_vmap_range(data, len);
1535                 bio->bi_private = data;
1536         }
1537 
1538         offset = offset_in_page(kaddr);
1539         for (i = 0; i < nr_pages; i++) {
1540                 unsigned int bytes = PAGE_SIZE - offset;
1541 
1542                 if (len <= 0)
1543                         break;
1544 
1545                 if (bytes > len)
1546                         bytes = len;
1547 
1548                 if (!is_vmalloc)
1549                         page = virt_to_page(data);
1550                 else
1551                         page = vmalloc_to_page(data);
1552                 if (bio_add_pc_page(q, bio, page, bytes,
1553                                     offset) < bytes) {
1554                         /* we don't support partial mappings */
1555                         bio_put(bio);
1556                         return ERR_PTR(-EINVAL);
1557                 }
1558 
1559                 data += bytes;
1560                 len -= bytes;
1561                 offset = 0;
1562         }
1563 
1564         bio->bi_end_io = bio_map_kern_endio;
1565         return bio;
1566 }
1567 
1568 static void bio_copy_kern_endio(struct bio *bio)
1569 {
1570         bio_free_pages(bio);
1571         bio_put(bio);
1572 }
1573 
1574 static void bio_copy_kern_endio_read(struct bio *bio)
1575 {
1576         char *p = bio->bi_private;
1577         struct bio_vec *bvec;
1578         struct bvec_iter_all iter_all;
1579 
1580         bio_for_each_segment_all(bvec, bio, iter_all) {
1581                 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1582                 p += bvec->bv_len;
1583         }
1584 
1585         bio_copy_kern_endio(bio);
1586 }
1587 
1588 /**
1589  *      bio_copy_kern   -       copy kernel address into bio
1590  *      @q: the struct request_queue for the bio
1591  *      @data: pointer to buffer to copy
1592  *      @len: length in bytes
1593  *      @gfp_mask: allocation flags for bio and page allocation
1594  *      @reading: data direction is READ
1595  *
1596  *      copy the kernel address into a bio suitable for io to a block
1597  *      device. Returns an error pointer in case of error.
1598  */
1599 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1600                           gfp_t gfp_mask, int reading)
1601 {
1602         unsigned long kaddr = (unsigned long)data;
1603         unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1604         unsigned long start = kaddr >> PAGE_SHIFT;
1605         struct bio *bio;
1606         void *p = data;
1607         int nr_pages = 0;
1608 
1609         /*
1610          * Overflow, abort
1611          */
1612         if (end < start)
1613                 return ERR_PTR(-EINVAL);
1614 
1615         nr_pages = end - start;
1616         bio = bio_kmalloc(gfp_mask, nr_pages);
1617         if (!bio)
1618                 return ERR_PTR(-ENOMEM);
1619 
1620         while (len) {
1621                 struct page *page;
1622                 unsigned int bytes = PAGE_SIZE;
1623 
1624                 if (bytes > len)
1625                         bytes = len;
1626 
1627                 page = alloc_page(q->bounce_gfp | gfp_mask);
1628                 if (!page)
1629                         goto cleanup;
1630 
1631                 if (!reading)
1632                         memcpy(page_address(page), p, bytes);
1633 
1634                 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1635                         break;
1636 
1637                 len -= bytes;
1638                 p += bytes;
1639         }
1640 
1641         if (reading) {
1642                 bio->bi_end_io = bio_copy_kern_endio_read;
1643                 bio->bi_private = data;
1644         } else {
1645                 bio->bi_end_io = bio_copy_kern_endio;
1646         }
1647 
1648         return bio;
1649 
1650 cleanup:
1651         bio_free_pages(bio);
1652         bio_put(bio);
1653         return ERR_PTR(-ENOMEM);
1654 }
1655 
1656 /*
1657  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1658  * for performing direct-IO in BIOs.
1659  *
1660  * The problem is that we cannot run set_page_dirty() from interrupt context
1661  * because the required locks are not interrupt-safe.  So what we can do is to
1662  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1663  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1664  * in process context.
1665  *
1666  * We special-case compound pages here: normally this means reads into hugetlb
1667  * pages.  The logic in here doesn't really work right for compound pages
1668  * because the VM does not uniformly chase down the head page in all cases.
1669  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1670  * handle them at all.  So we skip compound pages here at an early stage.
1671  *
1672  * Note that this code is very hard to test under normal circumstances because
1673  * direct-io pins the pages with get_user_pages().  This makes
1674  * is_page_cache_freeable return false, and the VM will not clean the pages.
1675  * But other code (eg, flusher threads) could clean the pages if they are mapped
1676  * pagecache.
1677  *
1678  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1679  * deferred bio dirtying paths.
1680  */
1681 
1682 /*
1683  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1684  */
1685 void bio_set_pages_dirty(struct bio *bio)
1686 {
1687         struct bio_vec *bvec;
1688         struct bvec_iter_all iter_all;
1689 
1690         bio_for_each_segment_all(bvec, bio, iter_all) {
1691                 if (!PageCompound(bvec->bv_page))
1692                         set_page_dirty_lock(bvec->bv_page);
1693         }
1694 }
1695 
1696 /*
1697  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1698  * If they are, then fine.  If, however, some pages are clean then they must
1699  * have been written out during the direct-IO read.  So we take another ref on
1700  * the BIO and re-dirty the pages in process context.
1701  *
1702  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1703  * here on.  It will run one put_page() against each page and will run one
1704  * bio_put() against the BIO.
1705  */
1706 
1707 static void bio_dirty_fn(struct work_struct *work);
1708 
1709 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1710 static DEFINE_SPINLOCK(bio_dirty_lock);
1711 static struct bio *bio_dirty_list;
1712 
1713 /*
1714  * This runs in process context
1715  */
1716 static void bio_dirty_fn(struct work_struct *work)
1717 {
1718         struct bio *bio, *next;
1719 
1720         spin_lock_irq(&bio_dirty_lock);
1721         next = bio_dirty_list;
1722         bio_dirty_list = NULL;
1723         spin_unlock_irq(&bio_dirty_lock);
1724 
1725         while ((bio = next) != NULL) {
1726                 next = bio->bi_private;
1727 
1728                 bio_release_pages(bio, true);
1729                 bio_put(bio);
1730         }
1731 }
1732 
1733 void bio_check_pages_dirty(struct bio *bio)
1734 {
1735         struct bio_vec *bvec;
1736         unsigned long flags;
1737         struct bvec_iter_all iter_all;
1738 
1739         bio_for_each_segment_all(bvec, bio, iter_all) {
1740                 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1741                         goto defer;
1742         }
1743 
1744         bio_release_pages(bio, false);
1745         bio_put(bio);
1746         return;
1747 defer:
1748         spin_lock_irqsave(&bio_dirty_lock, flags);
1749         bio->bi_private = bio_dirty_list;
1750         bio_dirty_list = bio;
1751         spin_unlock_irqrestore(&bio_dirty_lock, flags);
1752         schedule_work(&bio_dirty_work);
1753 }
1754 
1755 void update_io_ticks(struct hd_struct *part, unsigned long now)
1756 {
1757         unsigned long stamp;
1758 again:
1759         stamp = READ_ONCE(part->stamp);
1760         if (unlikely(stamp != now)) {
1761                 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1762                         __part_stat_add(part, io_ticks, 1);
1763                 }
1764         }
1765         if (part->partno) {
1766                 part = &part_to_disk(part)->part0;
1767                 goto again;
1768         }
1769 }
1770 
1771 void generic_start_io_acct(struct request_queue *q, int op,
1772                            unsigned long sectors, struct hd_struct *part)
1773 {
1774         const int sgrp = op_stat_group(op);
1775 
1776         part_stat_lock();
1777 
1778         update_io_ticks(part, jiffies);
1779         part_stat_inc(part, ios[sgrp]);
1780         part_stat_add(part, sectors[sgrp], sectors);
1781         part_inc_in_flight(q, part, op_is_write(op));
1782 
1783         part_stat_unlock();
1784 }
1785 EXPORT_SYMBOL(generic_start_io_acct);
1786 
1787 void generic_end_io_acct(struct request_queue *q, int req_op,
1788                          struct hd_struct *part, unsigned long start_time)
1789 {
1790         unsigned long now = jiffies;
1791         unsigned long duration = now - start_time;
1792         const int sgrp = op_stat_group(req_op);
1793 
1794         part_stat_lock();
1795 
1796         update_io_ticks(part, now);
1797         part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1798         part_stat_add(part, time_in_queue, duration);
1799         part_dec_in_flight(q, part, op_is_write(req_op));
1800 
1801         part_stat_unlock();
1802 }
1803 EXPORT_SYMBOL(generic_end_io_acct);
1804 
1805 static inline bool bio_remaining_done(struct bio *bio)
1806 {
1807         /*
1808          * If we're not chaining, then ->__bi_remaining is always 1 and
1809          * we always end io on the first invocation.
1810          */
1811         if (!bio_flagged(bio, BIO_CHAIN))
1812                 return true;
1813 
1814         BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1815 
1816         if (atomic_dec_and_test(&bio->__bi_remaining)) {
1817                 bio_clear_flag(bio, BIO_CHAIN);
1818                 return true;
1819         }
1820 
1821         return false;
1822 }
1823 
1824 /**
1825  * bio_endio - end I/O on a bio
1826  * @bio:        bio
1827  *
1828  * Description:
1829  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1830  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1831  *   bio unless they own it and thus know that it has an end_io function.
1832  *
1833  *   bio_endio() can be called several times on a bio that has been chained
1834  *   using bio_chain().  The ->bi_end_io() function will only be called the
1835  *   last time.  At this point the BLK_TA_COMPLETE tracing event will be
1836  *   generated if BIO_TRACE_COMPLETION is set.
1837  **/
1838 void bio_endio(struct bio *bio)
1839 {
1840 again:
1841         if (!bio_remaining_done(bio))
1842                 return;
1843         if (!bio_integrity_endio(bio))
1844                 return;
1845 
1846         if (bio->bi_disk)
1847                 rq_qos_done_bio(bio->bi_disk->queue, bio);
1848 
1849         /*
1850          * Need to have a real endio function for chained bios, otherwise
1851          * various corner cases will break (like stacking block devices that
1852          * save/restore bi_end_io) - however, we want to avoid unbounded
1853          * recursion and blowing the stack. Tail call optimization would
1854          * handle this, but compiling with frame pointers also disables
1855          * gcc's sibling call optimization.
1856          */
1857         if (bio->bi_end_io == bio_chain_endio) {
1858                 bio = __bio_chain_endio(bio);
1859                 goto again;
1860         }
1861 
1862         if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1863                 trace_block_bio_complete(bio->bi_disk->queue, bio,
1864                                          blk_status_to_errno(bio->bi_status));
1865                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1866         }
1867 
1868         blk_throtl_bio_endio(bio);
1869         /* release cgroup info */
1870         bio_uninit(bio);
1871         if (bio->bi_end_io)
1872                 bio->bi_end_io(bio);
1873 }
1874 EXPORT_SYMBOL(bio_endio);
1875 
1876 /**
1877  * bio_split - split a bio
1878  * @bio:        bio to split
1879  * @sectors:    number of sectors to split from the front of @bio
1880  * @gfp:        gfp mask
1881  * @bs:         bio set to allocate from
1882  *
1883  * Allocates and returns a new bio which represents @sectors from the start of
1884  * @bio, and updates @bio to represent the remaining sectors.
1885  *
1886  * Unless this is a discard request the newly allocated bio will point
1887  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1888  * neither @bio nor @bs are freed before the split bio.
1889  */
1890 struct bio *bio_split(struct bio *bio, int sectors,
1891                       gfp_t gfp, struct bio_set *bs)
1892 {
1893         struct bio *split;
1894 
1895         BUG_ON(sectors <= 0);
1896         BUG_ON(sectors >= bio_sectors(bio));
1897 
1898         split = bio_clone_fast(bio, gfp, bs);
1899         if (!split)
1900                 return NULL;
1901 
1902         split->bi_iter.bi_size = sectors << 9;
1903 
1904         if (bio_integrity(split))
1905                 bio_integrity_trim(split);
1906 
1907         bio_advance(bio, split->bi_iter.bi_size);
1908 
1909         if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1910                 bio_set_flag(split, BIO_TRACE_COMPLETION);
1911 
1912         return split;
1913 }
1914 EXPORT_SYMBOL(bio_split);
1915 
1916 /**
1917  * bio_trim - trim a bio
1918  * @bio:        bio to trim
1919  * @offset:     number of sectors to trim from the front of @bio
1920  * @size:       size we want to trim @bio to, in sectors
1921  */
1922 void bio_trim(struct bio *bio, int offset, int size)
1923 {
1924         /* 'bio' is a cloned bio which we need to trim to match
1925          * the given offset and size.
1926          */
1927 
1928         size <<= 9;
1929         if (offset == 0 && size == bio->bi_iter.bi_size)
1930                 return;
1931 
1932         bio_advance(bio, offset << 9);
1933         bio->bi_iter.bi_size = size;
1934 
1935         if (bio_integrity(bio))
1936                 bio_integrity_trim(bio);
1937 
1938 }
1939 EXPORT_SYMBOL_GPL(bio_trim);
1940 
1941 /*
1942  * create memory pools for biovec's in a bio_set.
1943  * use the global biovec slabs created for general use.
1944  */
1945 int biovec_init_pool(mempool_t *pool, int pool_entries)
1946 {
1947         struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1948 
1949         return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1950 }
1951 
1952 /*
1953  * bioset_exit - exit a bioset initialized with bioset_init()
1954  *
1955  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1956  * kzalloc()).
1957  */
1958 void bioset_exit(struct bio_set *bs)
1959 {
1960         if (bs->rescue_workqueue)
1961                 destroy_workqueue(bs->rescue_workqueue);
1962         bs->rescue_workqueue = NULL;
1963 
1964         mempool_exit(&bs->bio_pool);
1965         mempool_exit(&bs->bvec_pool);
1966 
1967         bioset_integrity_free(bs);
1968         if (bs->bio_slab)
1969                 bio_put_slab(bs);
1970         bs->bio_slab = NULL;
1971 }
1972 EXPORT_SYMBOL(bioset_exit);
1973 
1974 /**
1975  * bioset_init - Initialize a bio_set
1976  * @bs:         pool to initialize
1977  * @pool_size:  Number of bio and bio_vecs to cache in the mempool
1978  * @front_pad:  Number of bytes to allocate in front of the returned bio
1979  * @flags:      Flags to modify behavior, currently %BIOSET_NEED_BVECS
1980  *              and %BIOSET_NEED_RESCUER
1981  *
1982  * Description:
1983  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1984  *    to ask for a number of bytes to be allocated in front of the bio.
1985  *    Front pad allocation is useful for embedding the bio inside
1986  *    another structure, to avoid allocating extra data to go with the bio.
1987  *    Note that the bio must be embedded at the END of that structure always,
1988  *    or things will break badly.
1989  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1990  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1991  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1992  *    dispatch queued requests when the mempool runs out of space.
1993  *
1994  */
1995 int bioset_init(struct bio_set *bs,
1996                 unsigned int pool_size,
1997                 unsigned int front_pad,
1998                 int flags)
1999 {
2000         unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
2001 
2002         bs->front_pad = front_pad;
2003 
2004         spin_lock_init(&bs->rescue_lock);
2005         bio_list_init(&bs->rescue_list);
2006         INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2007 
2008         bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2009         if (!bs->bio_slab)
2010                 return -ENOMEM;
2011 
2012         if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2013                 goto bad;
2014 
2015         if ((flags & BIOSET_NEED_BVECS) &&
2016             biovec_init_pool(&bs->bvec_pool, pool_size))
2017                 goto bad;
2018 
2019         if (!(flags & BIOSET_NEED_RESCUER))
2020                 return 0;
2021 
2022         bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2023         if (!bs->rescue_workqueue)
2024                 goto bad;
2025 
2026         return 0;
2027 bad:
2028         bioset_exit(bs);
2029         return -ENOMEM;
2030 }
2031 EXPORT_SYMBOL(bioset_init);
2032 
2033 /*
2034  * Initialize and setup a new bio_set, based on the settings from
2035  * another bio_set.
2036  */
2037 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2038 {
2039         int flags;
2040 
2041         flags = 0;
2042         if (src->bvec_pool.min_nr)
2043                 flags |= BIOSET_NEED_BVECS;
2044         if (src->rescue_workqueue)
2045                 flags |= BIOSET_NEED_RESCUER;
2046 
2047         return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2048 }
2049 EXPORT_SYMBOL(bioset_init_from_src);
2050 
2051 #ifdef CONFIG_BLK_CGROUP
2052 
2053 /**
2054  * bio_disassociate_blkg - puts back the blkg reference if associated
2055  * @bio: target bio
2056  *
2057  * Helper to disassociate the blkg from @bio if a blkg is associated.
2058  */
2059 void bio_disassociate_blkg(struct bio *bio)
2060 {
2061         if (bio->bi_blkg) {
2062                 blkg_put(bio->bi_blkg);
2063                 bio->bi_blkg = NULL;
2064         }
2065 }
2066 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2067 
2068 /**
2069  * __bio_associate_blkg - associate a bio with the a blkg
2070  * @bio: target bio
2071  * @blkg: the blkg to associate
2072  *
2073  * This tries to associate @bio with the specified @blkg.  Association failure
2074  * is handled by walking up the blkg tree.  Therefore, the blkg associated can
2075  * be anything between @blkg and the root_blkg.  This situation only happens
2076  * when a cgroup is dying and then the remaining bios will spill to the closest
2077  * alive blkg.
2078  *
2079  * A reference will be taken on the @blkg and will be released when @bio is
2080  * freed.
2081  */
2082 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2083 {
2084         bio_disassociate_blkg(bio);
2085 
2086         bio->bi_blkg = blkg_tryget_closest(blkg);
2087 }
2088 
2089 /**
2090  * bio_associate_blkg_from_css - associate a bio with a specified css
2091  * @bio: target bio
2092  * @css: target css
2093  *
2094  * Associate @bio with the blkg found by combining the css's blkg and the
2095  * request_queue of the @bio.  This falls back to the queue's root_blkg if
2096  * the association fails with the css.
2097  */
2098 void bio_associate_blkg_from_css(struct bio *bio,
2099                                  struct cgroup_subsys_state *css)
2100 {
2101         struct request_queue *q = bio->bi_disk->queue;
2102         struct blkcg_gq *blkg;
2103 
2104         rcu_read_lock();
2105 
2106         if (!css || !css->parent)
2107                 blkg = q->root_blkg;
2108         else
2109                 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2110 
2111         __bio_associate_blkg(bio, blkg);
2112 
2113         rcu_read_unlock();
2114 }
2115 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2116 
2117 #ifdef CONFIG_MEMCG
2118 /**
2119  * bio_associate_blkg_from_page - associate a bio with the page's blkg
2120  * @bio: target bio
2121  * @page: the page to lookup the blkcg from
2122  *
2123  * Associate @bio with the blkg from @page's owning memcg and the respective
2124  * request_queue.  If cgroup_e_css returns %NULL, fall back to the queue's
2125  * root_blkg.
2126  */
2127 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2128 {
2129         struct cgroup_subsys_state *css;
2130 
2131         if (!page->mem_cgroup)
2132                 return;
2133 
2134         rcu_read_lock();
2135 
2136         css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2137         bio_associate_blkg_from_css(bio, css);
2138 
2139         rcu_read_unlock();
2140 }
2141 #endif /* CONFIG_MEMCG */
2142 
2143 /**
2144  * bio_associate_blkg - associate a bio with a blkg
2145  * @bio: target bio
2146  *
2147  * Associate @bio with the blkg found from the bio's css and request_queue.
2148  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2149  * already associated, the css is reused and association redone as the
2150  * request_queue may have changed.
2151  */
2152 void bio_associate_blkg(struct bio *bio)
2153 {
2154         struct cgroup_subsys_state *css;
2155 
2156         rcu_read_lock();
2157 
2158         if (bio->bi_blkg)
2159                 css = &bio_blkcg(bio)->css;
2160         else
2161                 css = blkcg_css();
2162 
2163         bio_associate_blkg_from_css(bio, css);
2164 
2165         rcu_read_unlock();
2166 }
2167 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2168 
2169 /**
2170  * bio_clone_blkg_association - clone blkg association from src to dst bio
2171  * @dst: destination bio
2172  * @src: source bio
2173  */
2174 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2175 {
2176         rcu_read_lock();
2177 
2178         if (src->bi_blkg)
2179                 __bio_associate_blkg(dst, src->bi_blkg);
2180 
2181         rcu_read_unlock();
2182 }
2183 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2184 #endif /* CONFIG_BLK_CGROUP */
2185 
2186 static void __init biovec_init_slabs(void)
2187 {
2188         int i;
2189 
2190         for (i = 0; i < BVEC_POOL_NR; i++) {
2191                 int size;
2192                 struct biovec_slab *bvs = bvec_slabs + i;
2193 
2194                 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2195                         bvs->slab = NULL;
2196                         continue;
2197                 }
2198 
2199                 size = bvs->nr_vecs * sizeof(struct bio_vec);
2200                 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2201                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2202         }
2203 }
2204 
2205 static int __init init_bio(void)
2206 {
2207         bio_slab_max = 2;
2208         bio_slab_nr = 0;
2209         bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2210                             GFP_KERNEL);
2211 
2212         BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2213 
2214         if (!bio_slabs)
2215                 panic("bio: can't allocate bios\n");
2216 
2217         bio_integrity_init();
2218         biovec_init_slabs();
2219 
2220         if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2221                 panic("bio: can't allocate bios\n");
2222 
2223         if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2224                 panic("bio: can't create integrity pool\n");
2225 
2226         return 0;
2227 }
2228 subsys_initcall(init_bio);

/* [<][>][^][v][top][bottom][index][help] */