root/block/blk-settings.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. blk_queue_rq_timeout
  2. blk_set_default_limits
  3. blk_set_stacking_limits
  4. blk_queue_make_request
  5. blk_queue_bounce_limit
  6. blk_queue_max_hw_sectors
  7. blk_queue_chunk_sectors
  8. blk_queue_max_discard_sectors
  9. blk_queue_max_write_same_sectors
  10. blk_queue_max_write_zeroes_sectors
  11. blk_queue_max_segments
  12. blk_queue_max_discard_segments
  13. blk_queue_max_segment_size
  14. blk_queue_logical_block_size
  15. blk_queue_physical_block_size
  16. blk_queue_alignment_offset
  17. blk_limits_io_min
  18. blk_queue_io_min
  19. blk_limits_io_opt
  20. blk_queue_io_opt
  21. blk_queue_stack_limits
  22. blk_stack_limits
  23. bdev_stack_limits
  24. disk_stack_limits
  25. blk_queue_update_dma_pad
  26. blk_queue_dma_drain
  27. blk_queue_segment_boundary
  28. blk_queue_virt_boundary
  29. blk_queue_dma_alignment
  30. blk_queue_update_dma_alignment
  31. blk_set_queue_depth
  32. blk_queue_write_cache
  33. blk_queue_required_elevator_features
  34. blk_queue_can_use_dma_map_merging
  35. blk_settings_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Functions related to setting various queue properties from drivers
   4  */
   5 #include <linux/kernel.h>
   6 #include <linux/module.h>
   7 #include <linux/init.h>
   8 #include <linux/bio.h>
   9 #include <linux/blkdev.h>
  10 #include <linux/memblock.h>     /* for max_pfn/max_low_pfn */
  11 #include <linux/gcd.h>
  12 #include <linux/lcm.h>
  13 #include <linux/jiffies.h>
  14 #include <linux/gfp.h>
  15 #include <linux/dma-mapping.h>
  16 
  17 #include "blk.h"
  18 #include "blk-wbt.h"
  19 
  20 unsigned long blk_max_low_pfn;
  21 EXPORT_SYMBOL(blk_max_low_pfn);
  22 
  23 unsigned long blk_max_pfn;
  24 
  25 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  26 {
  27         q->rq_timeout = timeout;
  28 }
  29 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  30 
  31 /**
  32  * blk_set_default_limits - reset limits to default values
  33  * @lim:  the queue_limits structure to reset
  34  *
  35  * Description:
  36  *   Returns a queue_limit struct to its default state.
  37  */
  38 void blk_set_default_limits(struct queue_limits *lim)
  39 {
  40         lim->max_segments = BLK_MAX_SEGMENTS;
  41         lim->max_discard_segments = 1;
  42         lim->max_integrity_segments = 0;
  43         lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  44         lim->virt_boundary_mask = 0;
  45         lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  46         lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
  47         lim->max_dev_sectors = 0;
  48         lim->chunk_sectors = 0;
  49         lim->max_write_same_sectors = 0;
  50         lim->max_write_zeroes_sectors = 0;
  51         lim->max_discard_sectors = 0;
  52         lim->max_hw_discard_sectors = 0;
  53         lim->discard_granularity = 0;
  54         lim->discard_alignment = 0;
  55         lim->discard_misaligned = 0;
  56         lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  57         lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
  58         lim->alignment_offset = 0;
  59         lim->io_opt = 0;
  60         lim->misaligned = 0;
  61         lim->zoned = BLK_ZONED_NONE;
  62 }
  63 EXPORT_SYMBOL(blk_set_default_limits);
  64 
  65 /**
  66  * blk_set_stacking_limits - set default limits for stacking devices
  67  * @lim:  the queue_limits structure to reset
  68  *
  69  * Description:
  70  *   Returns a queue_limit struct to its default state. Should be used
  71  *   by stacking drivers like DM that have no internal limits.
  72  */
  73 void blk_set_stacking_limits(struct queue_limits *lim)
  74 {
  75         blk_set_default_limits(lim);
  76 
  77         /* Inherit limits from component devices */
  78         lim->max_segments = USHRT_MAX;
  79         lim->max_discard_segments = USHRT_MAX;
  80         lim->max_hw_sectors = UINT_MAX;
  81         lim->max_segment_size = UINT_MAX;
  82         lim->max_sectors = UINT_MAX;
  83         lim->max_dev_sectors = UINT_MAX;
  84         lim->max_write_same_sectors = UINT_MAX;
  85         lim->max_write_zeroes_sectors = UINT_MAX;
  86 }
  87 EXPORT_SYMBOL(blk_set_stacking_limits);
  88 
  89 /**
  90  * blk_queue_make_request - define an alternate make_request function for a device
  91  * @q:  the request queue for the device to be affected
  92  * @mfn: the alternate make_request function
  93  *
  94  * Description:
  95  *    The normal way for &struct bios to be passed to a device
  96  *    driver is for them to be collected into requests on a request
  97  *    queue, and then to allow the device driver to select requests
  98  *    off that queue when it is ready.  This works well for many block
  99  *    devices. However some block devices (typically virtual devices
 100  *    such as md or lvm) do not benefit from the processing on the
 101  *    request queue, and are served best by having the requests passed
 102  *    directly to them.  This can be achieved by providing a function
 103  *    to blk_queue_make_request().
 104  *
 105  * Caveat:
 106  *    The driver that does this *must* be able to deal appropriately
 107  *    with buffers in "highmemory". This can be accomplished by either calling
 108  *    kmap_atomic() to get a temporary kernel mapping, or by calling
 109  *    blk_queue_bounce() to create a buffer in normal memory.
 110  **/
 111 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
 112 {
 113         /*
 114          * set defaults
 115          */
 116         q->nr_requests = BLKDEV_MAX_RQ;
 117 
 118         q->make_request_fn = mfn;
 119         blk_queue_dma_alignment(q, 511);
 120 
 121         blk_set_default_limits(&q->limits);
 122 }
 123 EXPORT_SYMBOL(blk_queue_make_request);
 124 
 125 /**
 126  * blk_queue_bounce_limit - set bounce buffer limit for queue
 127  * @q: the request queue for the device
 128  * @max_addr: the maximum address the device can handle
 129  *
 130  * Description:
 131  *    Different hardware can have different requirements as to what pages
 132  *    it can do I/O directly to. A low level driver can call
 133  *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
 134  *    buffers for doing I/O to pages residing above @max_addr.
 135  **/
 136 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
 137 {
 138         unsigned long b_pfn = max_addr >> PAGE_SHIFT;
 139         int dma = 0;
 140 
 141         q->bounce_gfp = GFP_NOIO;
 142 #if BITS_PER_LONG == 64
 143         /*
 144          * Assume anything <= 4GB can be handled by IOMMU.  Actually
 145          * some IOMMUs can handle everything, but I don't know of a
 146          * way to test this here.
 147          */
 148         if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
 149                 dma = 1;
 150         q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
 151 #else
 152         if (b_pfn < blk_max_low_pfn)
 153                 dma = 1;
 154         q->limits.bounce_pfn = b_pfn;
 155 #endif
 156         if (dma) {
 157                 init_emergency_isa_pool();
 158                 q->bounce_gfp = GFP_NOIO | GFP_DMA;
 159                 q->limits.bounce_pfn = b_pfn;
 160         }
 161 }
 162 EXPORT_SYMBOL(blk_queue_bounce_limit);
 163 
 164 /**
 165  * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 166  * @q:  the request queue for the device
 167  * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 168  *
 169  * Description:
 170  *    Enables a low level driver to set a hard upper limit,
 171  *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 172  *    the device driver based upon the capabilities of the I/O
 173  *    controller.
 174  *
 175  *    max_dev_sectors is a hard limit imposed by the storage device for
 176  *    READ/WRITE requests. It is set by the disk driver.
 177  *
 178  *    max_sectors is a soft limit imposed by the block layer for
 179  *    filesystem type requests.  This value can be overridden on a
 180  *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 181  *    The soft limit can not exceed max_hw_sectors.
 182  **/
 183 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 184 {
 185         struct queue_limits *limits = &q->limits;
 186         unsigned int max_sectors;
 187 
 188         if ((max_hw_sectors << 9) < PAGE_SIZE) {
 189                 max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 190                 printk(KERN_INFO "%s: set to minimum %d\n",
 191                        __func__, max_hw_sectors);
 192         }
 193 
 194         limits->max_hw_sectors = max_hw_sectors;
 195         max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 196         max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
 197         limits->max_sectors = max_sectors;
 198         q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 199 }
 200 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 201 
 202 /**
 203  * blk_queue_chunk_sectors - set size of the chunk for this queue
 204  * @q:  the request queue for the device
 205  * @chunk_sectors:  chunk sectors in the usual 512b unit
 206  *
 207  * Description:
 208  *    If a driver doesn't want IOs to cross a given chunk size, it can set
 209  *    this limit and prevent merging across chunks. Note that the chunk size
 210  *    must currently be a power-of-2 in sectors. Also note that the block
 211  *    layer must accept a page worth of data at any offset. So if the
 212  *    crossing of chunks is a hard limitation in the driver, it must still be
 213  *    prepared to split single page bios.
 214  **/
 215 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 216 {
 217         BUG_ON(!is_power_of_2(chunk_sectors));
 218         q->limits.chunk_sectors = chunk_sectors;
 219 }
 220 EXPORT_SYMBOL(blk_queue_chunk_sectors);
 221 
 222 /**
 223  * blk_queue_max_discard_sectors - set max sectors for a single discard
 224  * @q:  the request queue for the device
 225  * @max_discard_sectors: maximum number of sectors to discard
 226  **/
 227 void blk_queue_max_discard_sectors(struct request_queue *q,
 228                 unsigned int max_discard_sectors)
 229 {
 230         q->limits.max_hw_discard_sectors = max_discard_sectors;
 231         q->limits.max_discard_sectors = max_discard_sectors;
 232 }
 233 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 234 
 235 /**
 236  * blk_queue_max_write_same_sectors - set max sectors for a single write same
 237  * @q:  the request queue for the device
 238  * @max_write_same_sectors: maximum number of sectors to write per command
 239  **/
 240 void blk_queue_max_write_same_sectors(struct request_queue *q,
 241                                       unsigned int max_write_same_sectors)
 242 {
 243         q->limits.max_write_same_sectors = max_write_same_sectors;
 244 }
 245 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
 246 
 247 /**
 248  * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 249  *                                      write zeroes
 250  * @q:  the request queue for the device
 251  * @max_write_zeroes_sectors: maximum number of sectors to write per command
 252  **/
 253 void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 254                 unsigned int max_write_zeroes_sectors)
 255 {
 256         q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 257 }
 258 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 259 
 260 /**
 261  * blk_queue_max_segments - set max hw segments for a request for this queue
 262  * @q:  the request queue for the device
 263  * @max_segments:  max number of segments
 264  *
 265  * Description:
 266  *    Enables a low level driver to set an upper limit on the number of
 267  *    hw data segments in a request.
 268  **/
 269 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 270 {
 271         if (!max_segments) {
 272                 max_segments = 1;
 273                 printk(KERN_INFO "%s: set to minimum %d\n",
 274                        __func__, max_segments);
 275         }
 276 
 277         q->limits.max_segments = max_segments;
 278 }
 279 EXPORT_SYMBOL(blk_queue_max_segments);
 280 
 281 /**
 282  * blk_queue_max_discard_segments - set max segments for discard requests
 283  * @q:  the request queue for the device
 284  * @max_segments:  max number of segments
 285  *
 286  * Description:
 287  *    Enables a low level driver to set an upper limit on the number of
 288  *    segments in a discard request.
 289  **/
 290 void blk_queue_max_discard_segments(struct request_queue *q,
 291                 unsigned short max_segments)
 292 {
 293         q->limits.max_discard_segments = max_segments;
 294 }
 295 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 296 
 297 /**
 298  * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 299  * @q:  the request queue for the device
 300  * @max_size:  max size of segment in bytes
 301  *
 302  * Description:
 303  *    Enables a low level driver to set an upper limit on the size of a
 304  *    coalesced segment
 305  **/
 306 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 307 {
 308         if (max_size < PAGE_SIZE) {
 309                 max_size = PAGE_SIZE;
 310                 printk(KERN_INFO "%s: set to minimum %d\n",
 311                        __func__, max_size);
 312         }
 313 
 314         /* see blk_queue_virt_boundary() for the explanation */
 315         WARN_ON_ONCE(q->limits.virt_boundary_mask);
 316 
 317         q->limits.max_segment_size = max_size;
 318 }
 319 EXPORT_SYMBOL(blk_queue_max_segment_size);
 320 
 321 /**
 322  * blk_queue_logical_block_size - set logical block size for the queue
 323  * @q:  the request queue for the device
 324  * @size:  the logical block size, in bytes
 325  *
 326  * Description:
 327  *   This should be set to the lowest possible block size that the
 328  *   storage device can address.  The default of 512 covers most
 329  *   hardware.
 330  **/
 331 void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
 332 {
 333         q->limits.logical_block_size = size;
 334 
 335         if (q->limits.physical_block_size < size)
 336                 q->limits.physical_block_size = size;
 337 
 338         if (q->limits.io_min < q->limits.physical_block_size)
 339                 q->limits.io_min = q->limits.physical_block_size;
 340 }
 341 EXPORT_SYMBOL(blk_queue_logical_block_size);
 342 
 343 /**
 344  * blk_queue_physical_block_size - set physical block size for the queue
 345  * @q:  the request queue for the device
 346  * @size:  the physical block size, in bytes
 347  *
 348  * Description:
 349  *   This should be set to the lowest possible sector size that the
 350  *   hardware can operate on without reverting to read-modify-write
 351  *   operations.
 352  */
 353 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 354 {
 355         q->limits.physical_block_size = size;
 356 
 357         if (q->limits.physical_block_size < q->limits.logical_block_size)
 358                 q->limits.physical_block_size = q->limits.logical_block_size;
 359 
 360         if (q->limits.io_min < q->limits.physical_block_size)
 361                 q->limits.io_min = q->limits.physical_block_size;
 362 }
 363 EXPORT_SYMBOL(blk_queue_physical_block_size);
 364 
 365 /**
 366  * blk_queue_alignment_offset - set physical block alignment offset
 367  * @q:  the request queue for the device
 368  * @offset: alignment offset in bytes
 369  *
 370  * Description:
 371  *   Some devices are naturally misaligned to compensate for things like
 372  *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 373  *   should call this function for devices whose first sector is not
 374  *   naturally aligned.
 375  */
 376 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 377 {
 378         q->limits.alignment_offset =
 379                 offset & (q->limits.physical_block_size - 1);
 380         q->limits.misaligned = 0;
 381 }
 382 EXPORT_SYMBOL(blk_queue_alignment_offset);
 383 
 384 /**
 385  * blk_limits_io_min - set minimum request size for a device
 386  * @limits: the queue limits
 387  * @min:  smallest I/O size in bytes
 388  *
 389  * Description:
 390  *   Some devices have an internal block size bigger than the reported
 391  *   hardware sector size.  This function can be used to signal the
 392  *   smallest I/O the device can perform without incurring a performance
 393  *   penalty.
 394  */
 395 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 396 {
 397         limits->io_min = min;
 398 
 399         if (limits->io_min < limits->logical_block_size)
 400                 limits->io_min = limits->logical_block_size;
 401 
 402         if (limits->io_min < limits->physical_block_size)
 403                 limits->io_min = limits->physical_block_size;
 404 }
 405 EXPORT_SYMBOL(blk_limits_io_min);
 406 
 407 /**
 408  * blk_queue_io_min - set minimum request size for the queue
 409  * @q:  the request queue for the device
 410  * @min:  smallest I/O size in bytes
 411  *
 412  * Description:
 413  *   Storage devices may report a granularity or preferred minimum I/O
 414  *   size which is the smallest request the device can perform without
 415  *   incurring a performance penalty.  For disk drives this is often the
 416  *   physical block size.  For RAID arrays it is often the stripe chunk
 417  *   size.  A properly aligned multiple of minimum_io_size is the
 418  *   preferred request size for workloads where a high number of I/O
 419  *   operations is desired.
 420  */
 421 void blk_queue_io_min(struct request_queue *q, unsigned int min)
 422 {
 423         blk_limits_io_min(&q->limits, min);
 424 }
 425 EXPORT_SYMBOL(blk_queue_io_min);
 426 
 427 /**
 428  * blk_limits_io_opt - set optimal request size for a device
 429  * @limits: the queue limits
 430  * @opt:  smallest I/O size in bytes
 431  *
 432  * Description:
 433  *   Storage devices may report an optimal I/O size, which is the
 434  *   device's preferred unit for sustained I/O.  This is rarely reported
 435  *   for disk drives.  For RAID arrays it is usually the stripe width or
 436  *   the internal track size.  A properly aligned multiple of
 437  *   optimal_io_size is the preferred request size for workloads where
 438  *   sustained throughput is desired.
 439  */
 440 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 441 {
 442         limits->io_opt = opt;
 443 }
 444 EXPORT_SYMBOL(blk_limits_io_opt);
 445 
 446 /**
 447  * blk_queue_io_opt - set optimal request size for the queue
 448  * @q:  the request queue for the device
 449  * @opt:  optimal request size in bytes
 450  *
 451  * Description:
 452  *   Storage devices may report an optimal I/O size, which is the
 453  *   device's preferred unit for sustained I/O.  This is rarely reported
 454  *   for disk drives.  For RAID arrays it is usually the stripe width or
 455  *   the internal track size.  A properly aligned multiple of
 456  *   optimal_io_size is the preferred request size for workloads where
 457  *   sustained throughput is desired.
 458  */
 459 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 460 {
 461         blk_limits_io_opt(&q->limits, opt);
 462 }
 463 EXPORT_SYMBOL(blk_queue_io_opt);
 464 
 465 /**
 466  * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 467  * @t:  the stacking driver (top)
 468  * @b:  the underlying device (bottom)
 469  **/
 470 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 471 {
 472         blk_stack_limits(&t->limits, &b->limits, 0);
 473 }
 474 EXPORT_SYMBOL(blk_queue_stack_limits);
 475 
 476 /**
 477  * blk_stack_limits - adjust queue_limits for stacked devices
 478  * @t:  the stacking driver limits (top device)
 479  * @b:  the underlying queue limits (bottom, component device)
 480  * @start:  first data sector within component device
 481  *
 482  * Description:
 483  *    This function is used by stacking drivers like MD and DM to ensure
 484  *    that all component devices have compatible block sizes and
 485  *    alignments.  The stacking driver must provide a queue_limits
 486  *    struct (top) and then iteratively call the stacking function for
 487  *    all component (bottom) devices.  The stacking function will
 488  *    attempt to combine the values and ensure proper alignment.
 489  *
 490  *    Returns 0 if the top and bottom queue_limits are compatible.  The
 491  *    top device's block sizes and alignment offsets may be adjusted to
 492  *    ensure alignment with the bottom device. If no compatible sizes
 493  *    and alignments exist, -1 is returned and the resulting top
 494  *    queue_limits will have the misaligned flag set to indicate that
 495  *    the alignment_offset is undefined.
 496  */
 497 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 498                      sector_t start)
 499 {
 500         unsigned int top, bottom, alignment, ret = 0;
 501 
 502         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 503         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 504         t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 505         t->max_write_same_sectors = min(t->max_write_same_sectors,
 506                                         b->max_write_same_sectors);
 507         t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 508                                         b->max_write_zeroes_sectors);
 509         t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 510 
 511         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 512                                             b->seg_boundary_mask);
 513         t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 514                                             b->virt_boundary_mask);
 515 
 516         t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 517         t->max_discard_segments = min_not_zero(t->max_discard_segments,
 518                                                b->max_discard_segments);
 519         t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 520                                                  b->max_integrity_segments);
 521 
 522         t->max_segment_size = min_not_zero(t->max_segment_size,
 523                                            b->max_segment_size);
 524 
 525         t->misaligned |= b->misaligned;
 526 
 527         alignment = queue_limit_alignment_offset(b, start);
 528 
 529         /* Bottom device has different alignment.  Check that it is
 530          * compatible with the current top alignment.
 531          */
 532         if (t->alignment_offset != alignment) {
 533 
 534                 top = max(t->physical_block_size, t->io_min)
 535                         + t->alignment_offset;
 536                 bottom = max(b->physical_block_size, b->io_min) + alignment;
 537 
 538                 /* Verify that top and bottom intervals line up */
 539                 if (max(top, bottom) % min(top, bottom)) {
 540                         t->misaligned = 1;
 541                         ret = -1;
 542                 }
 543         }
 544 
 545         t->logical_block_size = max(t->logical_block_size,
 546                                     b->logical_block_size);
 547 
 548         t->physical_block_size = max(t->physical_block_size,
 549                                      b->physical_block_size);
 550 
 551         t->io_min = max(t->io_min, b->io_min);
 552         t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 553 
 554         /* Physical block size a multiple of the logical block size? */
 555         if (t->physical_block_size & (t->logical_block_size - 1)) {
 556                 t->physical_block_size = t->logical_block_size;
 557                 t->misaligned = 1;
 558                 ret = -1;
 559         }
 560 
 561         /* Minimum I/O a multiple of the physical block size? */
 562         if (t->io_min & (t->physical_block_size - 1)) {
 563                 t->io_min = t->physical_block_size;
 564                 t->misaligned = 1;
 565                 ret = -1;
 566         }
 567 
 568         /* Optimal I/O a multiple of the physical block size? */
 569         if (t->io_opt & (t->physical_block_size - 1)) {
 570                 t->io_opt = 0;
 571                 t->misaligned = 1;
 572                 ret = -1;
 573         }
 574 
 575         t->raid_partial_stripes_expensive =
 576                 max(t->raid_partial_stripes_expensive,
 577                     b->raid_partial_stripes_expensive);
 578 
 579         /* Find lowest common alignment_offset */
 580         t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 581                 % max(t->physical_block_size, t->io_min);
 582 
 583         /* Verify that new alignment_offset is on a logical block boundary */
 584         if (t->alignment_offset & (t->logical_block_size - 1)) {
 585                 t->misaligned = 1;
 586                 ret = -1;
 587         }
 588 
 589         /* Discard alignment and granularity */
 590         if (b->discard_granularity) {
 591                 alignment = queue_limit_discard_alignment(b, start);
 592 
 593                 if (t->discard_granularity != 0 &&
 594                     t->discard_alignment != alignment) {
 595                         top = t->discard_granularity + t->discard_alignment;
 596                         bottom = b->discard_granularity + alignment;
 597 
 598                         /* Verify that top and bottom intervals line up */
 599                         if ((max(top, bottom) % min(top, bottom)) != 0)
 600                                 t->discard_misaligned = 1;
 601                 }
 602 
 603                 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 604                                                       b->max_discard_sectors);
 605                 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 606                                                          b->max_hw_discard_sectors);
 607                 t->discard_granularity = max(t->discard_granularity,
 608                                              b->discard_granularity);
 609                 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 610                         t->discard_granularity;
 611         }
 612 
 613         if (b->chunk_sectors)
 614                 t->chunk_sectors = min_not_zero(t->chunk_sectors,
 615                                                 b->chunk_sectors);
 616 
 617         return ret;
 618 }
 619 EXPORT_SYMBOL(blk_stack_limits);
 620 
 621 /**
 622  * bdev_stack_limits - adjust queue limits for stacked drivers
 623  * @t:  the stacking driver limits (top device)
 624  * @bdev:  the component block_device (bottom)
 625  * @start:  first data sector within component device
 626  *
 627  * Description:
 628  *    Merges queue limits for a top device and a block_device.  Returns
 629  *    0 if alignment didn't change.  Returns -1 if adding the bottom
 630  *    device caused misalignment.
 631  */
 632 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
 633                       sector_t start)
 634 {
 635         struct request_queue *bq = bdev_get_queue(bdev);
 636 
 637         start += get_start_sect(bdev);
 638 
 639         return blk_stack_limits(t, &bq->limits, start);
 640 }
 641 EXPORT_SYMBOL(bdev_stack_limits);
 642 
 643 /**
 644  * disk_stack_limits - adjust queue limits for stacked drivers
 645  * @disk:  MD/DM gendisk (top)
 646  * @bdev:  the underlying block device (bottom)
 647  * @offset:  offset to beginning of data within component device
 648  *
 649  * Description:
 650  *    Merges the limits for a top level gendisk and a bottom level
 651  *    block_device.
 652  */
 653 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 654                        sector_t offset)
 655 {
 656         struct request_queue *t = disk->queue;
 657 
 658         if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
 659                 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
 660 
 661                 disk_name(disk, 0, top);
 662                 bdevname(bdev, bottom);
 663 
 664                 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
 665                        top, bottom);
 666         }
 667 
 668         t->backing_dev_info->io_pages =
 669                 t->limits.max_sectors >> (PAGE_SHIFT - 9);
 670 }
 671 EXPORT_SYMBOL(disk_stack_limits);
 672 
 673 /**
 674  * blk_queue_update_dma_pad - update pad mask
 675  * @q:     the request queue for the device
 676  * @mask:  pad mask
 677  *
 678  * Update dma pad mask.
 679  *
 680  * Appending pad buffer to a request modifies the last entry of a
 681  * scatter list such that it includes the pad buffer.
 682  **/
 683 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 684 {
 685         if (mask > q->dma_pad_mask)
 686                 q->dma_pad_mask = mask;
 687 }
 688 EXPORT_SYMBOL(blk_queue_update_dma_pad);
 689 
 690 /**
 691  * blk_queue_dma_drain - Set up a drain buffer for excess dma.
 692  * @q:  the request queue for the device
 693  * @dma_drain_needed: fn which returns non-zero if drain is necessary
 694  * @buf:        physically contiguous buffer
 695  * @size:       size of the buffer in bytes
 696  *
 697  * Some devices have excess DMA problems and can't simply discard (or
 698  * zero fill) the unwanted piece of the transfer.  They have to have a
 699  * real area of memory to transfer it into.  The use case for this is
 700  * ATAPI devices in DMA mode.  If the packet command causes a transfer
 701  * bigger than the transfer size some HBAs will lock up if there
 702  * aren't DMA elements to contain the excess transfer.  What this API
 703  * does is adjust the queue so that the buf is always appended
 704  * silently to the scatterlist.
 705  *
 706  * Note: This routine adjusts max_hw_segments to make room for appending
 707  * the drain buffer.  If you call blk_queue_max_segments() after calling
 708  * this routine, you must set the limit to one fewer than your device
 709  * can support otherwise there won't be room for the drain buffer.
 710  */
 711 int blk_queue_dma_drain(struct request_queue *q,
 712                                dma_drain_needed_fn *dma_drain_needed,
 713                                void *buf, unsigned int size)
 714 {
 715         if (queue_max_segments(q) < 2)
 716                 return -EINVAL;
 717         /* make room for appending the drain */
 718         blk_queue_max_segments(q, queue_max_segments(q) - 1);
 719         q->dma_drain_needed = dma_drain_needed;
 720         q->dma_drain_buffer = buf;
 721         q->dma_drain_size = size;
 722 
 723         return 0;
 724 }
 725 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
 726 
 727 /**
 728  * blk_queue_segment_boundary - set boundary rules for segment merging
 729  * @q:  the request queue for the device
 730  * @mask:  the memory boundary mask
 731  **/
 732 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 733 {
 734         if (mask < PAGE_SIZE - 1) {
 735                 mask = PAGE_SIZE - 1;
 736                 printk(KERN_INFO "%s: set to minimum %lx\n",
 737                        __func__, mask);
 738         }
 739 
 740         q->limits.seg_boundary_mask = mask;
 741 }
 742 EXPORT_SYMBOL(blk_queue_segment_boundary);
 743 
 744 /**
 745  * blk_queue_virt_boundary - set boundary rules for bio merging
 746  * @q:  the request queue for the device
 747  * @mask:  the memory boundary mask
 748  **/
 749 void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 750 {
 751         q->limits.virt_boundary_mask = mask;
 752 
 753         /*
 754          * Devices that require a virtual boundary do not support scatter/gather
 755          * I/O natively, but instead require a descriptor list entry for each
 756          * page (which might not be idential to the Linux PAGE_SIZE).  Because
 757          * of that they are not limited by our notion of "segment size".
 758          */
 759         if (mask)
 760                 q->limits.max_segment_size = UINT_MAX;
 761 }
 762 EXPORT_SYMBOL(blk_queue_virt_boundary);
 763 
 764 /**
 765  * blk_queue_dma_alignment - set dma length and memory alignment
 766  * @q:     the request queue for the device
 767  * @mask:  alignment mask
 768  *
 769  * description:
 770  *    set required memory and length alignment for direct dma transactions.
 771  *    this is used when building direct io requests for the queue.
 772  *
 773  **/
 774 void blk_queue_dma_alignment(struct request_queue *q, int mask)
 775 {
 776         q->dma_alignment = mask;
 777 }
 778 EXPORT_SYMBOL(blk_queue_dma_alignment);
 779 
 780 /**
 781  * blk_queue_update_dma_alignment - update dma length and memory alignment
 782  * @q:     the request queue for the device
 783  * @mask:  alignment mask
 784  *
 785  * description:
 786  *    update required memory and length alignment for direct dma transactions.
 787  *    If the requested alignment is larger than the current alignment, then
 788  *    the current queue alignment is updated to the new value, otherwise it
 789  *    is left alone.  The design of this is to allow multiple objects
 790  *    (driver, device, transport etc) to set their respective
 791  *    alignments without having them interfere.
 792  *
 793  **/
 794 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 795 {
 796         BUG_ON(mask > PAGE_SIZE);
 797 
 798         if (mask > q->dma_alignment)
 799                 q->dma_alignment = mask;
 800 }
 801 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 802 
 803 /**
 804  * blk_set_queue_depth - tell the block layer about the device queue depth
 805  * @q:          the request queue for the device
 806  * @depth:              queue depth
 807  *
 808  */
 809 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
 810 {
 811         q->queue_depth = depth;
 812         rq_qos_queue_depth_changed(q);
 813 }
 814 EXPORT_SYMBOL(blk_set_queue_depth);
 815 
 816 /**
 817  * blk_queue_write_cache - configure queue's write cache
 818  * @q:          the request queue for the device
 819  * @wc:         write back cache on or off
 820  * @fua:        device supports FUA writes, if true
 821  *
 822  * Tell the block layer about the write cache of @q.
 823  */
 824 void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
 825 {
 826         if (wc)
 827                 blk_queue_flag_set(QUEUE_FLAG_WC, q);
 828         else
 829                 blk_queue_flag_clear(QUEUE_FLAG_WC, q);
 830         if (fua)
 831                 blk_queue_flag_set(QUEUE_FLAG_FUA, q);
 832         else
 833                 blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 834 
 835         wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 836 }
 837 EXPORT_SYMBOL_GPL(blk_queue_write_cache);
 838 
 839 /**
 840  * blk_queue_required_elevator_features - Set a queue required elevator features
 841  * @q:          the request queue for the target device
 842  * @features:   Required elevator features OR'ed together
 843  *
 844  * Tell the block layer that for the device controlled through @q, only the
 845  * only elevators that can be used are those that implement at least the set of
 846  * features specified by @features.
 847  */
 848 void blk_queue_required_elevator_features(struct request_queue *q,
 849                                           unsigned int features)
 850 {
 851         q->required_elevator_features = features;
 852 }
 853 EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
 854 
 855 /**
 856  * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
 857  * @q:          the request queue for the device
 858  * @dev:        the device pointer for dma
 859  *
 860  * Tell the block layer about merging the segments by dma map of @q.
 861  */
 862 bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
 863                                        struct device *dev)
 864 {
 865         unsigned long boundary = dma_get_merge_boundary(dev);
 866 
 867         if (!boundary)
 868                 return false;
 869 
 870         /* No need to update max_segment_size. see blk_queue_virt_boundary() */
 871         blk_queue_virt_boundary(q, boundary);
 872 
 873         return true;
 874 }
 875 EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
 876 
 877 static int __init blk_settings_init(void)
 878 {
 879         blk_max_low_pfn = max_low_pfn - 1;
 880         blk_max_pfn = max_pfn - 1;
 881         return 0;
 882 }
 883 subsys_initcall(blk_settings_init);

/* [<][>][^][v][top][bottom][index][help] */