This source file includes following definitions.
- hp_sel_input
- mute_output
- restore_output
- vag_power_on
- vag_power_consumers
- vag_power_off
- mic_bias_event
- vag_and_mute_control
- headphone_pga_event
- adc_updown_depop
- dac_updown_depop
- dac_info_volsw
- dac_get_volsw
- dac_put_volsw
- avc_get_threshold
- avc_put_threshold
- sgtl5000_digital_mute
- sgtl5000_set_dai_fmt
- sgtl5000_set_dai_sysclk
- sgtl5000_set_clock
- sgtl5000_pcm_hw_params
- sgtl5000_set_bias_level
- sgtl5000_volatile
- sgtl5000_readable
- sgtl5000_set_power_regs
- sgtl5000_enable_regulators
- sgtl5000_probe
- sgtl5000_fill_defaults
- sgtl5000_i2c_probe
- sgtl5000_i2c_remove
1
2
3
4
5
6
7 #include <linux/module.h>
8 #include <linux/moduleparam.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/pm.h>
13 #include <linux/i2c.h>
14 #include <linux/clk.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regulator/machine.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/of_device.h>
21 #include <sound/core.h>
22 #include <sound/tlv.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dapm.h>
27 #include <sound/initval.h>
28
29 #include "sgtl5000.h"
30
31 #define SGTL5000_DAP_REG_OFFSET 0x0100
32 #define SGTL5000_MAX_REG_OFFSET 0x013A
33
34
35 #define SGTL5000_VAG_POWERUP_DELAY 500
36
37 #define SGTL5000_VAG_POWERDOWN_DELAY 500
38
39 #define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
40
41
42 static const struct reg_default sgtl5000_reg_defaults[] = {
43 { SGTL5000_CHIP_DIG_POWER, 0x0000 },
44 { SGTL5000_CHIP_I2S_CTRL, 0x0010 },
45 { SGTL5000_CHIP_SSS_CTRL, 0x0010 },
46 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
47 { SGTL5000_CHIP_DAC_VOL, 0x3c3c },
48 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
49 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
50 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
51 { SGTL5000_CHIP_ANA_CTRL, 0x0111 },
52 { SGTL5000_CHIP_REF_CTRL, 0x0000 },
53 { SGTL5000_CHIP_MIC_CTRL, 0x0000 },
54 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
55 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
56 { SGTL5000_CHIP_PLL_CTRL, 0x5000 },
57 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
58 { SGTL5000_CHIP_ANA_STATUS, 0x0000 },
59 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
60 { SGTL5000_CHIP_ANA_TEST2, 0x0000 },
61 { SGTL5000_DAP_CTRL, 0x0000 },
62 { SGTL5000_DAP_PEQ, 0x0000 },
63 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
64 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
65 { SGTL5000_DAP_AUDIO_EQ, 0x0000 },
66 { SGTL5000_DAP_SURROUND, 0x0040 },
67 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
68 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
69 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
70 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
71 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
72 { SGTL5000_DAP_MAIN_CHAN, 0x8000 },
73 { SGTL5000_DAP_MIX_CHAN, 0x0000 },
74 { SGTL5000_DAP_AVC_CTRL, 0x0510 },
75 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
76 { SGTL5000_DAP_AVC_ATTACK, 0x0028 },
77 { SGTL5000_DAP_AVC_DECAY, 0x0050 },
78 };
79
80
81 static const u16 avc_thr_db2reg[97] = {
82 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
83 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
84 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
85 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
86 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
87 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
88 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
89 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
90 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
91 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
92 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
93
94
95 enum sgtl5000_regulator_supplies {
96 VDDA,
97 VDDIO,
98 VDDD,
99 SGTL5000_SUPPLY_NUM
100 };
101
102
103 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
104 "VDDA",
105 "VDDIO",
106 "VDDD"
107 };
108
109 #define LDO_VOLTAGE 1200000
110 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50)
111
112 enum sgtl5000_micbias_resistor {
113 SGTL5000_MICBIAS_OFF = 0,
114 SGTL5000_MICBIAS_2K = 2,
115 SGTL5000_MICBIAS_4K = 4,
116 SGTL5000_MICBIAS_8K = 8,
117 };
118
119 enum {
120 I2S_LRCLK_STRENGTH_DISABLE,
121 I2S_LRCLK_STRENGTH_LOW,
122 I2S_LRCLK_STRENGTH_MEDIUM,
123 I2S_LRCLK_STRENGTH_HIGH,
124 };
125
126 enum {
127 I2S_SCLK_STRENGTH_DISABLE,
128 I2S_SCLK_STRENGTH_LOW,
129 I2S_SCLK_STRENGTH_MEDIUM,
130 I2S_SCLK_STRENGTH_HIGH,
131 };
132
133 enum {
134 HP_POWER_EVENT,
135 DAC_POWER_EVENT,
136 ADC_POWER_EVENT,
137 LAST_POWER_EVENT = ADC_POWER_EVENT
138 };
139
140
141 struct sgtl5000_priv {
142 int sysclk;
143 int master;
144 int fmt;
145 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
146 int num_supplies;
147 struct regmap *regmap;
148 struct clk *mclk;
149 int revision;
150 u8 micbias_resistor;
151 u8 micbias_voltage;
152 u8 lrclk_strength;
153 u8 sclk_strength;
154 u16 mute_state[LAST_POWER_EVENT + 1];
155 };
156
157 static inline int hp_sel_input(struct snd_soc_component *component)
158 {
159 return (snd_soc_component_read32(component, SGTL5000_CHIP_ANA_CTRL) &
160 SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
161 }
162
163 static inline u16 mute_output(struct snd_soc_component *component,
164 u16 mute_mask)
165 {
166 u16 mute_reg = snd_soc_component_read32(component,
167 SGTL5000_CHIP_ANA_CTRL);
168
169 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
170 mute_mask, mute_mask);
171 return mute_reg;
172 }
173
174 static inline void restore_output(struct snd_soc_component *component,
175 u16 mute_mask, u16 mute_reg)
176 {
177 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
178 mute_mask, mute_reg);
179 }
180
181 static void vag_power_on(struct snd_soc_component *component, u32 source)
182 {
183 if (snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER) &
184 SGTL5000_VAG_POWERUP)
185 return;
186
187 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
188 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
189
190
191
192
193 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
194 source == HP_POWER_EVENT)
195 msleep(SGTL5000_VAG_POWERUP_DELAY);
196 }
197
198 static int vag_power_consumers(struct snd_soc_component *component,
199 u16 ana_pwr_reg, u32 source)
200 {
201 int consumers = 0;
202
203
204 if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
205 consumers++;
206 if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
207 consumers++;
208
209
210
211
212
213
214
215 if (source == HP_POWER_EVENT) {
216 if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
217 consumers++;
218 } else {
219 if (ana_pwr_reg & SGTL5000_HP_POWERUP)
220 consumers++;
221 }
222
223 return consumers;
224 }
225
226 static void vag_power_off(struct snd_soc_component *component, u32 source)
227 {
228 u16 ana_pwr = snd_soc_component_read32(component,
229 SGTL5000_CHIP_ANA_POWER);
230
231 if (!(ana_pwr & SGTL5000_VAG_POWERUP))
232 return;
233
234
235
236
237
238
239
240
241
242
243
244
245 if (vag_power_consumers(component, ana_pwr, source) >= 2)
246 return;
247
248 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
249 SGTL5000_VAG_POWERUP, 0);
250
251
252
253
254 msleep(SGTL5000_VAG_POWERDOWN_DELAY);
255 }
256
257
258
259
260
261
262
263
264
265
266 static int mic_bias_event(struct snd_soc_dapm_widget *w,
267 struct snd_kcontrol *kcontrol, int event)
268 {
269 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
270 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
271
272 switch (event) {
273 case SND_SOC_DAPM_POST_PMU:
274
275 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
276 SGTL5000_BIAS_R_MASK,
277 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
278 break;
279
280 case SND_SOC_DAPM_PRE_PMD:
281 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
282 SGTL5000_BIAS_R_MASK, 0);
283 break;
284 }
285 return 0;
286 }
287
288 static int vag_and_mute_control(struct snd_soc_component *component,
289 int event, int event_source)
290 {
291 static const u16 mute_mask[] = {
292
293
294
295
296
297 SGTL5000_HP_MUTE,
298
299
300
301
302
303 SGTL5000_OUTPUTS_MUTE,
304 SGTL5000_OUTPUTS_MUTE
305 };
306
307 struct sgtl5000_priv *sgtl5000 =
308 snd_soc_component_get_drvdata(component);
309
310 switch (event) {
311 case SND_SOC_DAPM_PRE_PMU:
312 sgtl5000->mute_state[event_source] =
313 mute_output(component, mute_mask[event_source]);
314 break;
315 case SND_SOC_DAPM_POST_PMU:
316 vag_power_on(component, event_source);
317 restore_output(component, mute_mask[event_source],
318 sgtl5000->mute_state[event_source]);
319 break;
320 case SND_SOC_DAPM_PRE_PMD:
321 sgtl5000->mute_state[event_source] =
322 mute_output(component, mute_mask[event_source]);
323 vag_power_off(component, event_source);
324 break;
325 case SND_SOC_DAPM_POST_PMD:
326 restore_output(component, mute_mask[event_source],
327 sgtl5000->mute_state[event_source]);
328 break;
329 default:
330 break;
331 }
332
333 return 0;
334 }
335
336
337
338
339
340 static int headphone_pga_event(struct snd_soc_dapm_widget *w,
341 struct snd_kcontrol *kcontrol, int event)
342 {
343 struct snd_soc_component *component =
344 snd_soc_dapm_to_component(w->dapm);
345
346 return vag_and_mute_control(component, event, HP_POWER_EVENT);
347 }
348
349
350
351
352
353 static int adc_updown_depop(struct snd_soc_dapm_widget *w,
354 struct snd_kcontrol *kcontrol, int event)
355 {
356 struct snd_soc_component *component =
357 snd_soc_dapm_to_component(w->dapm);
358
359 return vag_and_mute_control(component, event, ADC_POWER_EVENT);
360 }
361
362 static int dac_updown_depop(struct snd_soc_dapm_widget *w,
363 struct snd_kcontrol *kcontrol, int event)
364 {
365 struct snd_soc_component *component =
366 snd_soc_dapm_to_component(w->dapm);
367
368 return vag_and_mute_control(component, event, DAC_POWER_EVENT);
369 }
370
371
372 static const char *adc_mux_text[] = {
373 "MIC_IN", "LINE_IN"
374 };
375
376 static SOC_ENUM_SINGLE_DECL(adc_enum,
377 SGTL5000_CHIP_ANA_CTRL, 2,
378 adc_mux_text);
379
380 static const struct snd_kcontrol_new adc_mux =
381 SOC_DAPM_ENUM("Capture Mux", adc_enum);
382
383
384 static const char *hp_mux_text[] = {
385 "DAC", "LINE_IN"
386 };
387
388 static SOC_ENUM_SINGLE_DECL(hp_enum,
389 SGTL5000_CHIP_ANA_CTRL, 6,
390 hp_mux_text);
391
392 static const struct snd_kcontrol_new hp_mux =
393 SOC_DAPM_ENUM("Headphone Mux", hp_enum);
394
395
396 static const char *dac_mux_text[] = {
397 "ADC", "I2S", "Rsvrd", "DAP"
398 };
399
400 static SOC_ENUM_SINGLE_DECL(dac_enum,
401 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
402 dac_mux_text);
403
404 static const struct snd_kcontrol_new dac_mux =
405 SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
406
407
408 static const char *dap_mux_text[] = {
409 "ADC", "I2S"
410 };
411
412 static SOC_ENUM_SINGLE_DECL(dap_enum,
413 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
414 dap_mux_text);
415
416 static const struct snd_kcontrol_new dap_mux =
417 SOC_DAPM_ENUM("DAP Mux", dap_enum);
418
419
420 static const char *dapmix_mux_text[] = {
421 "ADC", "I2S"
422 };
423
424 static SOC_ENUM_SINGLE_DECL(dapmix_enum,
425 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
426 dapmix_mux_text);
427
428 static const struct snd_kcontrol_new dapmix_mux =
429 SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
430
431
432 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
433 SND_SOC_DAPM_INPUT("LINE_IN"),
434 SND_SOC_DAPM_INPUT("MIC_IN"),
435
436 SND_SOC_DAPM_OUTPUT("HP_OUT"),
437 SND_SOC_DAPM_OUTPUT("LINE_OUT"),
438
439 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
440 mic_bias_event,
441 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
442
443 SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
444 headphone_pga_event,
445 SND_SOC_DAPM_PRE_POST_PMU |
446 SND_SOC_DAPM_PRE_POST_PMD),
447 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
448
449 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
450 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
451 SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
452 SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
453 SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
454 SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
455
456
457
458 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
459 0, SGTL5000_CHIP_DIG_POWER,
460 0, 0),
461
462
463 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
464 0, SGTL5000_CHIP_DIG_POWER,
465 1, 0),
466
467 SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
468 adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
469 SND_SOC_DAPM_PRE_POST_PMD),
470 SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
471 dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
472 SND_SOC_DAPM_PRE_POST_PMD),
473 };
474
475
476 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
477 {"Capture Mux", "LINE_IN", "LINE_IN"},
478 {"Capture Mux", "MIC_IN", "MIC_IN"},
479
480 {"ADC", NULL, "Capture Mux"},
481 {"AIFOUT", NULL, "ADC"},
482
483 {"DAP Mux", "ADC", "ADC"},
484 {"DAP Mux", NULL, "AIFIN"},
485 {"DAP", NULL, "DAP Mux"},
486
487 {"DAP MIX Mux", "ADC", "ADC"},
488 {"DAP MIX Mux", NULL, "AIFIN"},
489 {"DAP", NULL, "DAP MIX Mux"},
490
491 {"Digital Input Mux", "ADC", "ADC"},
492 {"Digital Input Mux", NULL, "AIFIN"},
493 {"Digital Input Mux", NULL, "DAP"},
494 {"DAC", NULL, "Digital Input Mux"},
495
496 {"Headphone Mux", "DAC", "DAC"},
497 {"LO", NULL, "DAC"},
498
499 {"Headphone Mux", "LINE_IN", "LINE_IN"},
500 {"HP", NULL, "Headphone Mux"},
501
502 {"LINE_OUT", NULL, "LO"},
503 {"HP_OUT", NULL, "HP"},
504 };
505
506
507 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
508 struct snd_ctl_elem_info *uinfo)
509 {
510 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
511 uinfo->count = 2;
512 uinfo->value.integer.min = 0;
513 uinfo->value.integer.max = 0xfc - 0x3c;
514 return 0;
515 }
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
541 struct snd_ctl_elem_value *ucontrol)
542 {
543 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
544 int reg;
545 int l;
546 int r;
547
548 reg = snd_soc_component_read32(component, SGTL5000_CHIP_DAC_VOL);
549
550
551 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
552
553
554 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
555
556
557 l = clamp(l, 0x3c, 0xfc);
558 r = clamp(r, 0x3c, 0xfc);
559
560
561 l = 0xfc - l;
562 r = 0xfc - r;
563
564 ucontrol->value.integer.value[0] = l;
565 ucontrol->value.integer.value[1] = r;
566
567 return 0;
568 }
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
594 struct snd_ctl_elem_value *ucontrol)
595 {
596 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
597 int reg;
598 int l;
599 int r;
600
601 l = ucontrol->value.integer.value[0];
602 r = ucontrol->value.integer.value[1];
603
604
605 l = clamp(l, 0, 0xfc - 0x3c);
606 r = clamp(r, 0, 0xfc - 0x3c);
607
608
609 l = 0xfc - l;
610 r = 0xfc - r;
611
612
613 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
614 r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
615
616 snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
617
618 return 0;
619 }
620
621
622
623
624
625
626
627
628
629
630
631 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
632 struct snd_ctl_elem_value *ucontrol)
633 {
634 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
635 int db, i;
636 u16 reg = snd_soc_component_read32(component, SGTL5000_DAP_AVC_THRESHOLD);
637
638
639 if (!reg) {
640 ucontrol->value.integer.value[0] = 96;
641 ucontrol->value.integer.value[1] = 96;
642 return 0;
643 }
644
645
646 for (i = 0; avc_thr_db2reg[i] > reg; i++)
647 ;
648 db = i;
649
650 ucontrol->value.integer.value[0] = db;
651 ucontrol->value.integer.value[1] = db;
652
653 return 0;
654 }
655
656
657
658
659
660
661
662
663
664 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
665 struct snd_ctl_elem_value *ucontrol)
666 {
667 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
668 int db;
669 u16 reg;
670
671 db = (int)ucontrol->value.integer.value[0];
672 if (db < 0 || db > 96)
673 return -EINVAL;
674 reg = avc_thr_db2reg[db];
675 snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
676
677 return 0;
678 }
679
680 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
681
682
683 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
684 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
685 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
686 );
687
688
689 static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
690
691
692 static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
693
694
695 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
696
697
698 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
699
700
701 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
702
703
704 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
705
706 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
707
708 {
709 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
710 .name = "PCM Playback Volume",
711 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
712 SNDRV_CTL_ELEM_ACCESS_READWRITE,
713 .info = dac_info_volsw,
714 .get = dac_get_volsw,
715 .put = dac_put_volsw,
716 },
717
718 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
719 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
720 SGTL5000_CHIP_ANA_ADC_CTRL,
721 8, 1, 0, capture_6db_attenuate),
722 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
723 SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
724
725 SOC_DOUBLE_TLV("Headphone Playback Volume",
726 SGTL5000_CHIP_ANA_HP_CTRL,
727 0, 8,
728 0x7f, 1,
729 headphone_volume),
730 SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
731 4, 1, 1),
732 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
733 5, 1, 0),
734
735 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
736 0, 3, 0, mic_gain_tlv),
737
738 SOC_DOUBLE_TLV("Lineout Playback Volume",
739 SGTL5000_CHIP_LINE_OUT_VOL,
740 SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
741 SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
742 0x1f, 1,
743 lineout_volume),
744 SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
745
746 SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
747 0, 0xffff, 0, dap_volume),
748
749 SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
750 0, 0xffff, 0, dap_volume),
751
752 SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
753 SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
754 SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
755 avc_max_gain),
756 SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
757 SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
758 0, 96, 0, avc_get_threshold, avc_put_threshold,
759 avc_threshold),
760
761 SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
762 0, 0x5F, 0, bass_band),
763
764 SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
765 0, 0x5F, 0, bass_band),
766
767 SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
768 0, 0x5F, 0, bass_band),
769
770 SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
771 0, 0x5F, 0, bass_band),
772
773 SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
774 0, 0x5F, 0, bass_band),
775 };
776
777
778 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
779 {
780 struct snd_soc_component *component = codec_dai->component;
781 u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
782
783
784
785
786
787
788 snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
789 i2s_pwr, mute ? 0 : i2s_pwr);
790
791 return 0;
792 }
793
794
795 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
796 {
797 struct snd_soc_component *component = codec_dai->component;
798 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
799 u16 i2sctl = 0;
800
801 sgtl5000->master = 0;
802
803
804
805
806
807
808 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
809 case SND_SOC_DAIFMT_CBS_CFS:
810 break;
811 case SND_SOC_DAIFMT_CBM_CFM:
812 i2sctl |= SGTL5000_I2S_MASTER;
813 sgtl5000->master = 1;
814 break;
815 default:
816 return -EINVAL;
817 }
818
819
820 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
821 case SND_SOC_DAIFMT_DSP_A:
822 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
823 break;
824 case SND_SOC_DAIFMT_DSP_B:
825 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
826 i2sctl |= SGTL5000_I2S_LRALIGN;
827 break;
828 case SND_SOC_DAIFMT_I2S:
829 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
830 break;
831 case SND_SOC_DAIFMT_RIGHT_J:
832 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
833 i2sctl |= SGTL5000_I2S_LRPOL;
834 break;
835 case SND_SOC_DAIFMT_LEFT_J:
836 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
837 i2sctl |= SGTL5000_I2S_LRALIGN;
838 break;
839 default:
840 return -EINVAL;
841 }
842
843 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
844
845
846 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
847 case SND_SOC_DAIFMT_NB_NF:
848 break;
849 case SND_SOC_DAIFMT_IB_NF:
850 i2sctl |= SGTL5000_I2S_SCLK_INV;
851 break;
852 default:
853 return -EINVAL;
854 }
855
856 snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
857
858 return 0;
859 }
860
861
862 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
863 int clk_id, unsigned int freq, int dir)
864 {
865 struct snd_soc_component *component = codec_dai->component;
866 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
867
868 switch (clk_id) {
869 case SGTL5000_SYSCLK:
870 sgtl5000->sysclk = freq;
871 break;
872 default:
873 return -EINVAL;
874 }
875
876 return 0;
877 }
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892 static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
893 {
894 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
895 int clk_ctl = 0;
896 int sys_fs;
897
898
899
900
901
902
903 switch (frame_rate) {
904 case 8000:
905 case 16000:
906 sys_fs = 32000;
907 break;
908 case 11025:
909 case 22050:
910 sys_fs = 44100;
911 break;
912 default:
913 sys_fs = frame_rate;
914 break;
915 }
916
917
918 switch (sys_fs / frame_rate) {
919 case 4:
920 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
921 break;
922 case 2:
923 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
924 break;
925 case 1:
926 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
927 break;
928 default:
929 return -EINVAL;
930 }
931
932
933 switch (sys_fs) {
934 case 32000:
935 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
936 break;
937 case 44100:
938 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
939 break;
940 case 48000:
941 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
942 break;
943 case 96000:
944 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
945 break;
946 default:
947 dev_err(component->dev, "frame rate %d not supported\n",
948 frame_rate);
949 return -EINVAL;
950 }
951
952
953
954
955
956
957 switch (sgtl5000->sysclk / frame_rate) {
958 case 256:
959 clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
960 SGTL5000_MCLK_FREQ_SHIFT;
961 break;
962 case 384:
963 clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
964 SGTL5000_MCLK_FREQ_SHIFT;
965 break;
966 case 512:
967 clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
968 SGTL5000_MCLK_FREQ_SHIFT;
969 break;
970 default:
971
972 if (sgtl5000->master) {
973 clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
974 SGTL5000_MCLK_FREQ_SHIFT;
975 } else {
976 dev_err(component->dev,
977 "PLL not supported in slave mode\n");
978 dev_err(component->dev, "%d ratio is not supported. "
979 "SYS_MCLK needs to be 256, 384 or 512 * fs\n",
980 sgtl5000->sysclk / frame_rate);
981 return -EINVAL;
982 }
983 }
984
985
986 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
987 u64 out, t;
988 int div2;
989 int pll_ctl;
990 unsigned int in, int_div, frac_div;
991
992 if (sgtl5000->sysclk > 17000000) {
993 div2 = 1;
994 in = sgtl5000->sysclk / 2;
995 } else {
996 div2 = 0;
997 in = sgtl5000->sysclk;
998 }
999 if (sys_fs == 44100)
1000 out = 180633600;
1001 else
1002 out = 196608000;
1003 t = do_div(out, in);
1004 int_div = out;
1005 t *= 2048;
1006 do_div(t, in);
1007 frac_div = t;
1008 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
1009 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
1010
1011 snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
1012 if (div2)
1013 snd_soc_component_update_bits(component,
1014 SGTL5000_CHIP_CLK_TOP_CTRL,
1015 SGTL5000_INPUT_FREQ_DIV2,
1016 SGTL5000_INPUT_FREQ_DIV2);
1017 else
1018 snd_soc_component_update_bits(component,
1019 SGTL5000_CHIP_CLK_TOP_CTRL,
1020 SGTL5000_INPUT_FREQ_DIV2,
1021 0);
1022
1023
1024 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1025 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1026 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
1027
1028
1029 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1030 } else {
1031
1032 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
1033
1034
1035 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1036 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
1037 0);
1038 }
1039
1040 return 0;
1041 }
1042
1043
1044
1045
1046
1047 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
1048 struct snd_pcm_hw_params *params,
1049 struct snd_soc_dai *dai)
1050 {
1051 struct snd_soc_component *component = dai->component;
1052 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1053 int channels = params_channels(params);
1054 int i2s_ctl = 0;
1055 int stereo;
1056 int ret;
1057
1058
1059 if (!sgtl5000->sysclk) {
1060 dev_err(component->dev, "%s: set sysclk first!\n", __func__);
1061 return -EFAULT;
1062 }
1063
1064 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
1065 stereo = SGTL5000_DAC_STEREO;
1066 else
1067 stereo = SGTL5000_ADC_STEREO;
1068
1069
1070 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
1071 channels == 1 ? 0 : stereo);
1072
1073
1074 ret = sgtl5000_set_clock(component, params_rate(params));
1075 if (ret)
1076 return ret;
1077
1078
1079 switch (params_width(params)) {
1080 case 16:
1081 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1082 return -EINVAL;
1083 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
1084 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
1085 SGTL5000_I2S_SCLKFREQ_SHIFT;
1086 break;
1087 case 20:
1088 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
1089 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1090 SGTL5000_I2S_SCLKFREQ_SHIFT;
1091 break;
1092 case 24:
1093 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
1094 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1095 SGTL5000_I2S_SCLKFREQ_SHIFT;
1096 break;
1097 case 32:
1098 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
1099 return -EINVAL;
1100 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
1101 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
1102 SGTL5000_I2S_SCLKFREQ_SHIFT;
1103 break;
1104 default:
1105 return -EINVAL;
1106 }
1107
1108 snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
1109 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
1110 i2s_ctl);
1111
1112 return 0;
1113 }
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125 static int sgtl5000_set_bias_level(struct snd_soc_component *component,
1126 enum snd_soc_bias_level level)
1127 {
1128 struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
1129 int ret;
1130
1131 switch (level) {
1132 case SND_SOC_BIAS_ON:
1133 case SND_SOC_BIAS_PREPARE:
1134 case SND_SOC_BIAS_STANDBY:
1135 regcache_cache_only(sgtl->regmap, false);
1136 ret = regcache_sync(sgtl->regmap);
1137 if (ret) {
1138 regcache_cache_only(sgtl->regmap, true);
1139 return ret;
1140 }
1141
1142 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1143 SGTL5000_REFTOP_POWERUP,
1144 SGTL5000_REFTOP_POWERUP);
1145 break;
1146 case SND_SOC_BIAS_OFF:
1147 regcache_cache_only(sgtl->regmap, true);
1148 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
1149 SGTL5000_REFTOP_POWERUP, 0);
1150 break;
1151 }
1152
1153 return 0;
1154 }
1155
1156 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
1157 SNDRV_PCM_FMTBIT_S20_3LE |\
1158 SNDRV_PCM_FMTBIT_S24_LE |\
1159 SNDRV_PCM_FMTBIT_S32_LE)
1160
1161 static const struct snd_soc_dai_ops sgtl5000_ops = {
1162 .hw_params = sgtl5000_pcm_hw_params,
1163 .digital_mute = sgtl5000_digital_mute,
1164 .set_fmt = sgtl5000_set_dai_fmt,
1165 .set_sysclk = sgtl5000_set_dai_sysclk,
1166 };
1167
1168 static struct snd_soc_dai_driver sgtl5000_dai = {
1169 .name = "sgtl5000",
1170 .playback = {
1171 .stream_name = "Playback",
1172 .channels_min = 1,
1173 .channels_max = 2,
1174
1175
1176
1177
1178 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1179 .formats = SGTL5000_FORMATS,
1180 },
1181 .capture = {
1182 .stream_name = "Capture",
1183 .channels_min = 1,
1184 .channels_max = 2,
1185 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1186 .formats = SGTL5000_FORMATS,
1187 },
1188 .ops = &sgtl5000_ops,
1189 .symmetric_rates = 1,
1190 };
1191
1192 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1193 {
1194 switch (reg) {
1195 case SGTL5000_CHIP_ID:
1196 case SGTL5000_CHIP_ADCDAC_CTRL:
1197 case SGTL5000_CHIP_ANA_STATUS:
1198 return true;
1199 }
1200
1201 return false;
1202 }
1203
1204 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1205 {
1206 switch (reg) {
1207 case SGTL5000_CHIP_ID:
1208 case SGTL5000_CHIP_DIG_POWER:
1209 case SGTL5000_CHIP_CLK_CTRL:
1210 case SGTL5000_CHIP_I2S_CTRL:
1211 case SGTL5000_CHIP_SSS_CTRL:
1212 case SGTL5000_CHIP_ADCDAC_CTRL:
1213 case SGTL5000_CHIP_DAC_VOL:
1214 case SGTL5000_CHIP_PAD_STRENGTH:
1215 case SGTL5000_CHIP_ANA_ADC_CTRL:
1216 case SGTL5000_CHIP_ANA_HP_CTRL:
1217 case SGTL5000_CHIP_ANA_CTRL:
1218 case SGTL5000_CHIP_LINREG_CTRL:
1219 case SGTL5000_CHIP_REF_CTRL:
1220 case SGTL5000_CHIP_MIC_CTRL:
1221 case SGTL5000_CHIP_LINE_OUT_CTRL:
1222 case SGTL5000_CHIP_LINE_OUT_VOL:
1223 case SGTL5000_CHIP_ANA_POWER:
1224 case SGTL5000_CHIP_PLL_CTRL:
1225 case SGTL5000_CHIP_CLK_TOP_CTRL:
1226 case SGTL5000_CHIP_ANA_STATUS:
1227 case SGTL5000_CHIP_SHORT_CTRL:
1228 case SGTL5000_CHIP_ANA_TEST2:
1229 case SGTL5000_DAP_CTRL:
1230 case SGTL5000_DAP_PEQ:
1231 case SGTL5000_DAP_BASS_ENHANCE:
1232 case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1233 case SGTL5000_DAP_AUDIO_EQ:
1234 case SGTL5000_DAP_SURROUND:
1235 case SGTL5000_DAP_FLT_COEF_ACCESS:
1236 case SGTL5000_DAP_COEF_WR_B0_MSB:
1237 case SGTL5000_DAP_COEF_WR_B0_LSB:
1238 case SGTL5000_DAP_EQ_BASS_BAND0:
1239 case SGTL5000_DAP_EQ_BASS_BAND1:
1240 case SGTL5000_DAP_EQ_BASS_BAND2:
1241 case SGTL5000_DAP_EQ_BASS_BAND3:
1242 case SGTL5000_DAP_EQ_BASS_BAND4:
1243 case SGTL5000_DAP_MAIN_CHAN:
1244 case SGTL5000_DAP_MIX_CHAN:
1245 case SGTL5000_DAP_AVC_CTRL:
1246 case SGTL5000_DAP_AVC_THRESHOLD:
1247 case SGTL5000_DAP_AVC_ATTACK:
1248 case SGTL5000_DAP_AVC_DECAY:
1249 case SGTL5000_DAP_COEF_WR_B1_MSB:
1250 case SGTL5000_DAP_COEF_WR_B1_LSB:
1251 case SGTL5000_DAP_COEF_WR_B2_MSB:
1252 case SGTL5000_DAP_COEF_WR_B2_LSB:
1253 case SGTL5000_DAP_COEF_WR_A1_MSB:
1254 case SGTL5000_DAP_COEF_WR_A1_LSB:
1255 case SGTL5000_DAP_COEF_WR_A2_MSB:
1256 case SGTL5000_DAP_COEF_WR_A2_LSB:
1257 return true;
1258
1259 default:
1260 return false;
1261 }
1262 }
1263
1264
1265
1266
1267
1268
1269
1270 static const u8 vol_quot_table[] = {
1271 42, 45, 47, 50, 53, 56, 60, 63,
1272 67, 71, 75, 79, 84, 89, 94, 100,
1273 106, 112, 119, 126, 133, 141, 150, 158,
1274 168, 178, 188, 200, 211, 224, 237, 251
1275 };
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288 static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1289 {
1290 int vddd;
1291 int vdda;
1292 int vddio;
1293 u16 ana_pwr;
1294 u16 lreg_ctrl;
1295 int vag;
1296 int lo_vag;
1297 int vol_quot;
1298 int lo_vol;
1299 size_t i;
1300 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1301
1302 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1303 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1304 vddd = (sgtl5000->num_supplies > VDDD)
1305 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1306 : LDO_VOLTAGE;
1307
1308 vdda = vdda / 1000;
1309 vddio = vddio / 1000;
1310 vddd = vddd / 1000;
1311
1312 if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1313 dev_err(component->dev, "regulator voltage not set correctly\n");
1314
1315 return -EINVAL;
1316 }
1317
1318
1319 if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1320 dev_err(component->dev,
1321 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1322 vdda, vddio, vddd);
1323
1324 return -EINVAL;
1325 }
1326
1327
1328 ana_pwr = snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER);
1329 ana_pwr |= SGTL5000_DAC_STEREO |
1330 SGTL5000_ADC_STEREO |
1331 SGTL5000_REFTOP_POWERUP;
1332 lreg_ctrl = snd_soc_component_read32(component, SGTL5000_CHIP_LINREG_CTRL);
1333
1334 if (vddio < 3100 && vdda < 3100) {
1335
1336 snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1337 SGTL5000_INT_OSC_EN,
1338 SGTL5000_INT_OSC_EN);
1339
1340 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1341 } else {
1342 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1343
1344
1345
1346
1347 if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
1348 sgtl5000->supplies[VDDIO].consumer)) {
1349 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1350 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1351 SGTL5000_VDDC_MAN_ASSN_SHIFT;
1352 }
1353 }
1354
1355 snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1356
1357 snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1358
1359
1360
1361
1362
1363 vag = vdda / 2;
1364 if (vag <= SGTL5000_ANA_GND_BASE)
1365 vag = 0;
1366 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1367 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1368 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1369 else
1370 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1371
1372 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1373 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1374
1375
1376 lo_vag = vddio / 2;
1377 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1378 lo_vag = 0;
1379 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1380 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1381 lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1382 else
1383 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1384 SGTL5000_LINE_OUT_GND_STP;
1385
1386 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1387 SGTL5000_LINE_OUT_CURRENT_MASK |
1388 SGTL5000_LINE_OUT_GND_MASK,
1389 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1390 SGTL5000_LINE_OUT_CURRENT_360u <<
1391 SGTL5000_LINE_OUT_CURRENT_SHIFT);
1392
1393
1394
1395
1396
1397
1398
1399
1400 vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
1401 lo_vol = 0;
1402 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1403 if (vol_quot >= vol_quot_table[i])
1404 lo_vol = i;
1405 else
1406 break;
1407 }
1408
1409 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1410 SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1411 SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1412 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1413 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1414
1415 return 0;
1416 }
1417
1418 static int sgtl5000_enable_regulators(struct i2c_client *client)
1419 {
1420 int ret;
1421 int i;
1422 int external_vddd = 0;
1423 struct regulator *vddd;
1424 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1425
1426 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1427 sgtl5000->supplies[i].supply = supply_names[i];
1428
1429 vddd = regulator_get_optional(&client->dev, "VDDD");
1430 if (IS_ERR(vddd)) {
1431
1432 if (PTR_ERR(vddd) == -EPROBE_DEFER)
1433 return -EPROBE_DEFER;
1434 } else {
1435 external_vddd = 1;
1436 regulator_put(vddd);
1437 }
1438
1439 sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1440 - 1 + external_vddd;
1441 ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1442 sgtl5000->supplies);
1443 if (ret)
1444 return ret;
1445
1446 ret = regulator_bulk_enable(sgtl5000->num_supplies,
1447 sgtl5000->supplies);
1448 if (!ret)
1449 usleep_range(10, 20);
1450 else
1451 regulator_bulk_free(sgtl5000->num_supplies,
1452 sgtl5000->supplies);
1453
1454 return ret;
1455 }
1456
1457 static int sgtl5000_probe(struct snd_soc_component *component)
1458 {
1459 int ret;
1460 u16 reg;
1461 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1462 unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
1463
1464
1465 ret = sgtl5000_set_power_regs(component);
1466 if (ret)
1467 goto err;
1468
1469
1470 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1471 SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
1472
1473
1474 snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1475
1476 snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
1477 SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1478
1479
1480 snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1481 SGTL5000_DAC_VOL_RAMP_EN |
1482 SGTL5000_DAC_MUTE_RIGHT |
1483 SGTL5000_DAC_MUTE_LEFT);
1484
1485 reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
1486 (sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
1487 0x1f);
1488 snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1489
1490 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
1491 zcd_mask, zcd_mask);
1492
1493 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1494 SGTL5000_BIAS_R_MASK,
1495 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1496
1497 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1498 SGTL5000_BIAS_VOLT_MASK,
1499 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1500
1501
1502
1503
1504
1505 snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1506
1507
1508 snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1509 SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1510
1511 return 0;
1512
1513 err:
1514 return ret;
1515 }
1516
1517 static const struct snd_soc_component_driver sgtl5000_driver = {
1518 .probe = sgtl5000_probe,
1519 .set_bias_level = sgtl5000_set_bias_level,
1520 .controls = sgtl5000_snd_controls,
1521 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1522 .dapm_widgets = sgtl5000_dapm_widgets,
1523 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1524 .dapm_routes = sgtl5000_dapm_routes,
1525 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1526 .suspend_bias_off = 1,
1527 .idle_bias_on = 1,
1528 .use_pmdown_time = 1,
1529 .endianness = 1,
1530 .non_legacy_dai_naming = 1,
1531 };
1532
1533 static const struct regmap_config sgtl5000_regmap = {
1534 .reg_bits = 16,
1535 .val_bits = 16,
1536 .reg_stride = 2,
1537
1538 .max_register = SGTL5000_MAX_REG_OFFSET,
1539 .volatile_reg = sgtl5000_volatile,
1540 .readable_reg = sgtl5000_readable,
1541
1542 .cache_type = REGCACHE_RBTREE,
1543 .reg_defaults = sgtl5000_reg_defaults,
1544 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1545 };
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557 static void sgtl5000_fill_defaults(struct i2c_client *client)
1558 {
1559 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1560 int i, ret, val, index;
1561
1562 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1563 val = sgtl5000_reg_defaults[i].def;
1564 index = sgtl5000_reg_defaults[i].reg;
1565 ret = regmap_write(sgtl5000->regmap, index, val);
1566 if (ret)
1567 dev_err(&client->dev,
1568 "%s: error %d setting reg 0x%02x to 0x%04x\n",
1569 __func__, ret, index, val);
1570 }
1571 }
1572
1573 static int sgtl5000_i2c_probe(struct i2c_client *client,
1574 const struct i2c_device_id *id)
1575 {
1576 struct sgtl5000_priv *sgtl5000;
1577 int ret, reg, rev;
1578 struct device_node *np = client->dev.of_node;
1579 u32 value;
1580 u16 ana_pwr;
1581
1582 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1583 if (!sgtl5000)
1584 return -ENOMEM;
1585
1586 i2c_set_clientdata(client, sgtl5000);
1587
1588 ret = sgtl5000_enable_regulators(client);
1589 if (ret)
1590 return ret;
1591
1592 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1593 if (IS_ERR(sgtl5000->regmap)) {
1594 ret = PTR_ERR(sgtl5000->regmap);
1595 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1596 goto disable_regs;
1597 }
1598
1599 sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1600 if (IS_ERR(sgtl5000->mclk)) {
1601 ret = PTR_ERR(sgtl5000->mclk);
1602
1603 if (ret == -ENOENT)
1604 ret = -EPROBE_DEFER;
1605
1606 if (ret != -EPROBE_DEFER)
1607 dev_err(&client->dev, "Failed to get mclock: %d\n",
1608 ret);
1609 goto disable_regs;
1610 }
1611
1612 ret = clk_prepare_enable(sgtl5000->mclk);
1613 if (ret) {
1614 dev_err(&client->dev, "Error enabling clock %d\n", ret);
1615 goto disable_regs;
1616 }
1617
1618
1619 udelay(1);
1620
1621
1622 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®);
1623 if (ret) {
1624 dev_err(&client->dev, "Error reading chip id %d\n", ret);
1625 goto disable_clk;
1626 }
1627
1628 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1629 SGTL5000_PARTID_PART_ID) {
1630 dev_err(&client->dev,
1631 "Device with ID register %x is not a sgtl5000\n", reg);
1632 ret = -ENODEV;
1633 goto disable_clk;
1634 }
1635
1636 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1637 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1638 sgtl5000->revision = rev;
1639
1640
1641 ret = regmap_write(sgtl5000->regmap,
1642 SGTL5000_CHIP_CLK_CTRL,
1643 SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1644 if (ret)
1645 dev_err(&client->dev,
1646 "Error %d initializing CHIP_CLK_CTRL\n", ret);
1647
1648
1649 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
1650 SGTL5000_CHIP_ANA_CTRL_DEFAULT);
1651 if (ret) {
1652 dev_err(&client->dev,
1653 "Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
1654 goto disable_clk;
1655 }
1656
1657
1658
1659
1660
1661
1662
1663
1664 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
1665 if (ret) {
1666 dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
1667 goto disable_clk;
1668 }
1669 if (value & SGTL5000_VAG_POWERUP) {
1670 ret = regmap_update_bits(sgtl5000->regmap,
1671 SGTL5000_CHIP_ANA_POWER,
1672 SGTL5000_VAG_POWERUP,
1673 0);
1674 if (ret) {
1675 dev_err(&client->dev, "Error %d disabling VAG\n", ret);
1676 goto disable_clk;
1677 }
1678
1679 msleep(SGTL5000_VAG_POWERDOWN_DELAY);
1680 }
1681
1682
1683 ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1684 if (sgtl5000->num_supplies <= VDDD) {
1685
1686 ret = regmap_update_bits(sgtl5000->regmap,
1687 SGTL5000_CHIP_LINREG_CTRL,
1688 SGTL5000_LINREG_VDDD_MASK,
1689 LINREG_VDDD);
1690 if (ret)
1691 dev_err(&client->dev,
1692 "Error %d setting LINREG_VDDD\n", ret);
1693
1694 ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1695 dev_info(&client->dev,
1696 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1697 } else {
1698
1699
1700
1701
1702 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1703 | SGTL5000_LINREG_SIMPLE_POWERUP);
1704 dev_dbg(&client->dev, "Using external VDDD\n");
1705 }
1706 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1707 if (ret)
1708 dev_err(&client->dev,
1709 "Error %d setting CHIP_ANA_POWER to %04x\n",
1710 ret, ana_pwr);
1711
1712 if (np) {
1713 if (!of_property_read_u32(np,
1714 "micbias-resistor-k-ohms", &value)) {
1715 switch (value) {
1716 case SGTL5000_MICBIAS_OFF:
1717 sgtl5000->micbias_resistor = 0;
1718 break;
1719 case SGTL5000_MICBIAS_2K:
1720 sgtl5000->micbias_resistor = 1;
1721 break;
1722 case SGTL5000_MICBIAS_4K:
1723 sgtl5000->micbias_resistor = 2;
1724 break;
1725 case SGTL5000_MICBIAS_8K:
1726 sgtl5000->micbias_resistor = 3;
1727 break;
1728 default:
1729 sgtl5000->micbias_resistor = 2;
1730 dev_err(&client->dev,
1731 "Unsuitable MicBias resistor\n");
1732 }
1733 } else {
1734
1735 sgtl5000->micbias_resistor = 2;
1736 }
1737 if (!of_property_read_u32(np,
1738 "micbias-voltage-m-volts", &value)) {
1739
1740
1741 if ((value >= 1250) && (value <= 3000))
1742 sgtl5000->micbias_voltage = (value / 250) - 5;
1743 else {
1744 sgtl5000->micbias_voltage = 0;
1745 dev_err(&client->dev,
1746 "Unsuitable MicBias voltage\n");
1747 }
1748 } else {
1749 sgtl5000->micbias_voltage = 0;
1750 }
1751 }
1752
1753 sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1754 if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1755 if (value > I2S_LRCLK_STRENGTH_HIGH)
1756 value = I2S_LRCLK_STRENGTH_LOW;
1757 sgtl5000->lrclk_strength = value;
1758 }
1759
1760 sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
1761 if (!of_property_read_u32(np, "sclk-strength", &value)) {
1762 if (value > I2S_SCLK_STRENGTH_HIGH)
1763 value = I2S_SCLK_STRENGTH_LOW;
1764 sgtl5000->sclk_strength = value;
1765 }
1766
1767
1768 sgtl5000_fill_defaults(client);
1769
1770 ret = devm_snd_soc_register_component(&client->dev,
1771 &sgtl5000_driver, &sgtl5000_dai, 1);
1772 if (ret)
1773 goto disable_clk;
1774
1775 return 0;
1776
1777 disable_clk:
1778 clk_disable_unprepare(sgtl5000->mclk);
1779
1780 disable_regs:
1781 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1782 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1783
1784 return ret;
1785 }
1786
1787 static int sgtl5000_i2c_remove(struct i2c_client *client)
1788 {
1789 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1790
1791 clk_disable_unprepare(sgtl5000->mclk);
1792 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1793 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1794
1795 return 0;
1796 }
1797
1798 static const struct i2c_device_id sgtl5000_id[] = {
1799 {"sgtl5000", 0},
1800 {},
1801 };
1802
1803 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1804
1805 static const struct of_device_id sgtl5000_dt_ids[] = {
1806 { .compatible = "fsl,sgtl5000", },
1807 { }
1808 };
1809 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1810
1811 static struct i2c_driver sgtl5000_i2c_driver = {
1812 .driver = {
1813 .name = "sgtl5000",
1814 .of_match_table = sgtl5000_dt_ids,
1815 },
1816 .probe = sgtl5000_i2c_probe,
1817 .remove = sgtl5000_i2c_remove,
1818 .id_table = sgtl5000_id,
1819 };
1820
1821 module_i2c_driver(sgtl5000_i2c_driver);
1822
1823 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1824 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1825 MODULE_LICENSE("GPL");