root/sound/soc/intel/skylake/skl-sst-cldma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. skl_cldma_int_enable
  2. skl_cldma_int_disable
  3. skl_cldma_stream_run
  4. skl_cldma_stream_clear
  5. skl_cldma_setup_bdle
  6. skl_cldma_setup_controller
  7. skl_cldma_setup_spb
  8. skl_cldma_cleanup_spb
  9. skl_cldma_cleanup
  10. skl_cldma_wait_interruptible
  11. skl_cldma_stop
  12. skl_cldma_fill_buffer
  13. skl_cldma_copy_to_buf
  14. skl_cldma_process_intr
  15. skl_cldma_prepare

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * skl-sst-cldma.c - Code Loader DMA handler
   4  *
   5  * Copyright (C) 2015, Intel Corporation.
   6  * Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
   7  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   8  */
   9 
  10 #include <linux/device.h>
  11 #include <linux/mm.h>
  12 #include <linux/delay.h>
  13 #include "../common/sst-dsp.h"
  14 #include "../common/sst-dsp-priv.h"
  15 
  16 static void skl_cldma_int_enable(struct sst_dsp *ctx)
  17 {
  18         sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
  19                                 SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
  20 }
  21 
  22 void skl_cldma_int_disable(struct sst_dsp *ctx)
  23 {
  24         sst_dsp_shim_update_bits_unlocked(ctx,
  25                         SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
  26 }
  27 
  28 static void skl_cldma_stream_run(struct sst_dsp  *ctx, bool enable)
  29 {
  30         unsigned char val;
  31         int timeout;
  32 
  33         sst_dsp_shim_update_bits_unlocked(ctx,
  34                         SKL_ADSP_REG_CL_SD_CTL,
  35                         CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(enable));
  36 
  37         udelay(3);
  38         timeout = 300;
  39         do {
  40                 /* waiting for hardware to report that the stream Run bit set */
  41                 val = sst_dsp_shim_read(ctx, SKL_ADSP_REG_CL_SD_CTL) &
  42                         CL_SD_CTL_RUN_MASK;
  43                 if (enable && val)
  44                         break;
  45                 else if (!enable && !val)
  46                         break;
  47                 udelay(3);
  48         } while (--timeout);
  49 
  50         if (timeout == 0)
  51                 dev_err(ctx->dev, "Failed to set Run bit=%d enable=%d\n", val, enable);
  52 }
  53 
  54 static void skl_cldma_stream_clear(struct sst_dsp  *ctx)
  55 {
  56         /* make sure Run bit is cleared before setting stream register */
  57         skl_cldma_stream_run(ctx, 0);
  58 
  59         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
  60                                 CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
  61         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
  62                                 CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
  63         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
  64                                 CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
  65         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
  66                                 CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
  67 
  68         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
  69         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
  70 
  71         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
  72         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
  73 }
  74 
  75 /* Code loader helper APIs */
  76 static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
  77                 struct snd_dma_buffer *dmab_data,
  78                 __le32 **bdlp, int size, int with_ioc)
  79 {
  80         __le32 *bdl = *bdlp;
  81 
  82         ctx->cl_dev.frags = 0;
  83         while (size > 0) {
  84                 phys_addr_t addr = virt_to_phys(dmab_data->area +
  85                                 (ctx->cl_dev.frags * ctx->cl_dev.bufsize));
  86 
  87                 bdl[0] = cpu_to_le32(lower_32_bits(addr));
  88                 bdl[1] = cpu_to_le32(upper_32_bits(addr));
  89 
  90                 bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
  91 
  92                 size -= ctx->cl_dev.bufsize;
  93                 bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
  94 
  95                 bdl += 4;
  96                 ctx->cl_dev.frags++;
  97         }
  98 }
  99 
 100 /*
 101  * Setup controller
 102  * Configure the registers to update the dma buffer address and
 103  * enable interrupts.
 104  * Note: Using the channel 1 for transfer
 105  */
 106 static void skl_cldma_setup_controller(struct sst_dsp  *ctx,
 107                 struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
 108                 u32 count)
 109 {
 110         skl_cldma_stream_clear(ctx);
 111         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
 112                         CL_SD_BDLPLBA(dmab_bdl->addr));
 113         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
 114                         CL_SD_BDLPUBA(dmab_bdl->addr));
 115 
 116         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
 117         sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
 118         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
 119                         CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
 120         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
 121                         CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
 122         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
 123                         CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
 124         sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
 125                         CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
 126 }
 127 
 128 static void skl_cldma_setup_spb(struct sst_dsp  *ctx,
 129                 unsigned int size, bool enable)
 130 {
 131         if (enable)
 132                 sst_dsp_shim_update_bits_unlocked(ctx,
 133                                 SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
 134                                 CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
 135                                 CL_SPBFIFO_SPBFCCTL_SPIBE(1));
 136 
 137         sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
 138 }
 139 
 140 static void skl_cldma_cleanup_spb(struct sst_dsp  *ctx)
 141 {
 142         sst_dsp_shim_update_bits_unlocked(ctx,
 143                         SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
 144                         CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
 145                         CL_SPBFIFO_SPBFCCTL_SPIBE(0));
 146 
 147         sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
 148 }
 149 
 150 static void skl_cldma_cleanup(struct sst_dsp  *ctx)
 151 {
 152         skl_cldma_cleanup_spb(ctx);
 153         skl_cldma_stream_clear(ctx);
 154 
 155         ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
 156         ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_bdl);
 157 }
 158 
 159 int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
 160 {
 161         int ret = 0;
 162 
 163         if (!wait_event_timeout(ctx->cl_dev.wait_queue,
 164                                 ctx->cl_dev.wait_condition,
 165                                 msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
 166                 dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
 167                 ret = -EIO;
 168                 goto cleanup;
 169         }
 170 
 171         dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
 172         if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
 173                 dev_err(ctx->dev, "%s: DMA Error\n", __func__);
 174                 ret = -EIO;
 175         }
 176 
 177 cleanup:
 178         ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
 179         return ret;
 180 }
 181 
 182 static void skl_cldma_stop(struct sst_dsp *ctx)
 183 {
 184         skl_cldma_stream_run(ctx, false);
 185 }
 186 
 187 static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
 188                 const void *curr_pos, bool intr_enable, bool trigger)
 189 {
 190         dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
 191         dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
 192                         ctx->cl_dev.dma_buffer_offset, trigger);
 193         dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
 194 
 195         /*
 196          * Check if the size exceeds buffer boundary. If it exceeds
 197          * max_buffer size, then copy till buffer size and then copy
 198          * remaining buffer from the start of ring buffer.
 199          */
 200         if (ctx->cl_dev.dma_buffer_offset + size > ctx->cl_dev.bufsize) {
 201                 unsigned int size_b = ctx->cl_dev.bufsize -
 202                                         ctx->cl_dev.dma_buffer_offset;
 203                 memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
 204                         curr_pos, size_b);
 205                 size -= size_b;
 206                 curr_pos += size_b;
 207                 ctx->cl_dev.dma_buffer_offset = 0;
 208         }
 209 
 210         memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
 211                         curr_pos, size);
 212 
 213         if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
 214                 ctx->cl_dev.dma_buffer_offset = 0;
 215         else
 216                 ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
 217 
 218         ctx->cl_dev.wait_condition = false;
 219 
 220         if (intr_enable)
 221                 skl_cldma_int_enable(ctx);
 222 
 223         ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
 224         if (trigger)
 225                 ctx->cl_dev.ops.cl_trigger(ctx, true);
 226 }
 227 
 228 /*
 229  * The CL dma doesn't have any way to update the transfer status until a BDL
 230  * buffer is fully transferred
 231  *
 232  * So Copying is divided in two parts.
 233  * 1. Interrupt on buffer done where the size to be transferred is more than
 234  *    ring buffer size.
 235  * 2. Polling on fw register to identify if data left to transferred doesn't
 236  *    fill the ring buffer. Caller takes care of polling the required status
 237  *    register to identify the transfer status.
 238  * 3. if wait flag is set, waits for DBL interrupt to copy the next chunk till
 239  *    bytes_left is 0.
 240  *    if wait flag is not set, doesn't wait for BDL interrupt. after ccopying
 241  *    the first chunk return the no of bytes_left to be copied.
 242  */
 243 static int
 244 skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin,
 245                         u32 total_size, bool wait)
 246 {
 247         int ret = 0;
 248         bool start = true;
 249         unsigned int excess_bytes;
 250         u32 size;
 251         unsigned int bytes_left = total_size;
 252         const void *curr_pos = bin;
 253 
 254         if (total_size <= 0)
 255                 return -EINVAL;
 256 
 257         dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
 258 
 259         while (bytes_left) {
 260                 if (bytes_left > ctx->cl_dev.bufsize) {
 261 
 262                         /*
 263                          * dma transfers only till the write pointer as
 264                          * updated in spib
 265                          */
 266                         if (ctx->cl_dev.curr_spib_pos == 0)
 267                                 ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
 268 
 269                         size = ctx->cl_dev.bufsize;
 270                         skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
 271 
 272                         if (wait) {
 273                                 start = false;
 274                                 ret = skl_cldma_wait_interruptible(ctx);
 275                                 if (ret < 0) {
 276                                         skl_cldma_stop(ctx);
 277                                         return ret;
 278                                 }
 279                         }
 280                 } else {
 281                         skl_cldma_int_disable(ctx);
 282 
 283                         if ((ctx->cl_dev.curr_spib_pos + bytes_left)
 284                                                         <= ctx->cl_dev.bufsize) {
 285                                 ctx->cl_dev.curr_spib_pos += bytes_left;
 286                         } else {
 287                                 excess_bytes = bytes_left -
 288                                         (ctx->cl_dev.bufsize -
 289                                         ctx->cl_dev.curr_spib_pos);
 290                                 ctx->cl_dev.curr_spib_pos = excess_bytes;
 291                         }
 292 
 293                         size = bytes_left;
 294                         skl_cldma_fill_buffer(ctx, size,
 295                                         curr_pos, false, start);
 296                 }
 297                 bytes_left -= size;
 298                 curr_pos = curr_pos + size;
 299                 if (!wait)
 300                         return bytes_left;
 301         }
 302 
 303         return bytes_left;
 304 }
 305 
 306 void skl_cldma_process_intr(struct sst_dsp *ctx)
 307 {
 308         u8 cl_dma_intr_status;
 309 
 310         cl_dma_intr_status =
 311                 sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
 312 
 313         if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
 314                 ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
 315         else
 316                 ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
 317 
 318         ctx->cl_dev.wait_condition = true;
 319         wake_up(&ctx->cl_dev.wait_queue);
 320 }
 321 
 322 int skl_cldma_prepare(struct sst_dsp *ctx)
 323 {
 324         int ret;
 325         __le32 *bdl;
 326 
 327         ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
 328 
 329         /* Allocate cl ops */
 330         ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
 331         ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
 332         ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
 333         ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
 334         ctx->cl_dev.ops.cl_trigger = skl_cldma_stream_run;
 335         ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
 336         ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
 337         ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
 338 
 339         /* Allocate buffer*/
 340         ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
 341                         &ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
 342         if (ret < 0) {
 343                 dev_err(ctx->dev, "Alloc buffer for base fw failed: %x\n", ret);
 344                 return ret;
 345         }
 346         /* Setup Code loader BDL */
 347         ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
 348                         &ctx->cl_dev.dmab_bdl, PAGE_SIZE);
 349         if (ret < 0) {
 350                 dev_err(ctx->dev, "Alloc buffer for blde failed: %x\n", ret);
 351                 ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
 352                 return ret;
 353         }
 354         bdl = (__le32 *)ctx->cl_dev.dmab_bdl.area;
 355 
 356         /* Allocate BDLs */
 357         ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
 358                         &bdl, ctx->cl_dev.bufsize, 1);
 359         ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
 360                         ctx->cl_dev.bufsize, ctx->cl_dev.frags);
 361 
 362         ctx->cl_dev.curr_spib_pos = 0;
 363         ctx->cl_dev.dma_buffer_offset = 0;
 364         init_waitqueue_head(&ctx->cl_dev.wait_queue);
 365 
 366         return ret;
 367 }

/* [<][>][^][v][top][bottom][index][help] */