This source file includes following definitions.
- snd_cmipci_write
- snd_cmipci_read
- snd_cmipci_write_w
- snd_cmipci_read_w
- snd_cmipci_write_b
- snd_cmipci_read_b
- snd_cmipci_set_bit
- snd_cmipci_clear_bit
- snd_cmipci_set_bit_b
- snd_cmipci_clear_bit_b
- snd_cmipci_rate_freq
- snd_cmipci_pll_rmn
- snd_cmipci_set_pll
- snd_cmipci_hw_params
- snd_cmipci_playback2_hw_params
- snd_cmipci_ch_reset
- snd_cmipci_hw_free
- set_dac_channels
- snd_cmipci_pcm_prepare
- snd_cmipci_pcm_trigger
- snd_cmipci_pcm_pointer
- snd_cmipci_playback_trigger
- snd_cmipci_playback_pointer
- snd_cmipci_capture_trigger
- snd_cmipci_capture_pointer
- snd_cmipci_spdif_default_info
- snd_cmipci_spdif_default_get
- snd_cmipci_spdif_default_put
- snd_cmipci_spdif_mask_info
- snd_cmipci_spdif_mask_get
- snd_cmipci_spdif_stream_info
- snd_cmipci_spdif_stream_get
- snd_cmipci_spdif_stream_put
- save_mixer_state
- restore_mixer_state
- setup_ac3
- setup_spdif_playback
- snd_cmipci_playback_prepare
- snd_cmipci_playback_spdif_prepare
- snd_cmipci_silence_hack
- snd_cmipci_playback_hw_free
- snd_cmipci_playback2_hw_free
- snd_cmipci_capture_prepare
- snd_cmipci_capture_spdif_prepare
- snd_cmipci_capture_spdif_hw_free
- snd_cmipci_interrupt
- open_device_check
- close_device_check
- snd_cmipci_playback_open
- snd_cmipci_capture_open
- snd_cmipci_playback2_open
- snd_cmipci_playback_spdif_open
- snd_cmipci_capture_spdif_open
- snd_cmipci_playback_close
- snd_cmipci_capture_close
- snd_cmipci_playback2_close
- snd_cmipci_playback_spdif_close
- snd_cmipci_capture_spdif_close
- snd_cmipci_pcm_new
- snd_cmipci_pcm2_new
- snd_cmipci_pcm_spdif_new
- snd_cmipci_mixer_write
- snd_cmipci_mixer_read
- cmipci_sb_reg_decode
- snd_cmipci_info_volume
- snd_cmipci_get_volume
- snd_cmipci_put_volume
- snd_cmipci_info_input_sw
- snd_cmipci_get_input_sw
- snd_cmipci_put_input_sw
- snd_cmipci_info_native_mixer
- snd_cmipci_get_native_mixer
- snd_cmipci_put_native_mixer
- snd_cmipci_get_native_mixer_sensitive
- snd_cmipci_put_native_mixer_sensitive
- _snd_cmipci_uswitch_get
- snd_cmipci_uswitch_get
- _snd_cmipci_uswitch_put
- snd_cmipci_uswitch_put
- snd_cmipci_spdout_enable_get
- snd_cmipci_spdout_enable_put
- snd_cmipci_line_in_mode_info
- get_line_in_mode
- snd_cmipci_line_in_mode_get
- snd_cmipci_line_in_mode_put
- snd_cmipci_mic_in_mode_info
- snd_cmipci_mic_in_mode_get
- snd_cmipci_mic_in_mode_put
- snd_cmipci_mixer_new
- snd_cmipci_proc_read
- snd_cmipci_proc_init
- query_chip
- snd_cmipci_create_gameport
- snd_cmipci_free_gameport
- snd_cmipci_create_gameport
- snd_cmipci_free_gameport
- snd_cmipci_free
- snd_cmipci_dev_free
- snd_cmipci_create_fm
- snd_cmipci_create
- snd_cmipci_probe
- snd_cmipci_remove
- snd_cmipci_suspend
- snd_cmipci_resume
1
2
3
4
5
6
7
8
9
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34 "{C-Media,CMI8738B},"
35 "{C-Media,CMI8338A},"
36 "{C-Media,CMI8338B}}");
37
38 #if IS_REACHABLE(CONFIG_GAMEPORT)
39 #define SUPPORT_JOYSTICK 1
40 #endif
41
42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
45 static long mpu_port[SNDRV_CARDS];
46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48 #ifdef SUPPORT_JOYSTICK
49 static int joystick_port[SNDRV_CARDS];
50 #endif
51
52 module_param_array(index, int, NULL, 0444);
53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54 module_param_array(id, charp, NULL, 0444);
55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56 module_param_array(enable, bool, NULL, 0444);
57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61 MODULE_PARM_DESC(fm_port, "FM port.");
62 module_param_array(soft_ac3, bool, NULL, 0444);
63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64 #ifdef SUPPORT_JOYSTICK
65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67 #endif
68
69
70
71
72
73 #define CM_REG_FUNCTRL0 0x00
74 #define CM_RST_CH1 0x00080000
75 #define CM_RST_CH0 0x00040000
76 #define CM_CHEN1 0x00020000
77 #define CM_CHEN0 0x00010000
78 #define CM_PAUSE1 0x00000008
79 #define CM_PAUSE0 0x00000004
80 #define CM_CHADC1 0x00000002
81 #define CM_CHADC0 0x00000001
82
83 #define CM_REG_FUNCTRL1 0x04
84 #define CM_DSFC_MASK 0x0000E000
85 #define CM_DSFC_SHIFT 13
86 #define CM_ASFC_MASK 0x00001C00
87 #define CM_ASFC_SHIFT 10
88 #define CM_SPDF_1 0x00000200
89 #define CM_SPDF_0 0x00000100
90 #define CM_SPDFLOOP 0x00000080
91 #define CM_SPDO2DAC 0x00000040
92 #define CM_INTRM 0x00000020
93 #define CM_BREQ 0x00000010
94 #define CM_VOICE_EN 0x00000008
95 #define CM_UART_EN 0x00000004
96 #define CM_JYSTK_EN 0x00000002
97 #define CM_ZVPORT 0x00000001
98
99 #define CM_REG_CHFORMAT 0x08
100
101 #define CM_CHB3D5C 0x80000000
102 #define CM_FMOFFSET2 0x40000000
103 #define CM_CHB3D 0x20000000
104
105 #define CM_CHIP_MASK1 0x1f000000
106 #define CM_CHIP_037 0x01000000
107 #define CM_SETLAT48 0x00800000
108 #define CM_EDGEIRQ 0x00400000
109 #define CM_SPD24SEL39 0x00200000
110 #define CM_AC3EN1 0x00100000
111 #define CM_SPDIF_SELECT1 0x00080000
112 #define CM_SPD24SEL 0x00020000
113
114
115 #define CM_ADCBITLEN_MASK 0x0000C000
116 #define CM_ADCBITLEN_16 0x00000000
117 #define CM_ADCBITLEN_15 0x00004000
118 #define CM_ADCBITLEN_14 0x00008000
119 #define CM_ADCBITLEN_13 0x0000C000
120
121 #define CM_ADCDACLEN_MASK 0x00003000
122 #define CM_ADCDACLEN_060 0x00000000
123 #define CM_ADCDACLEN_066 0x00001000
124 #define CM_ADCDACLEN_130 0x00002000
125 #define CM_ADCDACLEN_280 0x00003000
126
127 #define CM_ADCDLEN_MASK 0x00003000
128 #define CM_ADCDLEN_ORIGINAL 0x00000000
129 #define CM_ADCDLEN_EXTRA 0x00001000
130 #define CM_ADCDLEN_24K 0x00002000
131 #define CM_ADCDLEN_WEIGHT 0x00003000
132
133 #define CM_CH1_SRATE_176K 0x00000800
134 #define CM_CH1_SRATE_96K 0x00000800
135 #define CM_CH1_SRATE_88K 0x00000400
136 #define CM_CH0_SRATE_176K 0x00000200
137 #define CM_CH0_SRATE_96K 0x00000200
138 #define CM_CH0_SRATE_88K 0x00000100
139 #define CM_CH0_SRATE_128K 0x00000300
140 #define CM_CH0_SRATE_MASK 0x00000300
141
142 #define CM_SPDIF_INVERSE2 0x00000080
143 #define CM_DBLSPDS 0x00000040
144 #define CM_POLVALID 0x00000020
145 #define CM_SPDLOCKED 0x00000010
146
147 #define CM_CH1FMT_MASK 0x0000000C
148 #define CM_CH1FMT_SHIFT 2
149 #define CM_CH0FMT_MASK 0x00000003
150 #define CM_CH0FMT_SHIFT 0
151
152 #define CM_REG_INT_HLDCLR 0x0C
153 #define CM_CHIP_MASK2 0xff000000
154 #define CM_CHIP_8768 0x20000000
155 #define CM_CHIP_055 0x08000000
156 #define CM_CHIP_039 0x04000000
157 #define CM_CHIP_039_6CH 0x01000000
158 #define CM_UNKNOWN_INT_EN 0x00080000
159 #define CM_TDMA_INT_EN 0x00040000
160 #define CM_CH1_INT_EN 0x00020000
161 #define CM_CH0_INT_EN 0x00010000
162
163 #define CM_REG_INT_STATUS 0x10
164 #define CM_INTR 0x80000000
165 #define CM_VCO 0x08000000
166 #define CM_MCBINT 0x04000000
167 #define CM_UARTINT 0x00010000
168 #define CM_LTDMAINT 0x00008000
169 #define CM_HTDMAINT 0x00004000
170 #define CM_XDO46 0x00000080
171 #define CM_LHBTOG 0x00000040
172 #define CM_LEG_HDMA 0x00000020
173 #define CM_LEG_STEREO 0x00000010
174 #define CM_CH1BUSY 0x00000008
175 #define CM_CH0BUSY 0x00000004
176 #define CM_CHINT1 0x00000002
177 #define CM_CHINT0 0x00000001
178
179 #define CM_REG_LEGACY_CTRL 0x14
180 #define CM_NXCHG 0x80000000
181 #define CM_VMPU_MASK 0x60000000
182 #define CM_VMPU_330 0x00000000
183 #define CM_VMPU_320 0x20000000
184 #define CM_VMPU_310 0x40000000
185 #define CM_VMPU_300 0x60000000
186 #define CM_ENWR8237 0x10000000
187 #define CM_VSBSEL_MASK 0x0C000000
188 #define CM_VSBSEL_220 0x00000000
189 #define CM_VSBSEL_240 0x04000000
190 #define CM_VSBSEL_260 0x08000000
191 #define CM_VSBSEL_280 0x0C000000
192 #define CM_FMSEL_MASK 0x03000000
193 #define CM_FMSEL_388 0x00000000
194 #define CM_FMSEL_3C8 0x01000000
195 #define CM_FMSEL_3E0 0x02000000
196 #define CM_FMSEL_3E8 0x03000000
197 #define CM_ENSPDOUT 0x00800000
198 #define CM_SPDCOPYRHT 0x00400000
199 #define CM_DAC2SPDO 0x00200000
200 #define CM_INVIDWEN 0x00100000
201 #define CM_SETRETRY 0x00100000
202 #define CM_C_EEACCESS 0x00080000
203 #define CM_C_EECS 0x00040000
204 #define CM_C_EEDI46 0x00020000
205 #define CM_C_EECK46 0x00010000
206 #define CM_CHB3D6C 0x00008000
207 #define CM_CENTR2LIN 0x00004000
208 #define CM_BASE2LIN 0x00002000
209 #define CM_EXBASEN 0x00001000
210
211 #define CM_REG_MISC_CTRL 0x18
212 #define CM_PWD 0x80000000
213 #define CM_RESET 0x40000000
214 #define CM_SFIL_MASK 0x30000000
215 #define CM_VMGAIN 0x10000000
216 #define CM_TXVX 0x08000000
217 #define CM_N4SPK3D 0x04000000
218 #define CM_SPDO5V 0x02000000
219 #define CM_SPDIF48K 0x01000000
220 #define CM_SPATUS48K 0x01000000
221 #define CM_ENDBDAC 0x00800000
222 #define CM_XCHGDAC 0x00400000
223 #define CM_SPD32SEL 0x00200000
224 #define CM_SPDFLOOPI 0x00100000
225 #define CM_FM_EN 0x00080000
226 #define CM_AC3EN2 0x00040000
227 #define CM_ENWRASID 0x00010000
228 #define CM_VIDWPDSB 0x00010000
229 #define CM_SPDF_AC97 0x00008000
230 #define CM_MASK_EN 0x00004000
231 #define CM_ENWRMSID 0x00002000
232 #define CM_VIDWPPRT 0x00002000
233 #define CM_SFILENB 0x00001000
234 #define CM_MMODE_MASK 0x00000E00
235 #define CM_SPDIF_SELECT2 0x00000100
236 #define CM_ENCENTER 0x00000080
237 #define CM_FLINKON 0x00000040
238 #define CM_MUTECH1 0x00000040
239 #define CM_FLINKOFF 0x00000020
240 #define CM_MIDSMP 0x00000010
241 #define CM_UPDDMA_MASK 0x0000000C
242 #define CM_UPDDMA_2048 0x00000000
243 #define CM_UPDDMA_1024 0x00000004
244 #define CM_UPDDMA_512 0x00000008
245 #define CM_UPDDMA_256 0x0000000C
246 #define CM_TWAIT_MASK 0x00000003
247 #define CM_TWAIT1 0x00000002
248 #define CM_TWAIT0 0x00000001
249
250 #define CM_REG_TDMA_POSITION 0x1C
251 #define CM_TDMA_CNT_MASK 0xFFFF0000
252 #define CM_TDMA_ADR_MASK 0x0000FFFF
253
254
255 #define CM_REG_MIXER0 0x20
256 #define CM_REG_SBVR 0x20
257 #define CM_REG_DEV 0x20
258
259 #define CM_REG_MIXER21 0x21
260 #define CM_UNKNOWN_21_MASK 0x78
261 #define CM_X_ADPCM 0x04
262 #define CM_PROINV 0x02
263 #define CM_X_SB16 0x01
264
265 #define CM_REG_SB16_DATA 0x22
266 #define CM_REG_SB16_ADDR 0x23
267
268 #define CM_REFFREQ_XIN (315*1000*1000)/22
269 #define CM_ADCMULT_XIN 512
270 #define CM_TOLERANCE_RATE 0.001
271 #define CM_MAXIMUM_RATE 80000000
272
273 #define CM_REG_MIXER1 0x24
274 #define CM_FMMUTE 0x80
275 #define CM_FMMUTE_SHIFT 7
276 #define CM_WSMUTE 0x40
277 #define CM_WSMUTE_SHIFT 6
278 #define CM_REAR2LIN 0x20
279 #define CM_REAR2LIN_SHIFT 5
280 #define CM_REAR2FRONT 0x10
281 #define CM_REAR2FRONT_SHIFT 4
282 #define CM_WAVEINL 0x08
283 #define CM_WAVEINL_SHIFT 3
284 #define CM_WAVEINR 0x04
285 #define CM_WAVEINR_SHIFT 2
286 #define CM_X3DEN 0x02
287 #define CM_X3DEN_SHIFT 1
288 #define CM_CDPLAY 0x01
289 #define CM_CDPLAY_SHIFT 0
290
291 #define CM_REG_MIXER2 0x25
292 #define CM_RAUXREN 0x80
293 #define CM_RAUXREN_SHIFT 7
294 #define CM_RAUXLEN 0x40
295 #define CM_RAUXLEN_SHIFT 6
296 #define CM_VAUXRM 0x20
297 #define CM_VAUXRM_SHIFT 5
298 #define CM_VAUXLM 0x10
299 #define CM_VAUXLM_SHIFT 4
300 #define CM_VADMIC_MASK 0x0e
301 #define CM_VADMIC_SHIFT 1
302 #define CM_MICGAINZ 0x01
303 #define CM_MICGAINZ_SHIFT 0
304
305 #define CM_REG_MIXER3 0x24
306 #define CM_REG_AUX_VOL 0x26
307 #define CM_VAUXL_MASK 0xf0
308 #define CM_VAUXR_MASK 0x0f
309
310 #define CM_REG_MISC 0x27
311 #define CM_UNKNOWN_27_MASK 0xd8
312 #define CM_XGPO1 0x20
313
314 #define CM_MIC_CENTER_LFE 0x04
315 #define CM_SPDIF_INVERSE 0x04
316 #define CM_SPDVALID 0x02
317 #define CM_DMAUTO 0x01
318
319 #define CM_REG_AC97 0x28
320
321
322
323
324 #define CM_REG_EXTERN_CODEC CM_REG_AC97
325
326
327
328
329 #define CM_REG_MPU_PCI 0x40
330
331
332
333
334 #define CM_REG_FM_PCI 0x50
335
336
337
338
339 #define CM_REG_EXTENT_IND 0xf0
340 #define CM_VPHONE_MASK 0xe0
341 #define CM_VPHONE_SHIFT 5
342 #define CM_VPHOM 0x10
343 #define CM_VSPKM 0x08
344 #define CM_RLOOPREN 0x04
345 #define CM_RLOOPLEN 0x02
346 #define CM_VADMIC3 0x01
347
348
349
350
351
352
353 #define CM_REG_PLL 0xf8
354
355
356
357
358 #define CM_REG_CH0_FRAME1 0x80
359 #define CM_REG_CH0_FRAME2 0x84
360 #define CM_REG_CH1_FRAME1 0x88
361 #define CM_REG_CH1_FRAME2 0x8C
362
363 #define CM_REG_EXT_MISC 0x90
364 #define CM_ADC48K44K 0x10000000
365 #define CM_CHB3D8C 0x00200000
366 #define CM_SPD32FMT 0x00100000
367 #define CM_ADC2SPDIF 0x00080000
368 #define CM_SHAREADC 0x00040000
369 #define CM_REALTCMP 0x00020000
370 #define CM_INVLRCK 0x00010000
371 #define CM_UNKNOWN_90_MASK 0x0000FFFF
372
373
374
375
376 #define CM_EXTENT_CODEC 0x100
377 #define CM_EXTENT_MIDI 0x2
378 #define CM_EXTENT_SYNTH 0x4
379
380
381
382
383
384 #define CM_CH_PLAY 0
385 #define CM_CH_CAPT 1
386
387
388
389
390 #define CM_OPEN_NONE 0
391 #define CM_OPEN_CH_MASK 0x01
392 #define CM_OPEN_DAC 0x10
393 #define CM_OPEN_ADC 0x20
394 #define CM_OPEN_SPDIF 0x40
395 #define CM_OPEN_MCHAN 0x80
396 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
397 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
398 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
399 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
400 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
401 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
402
403
404 #if CM_CH_PLAY == 1
405 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
406 #define CM_PLAYBACK_SPDF CM_SPDF_1
407 #define CM_CAPTURE_SPDF CM_SPDF_0
408 #else
409 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
410 #define CM_PLAYBACK_SPDF CM_SPDF_0
411 #define CM_CAPTURE_SPDF CM_SPDF_1
412 #endif
413
414
415
416
417
418
419 struct cmipci_pcm {
420 struct snd_pcm_substream *substream;
421 u8 running;
422 u8 fmt;
423 u8 is_dac;
424 u8 needs_silencing;
425 unsigned int dma_size;
426 unsigned int shift;
427 unsigned int ch;
428 unsigned int offset;
429 };
430
431
432 struct cmipci_mixer_auto_switches {
433 const char *name;
434 int toggle_on;
435 };
436 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
437 {"PCM Playback Switch", 0},
438 {"IEC958 Output Switch", 1},
439 {"IEC958 Mix Analog", 0},
440
441 {"IEC958 Loop", 0},
442 };
443 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
444
445 struct cmipci {
446 struct snd_card *card;
447
448 struct pci_dev *pci;
449 unsigned int device;
450 int irq;
451
452 unsigned long iobase;
453 unsigned int ctrl;
454
455 struct snd_pcm *pcm;
456 struct snd_pcm *pcm2;
457 struct snd_pcm *pcm_spdif;
458
459 int chip_version;
460 int max_channels;
461 unsigned int can_ac3_sw: 1;
462 unsigned int can_ac3_hw: 1;
463 unsigned int can_multi_ch: 1;
464 unsigned int can_96k: 1;
465 unsigned int do_soft_ac3: 1;
466
467 unsigned int spdif_playback_avail: 1;
468 unsigned int spdif_playback_enabled: 1;
469 int spdif_counter;
470
471 unsigned int dig_status;
472 unsigned int dig_pcm_status;
473
474 struct snd_pcm_hardware *hw_info[3];
475
476 int opened[2];
477 struct mutex open_mutex;
478
479 unsigned int mixer_insensitive: 1;
480 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
481 int mixer_res_status[CM_SAVED_MIXERS];
482
483 struct cmipci_pcm channel[2];
484
485
486 struct snd_rawmidi *rmidi;
487
488 #ifdef SUPPORT_JOYSTICK
489 struct gameport *gameport;
490 #endif
491
492 spinlock_t reg_lock;
493
494 #ifdef CONFIG_PM_SLEEP
495 unsigned int saved_regs[0x20];
496 unsigned char saved_mixers[0x20];
497 #endif
498 };
499
500
501
502 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
503 {
504 outl(data, cm->iobase + cmd);
505 }
506
507 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
508 {
509 return inl(cm->iobase + cmd);
510 }
511
512
513 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
514 {
515 outw(data, cm->iobase + cmd);
516 }
517
518 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
519 {
520 return inw(cm->iobase + cmd);
521 }
522
523
524 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
525 {
526 outb(data, cm->iobase + cmd);
527 }
528
529 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
530 {
531 return inb(cm->iobase + cmd);
532 }
533
534
535 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
536 {
537 unsigned int val, oval;
538 val = oval = inl(cm->iobase + cmd);
539 val |= flag;
540 if (val == oval)
541 return 0;
542 outl(val, cm->iobase + cmd);
543 return 1;
544 }
545
546 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
547 {
548 unsigned int val, oval;
549 val = oval = inl(cm->iobase + cmd);
550 val &= ~flag;
551 if (val == oval)
552 return 0;
553 outl(val, cm->iobase + cmd);
554 return 1;
555 }
556
557
558 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
559 {
560 unsigned char val, oval;
561 val = oval = inb(cm->iobase + cmd);
562 val |= flag;
563 if (val == oval)
564 return 0;
565 outb(val, cm->iobase + cmd);
566 return 1;
567 }
568
569 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
570 {
571 unsigned char val, oval;
572 val = oval = inb(cm->iobase + cmd);
573 val &= ~flag;
574 if (val == oval)
575 return 0;
576 outb(val, cm->iobase + cmd);
577 return 1;
578 }
579
580
581
582
583
584
585
586
587
588
589 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
590
591 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
592 {
593 unsigned int i;
594
595 for (i = 0; i < ARRAY_SIZE(rates); i++) {
596 if (rates[i] == rate)
597 return i;
598 }
599 snd_BUG();
600 return 0;
601 }
602
603 #ifdef USE_VAR48KRATE
604
605
606
607
608
609 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
610 {
611 unsigned int delta, tolerance;
612 int xm, xn, xr;
613
614 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
615 rate <<= 1;
616 *n = -1;
617 if (*r > 0xff)
618 goto out;
619 tolerance = rate*CM_TOLERANCE_RATE;
620
621 for (xn = (1+2); xn < (0x1f+2); xn++) {
622 for (xm = (1+2); xm < (0xff+2); xm++) {
623 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
624
625 if (xr < rate)
626 delta = rate - xr;
627 else
628 delta = xr - rate;
629
630
631
632
633
634 if (delta < tolerance) {
635 tolerance = delta;
636 *m = xm - 2;
637 *n = xn - 2;
638 }
639 }
640 }
641 out:
642 return (*n > -1);
643 }
644
645
646
647
648
649
650
651 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
652 {
653 unsigned int reg = CM_REG_PLL + slot;
654
655
656
657
658
659
660
661
662 snd_cmipci_write_b(cm, reg, rate>>8);
663 snd_cmipci_write_b(cm, reg, rate&0xff);
664
665
666 }
667 #endif
668
669 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
670 struct snd_pcm_hw_params *hw_params)
671 {
672 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
673 }
674
675 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
676 struct snd_pcm_hw_params *hw_params)
677 {
678 struct cmipci *cm = snd_pcm_substream_chip(substream);
679 if (params_channels(hw_params) > 2) {
680 mutex_lock(&cm->open_mutex);
681 if (cm->opened[CM_CH_PLAY]) {
682 mutex_unlock(&cm->open_mutex);
683 return -EBUSY;
684 }
685
686 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
687 mutex_unlock(&cm->open_mutex);
688 }
689 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
690 }
691
692 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
693 {
694 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
695 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
696 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
697 udelay(10);
698 }
699
700 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
701 {
702 return snd_pcm_lib_free_pages(substream);
703 }
704
705
706
707
708
709 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
710 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
711 .count = 3,
712 .list = hw_channels,
713 .mask = 0,
714 };
715 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
716 .count = 4,
717 .list = hw_channels,
718 .mask = 0,
719 };
720 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
721 .count = 5,
722 .list = hw_channels,
723 .mask = 0,
724 };
725
726 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
727 {
728 if (channels > 2) {
729 if (!cm->can_multi_ch || !rec->ch)
730 return -EINVAL;
731 if (rec->fmt != 0x03)
732 return -EINVAL;
733 }
734
735 if (cm->can_multi_ch) {
736 spin_lock_irq(&cm->reg_lock);
737 if (channels > 2) {
738 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
739 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
740 } else {
741 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
742 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
743 }
744 if (channels == 8)
745 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
746 else
747 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
748 if (channels == 6) {
749 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
750 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
751 } else {
752 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
753 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
754 }
755 if (channels == 4)
756 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
757 else
758 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
759 spin_unlock_irq(&cm->reg_lock);
760 }
761 return 0;
762 }
763
764
765
766
767
768
769 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
770 struct snd_pcm_substream *substream)
771 {
772 unsigned int reg, freq, freq_ext, val;
773 unsigned int period_size;
774 struct snd_pcm_runtime *runtime = substream->runtime;
775
776 rec->fmt = 0;
777 rec->shift = 0;
778 if (snd_pcm_format_width(runtime->format) >= 16) {
779 rec->fmt |= 0x02;
780 if (snd_pcm_format_width(runtime->format) > 16)
781 rec->shift++;
782 }
783 if (runtime->channels > 1)
784 rec->fmt |= 0x01;
785 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
786 dev_dbg(cm->card->dev, "cannot set dac channels\n");
787 return -EINVAL;
788 }
789
790 rec->offset = runtime->dma_addr;
791
792 rec->dma_size = runtime->buffer_size << rec->shift;
793 period_size = runtime->period_size << rec->shift;
794 if (runtime->channels > 2) {
795
796 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
797 period_size = (period_size * runtime->channels) / 2;
798 }
799
800 spin_lock_irq(&cm->reg_lock);
801
802
803 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
804 snd_cmipci_write(cm, reg, rec->offset);
805
806 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
807 snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
808 snd_cmipci_write_w(cm, reg + 2, period_size - 1);
809
810
811 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
812 if (rec->is_dac)
813 cm->ctrl &= ~val;
814 else
815 cm->ctrl |= val;
816 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
817
818
819
820 freq = 0;
821 freq_ext = 0;
822 if (runtime->rate > 48000)
823 switch (runtime->rate) {
824 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
825 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
826 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
827 default: snd_BUG(); break;
828 }
829 else
830 freq = snd_cmipci_rate_freq(runtime->rate);
831 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
832 if (rec->ch) {
833 val &= ~CM_DSFC_MASK;
834 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
835 } else {
836 val &= ~CM_ASFC_MASK;
837 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
838 }
839 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
840 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
841
842
843 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
844 if (rec->ch) {
845 val &= ~CM_CH1FMT_MASK;
846 val |= rec->fmt << CM_CH1FMT_SHIFT;
847 } else {
848 val &= ~CM_CH0FMT_MASK;
849 val |= rec->fmt << CM_CH0FMT_SHIFT;
850 }
851 if (cm->can_96k) {
852 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
853 val |= freq_ext << (rec->ch * 2);
854 }
855 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
856 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
857
858 if (!rec->is_dac && cm->chip_version) {
859 if (runtime->rate > 44100)
860 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
861 else
862 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
863 }
864
865 rec->running = 0;
866 spin_unlock_irq(&cm->reg_lock);
867
868 return 0;
869 }
870
871
872
873
874 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
875 int cmd)
876 {
877 unsigned int inthld, chen, reset, pause;
878 int result = 0;
879
880 inthld = CM_CH0_INT_EN << rec->ch;
881 chen = CM_CHEN0 << rec->ch;
882 reset = CM_RST_CH0 << rec->ch;
883 pause = CM_PAUSE0 << rec->ch;
884
885 spin_lock(&cm->reg_lock);
886 switch (cmd) {
887 case SNDRV_PCM_TRIGGER_START:
888 rec->running = 1;
889
890 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
891 cm->ctrl |= chen;
892
893 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
894 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
895 break;
896 case SNDRV_PCM_TRIGGER_STOP:
897 rec->running = 0;
898
899 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
900
901 cm->ctrl &= ~chen;
902 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
903 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
904 rec->needs_silencing = rec->is_dac;
905 break;
906 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
907 case SNDRV_PCM_TRIGGER_SUSPEND:
908 cm->ctrl |= pause;
909 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
910 break;
911 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
912 case SNDRV_PCM_TRIGGER_RESUME:
913 cm->ctrl &= ~pause;
914 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
915 break;
916 default:
917 result = -EINVAL;
918 break;
919 }
920 spin_unlock(&cm->reg_lock);
921 return result;
922 }
923
924
925
926
927 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
928 struct snd_pcm_substream *substream)
929 {
930 size_t ptr;
931 unsigned int reg, rem, tries;
932
933 if (!rec->running)
934 return 0;
935 #if 1
936 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
937 for (tries = 0; tries < 3; tries++) {
938 rem = snd_cmipci_read_w(cm, reg);
939 if (rem < rec->dma_size)
940 goto ok;
941 }
942 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
943 return SNDRV_PCM_POS_XRUN;
944 ok:
945 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
946 #else
947 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
948 ptr = snd_cmipci_read(cm, reg) - rec->offset;
949 ptr = bytes_to_frames(substream->runtime, ptr);
950 #endif
951 if (substream->runtime->channels > 2)
952 ptr = (ptr * 2) / substream->runtime->channels;
953 return ptr;
954 }
955
956
957
958
959
960 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
961 int cmd)
962 {
963 struct cmipci *cm = snd_pcm_substream_chip(substream);
964 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
965 }
966
967 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
968 {
969 struct cmipci *cm = snd_pcm_substream_chip(substream);
970 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
971 }
972
973
974
975
976
977
978
979 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
980 int cmd)
981 {
982 struct cmipci *cm = snd_pcm_substream_chip(substream);
983 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
984 }
985
986 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
987 {
988 struct cmipci *cm = snd_pcm_substream_chip(substream);
989 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
990 }
991
992
993
994
995
996
997 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
998 struct snd_ctl_elem_info *uinfo)
999 {
1000 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1001 uinfo->count = 1;
1002 return 0;
1003 }
1004
1005 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1006 struct snd_ctl_elem_value *ucontrol)
1007 {
1008 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1009 int i;
1010
1011 spin_lock_irq(&chip->reg_lock);
1012 for (i = 0; i < 4; i++)
1013 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1014 spin_unlock_irq(&chip->reg_lock);
1015 return 0;
1016 }
1017
1018 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1019 struct snd_ctl_elem_value *ucontrol)
1020 {
1021 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022 int i, change;
1023 unsigned int val;
1024
1025 val = 0;
1026 spin_lock_irq(&chip->reg_lock);
1027 for (i = 0; i < 4; i++)
1028 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1029 change = val != chip->dig_status;
1030 chip->dig_status = val;
1031 spin_unlock_irq(&chip->reg_lock);
1032 return change;
1033 }
1034
1035 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1036 {
1037 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1038 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1039 .info = snd_cmipci_spdif_default_info,
1040 .get = snd_cmipci_spdif_default_get,
1041 .put = snd_cmipci_spdif_default_put
1042 };
1043
1044 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1045 struct snd_ctl_elem_info *uinfo)
1046 {
1047 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1048 uinfo->count = 1;
1049 return 0;
1050 }
1051
1052 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1053 struct snd_ctl_elem_value *ucontrol)
1054 {
1055 ucontrol->value.iec958.status[0] = 0xff;
1056 ucontrol->value.iec958.status[1] = 0xff;
1057 ucontrol->value.iec958.status[2] = 0xff;
1058 ucontrol->value.iec958.status[3] = 0xff;
1059 return 0;
1060 }
1061
1062 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1063 {
1064 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1065 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1066 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1067 .info = snd_cmipci_spdif_mask_info,
1068 .get = snd_cmipci_spdif_mask_get,
1069 };
1070
1071 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1072 struct snd_ctl_elem_info *uinfo)
1073 {
1074 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1075 uinfo->count = 1;
1076 return 0;
1077 }
1078
1079 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1080 struct snd_ctl_elem_value *ucontrol)
1081 {
1082 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1083 int i;
1084
1085 spin_lock_irq(&chip->reg_lock);
1086 for (i = 0; i < 4; i++)
1087 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1088 spin_unlock_irq(&chip->reg_lock);
1089 return 0;
1090 }
1091
1092 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1093 struct snd_ctl_elem_value *ucontrol)
1094 {
1095 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096 int i, change;
1097 unsigned int val;
1098
1099 val = 0;
1100 spin_lock_irq(&chip->reg_lock);
1101 for (i = 0; i < 4; i++)
1102 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1103 change = val != chip->dig_pcm_status;
1104 chip->dig_pcm_status = val;
1105 spin_unlock_irq(&chip->reg_lock);
1106 return change;
1107 }
1108
1109 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1110 {
1111 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1112 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1113 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1114 .info = snd_cmipci_spdif_stream_info,
1115 .get = snd_cmipci_spdif_stream_get,
1116 .put = snd_cmipci_spdif_stream_put
1117 };
1118
1119
1120
1121
1122
1123 static int save_mixer_state(struct cmipci *cm)
1124 {
1125 if (! cm->mixer_insensitive) {
1126 struct snd_ctl_elem_value *val;
1127 unsigned int i;
1128
1129 val = kmalloc(sizeof(*val), GFP_KERNEL);
1130 if (!val)
1131 return -ENOMEM;
1132 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1133 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1134 if (ctl) {
1135 int event;
1136 memset(val, 0, sizeof(*val));
1137 ctl->get(ctl, val);
1138 cm->mixer_res_status[i] = val->value.integer.value[0];
1139 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1140 event = SNDRV_CTL_EVENT_MASK_INFO;
1141 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1142 ctl->put(ctl, val);
1143 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1144 }
1145 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1146 snd_ctl_notify(cm->card, event, &ctl->id);
1147 }
1148 }
1149 kfree(val);
1150 cm->mixer_insensitive = 1;
1151 }
1152 return 0;
1153 }
1154
1155
1156
1157 static void restore_mixer_state(struct cmipci *cm)
1158 {
1159 if (cm->mixer_insensitive) {
1160 struct snd_ctl_elem_value *val;
1161 unsigned int i;
1162
1163 val = kmalloc(sizeof(*val), GFP_KERNEL);
1164 if (!val)
1165 return;
1166 cm->mixer_insensitive = 0;
1167
1168 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1169 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1170 if (ctl) {
1171 int event;
1172
1173 memset(val, 0, sizeof(*val));
1174 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1175 ctl->get(ctl, val);
1176 event = SNDRV_CTL_EVENT_MASK_INFO;
1177 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1178 val->value.integer.value[0] = cm->mixer_res_status[i];
1179 ctl->put(ctl, val);
1180 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1181 }
1182 snd_ctl_notify(cm->card, event, &ctl->id);
1183 }
1184 }
1185 kfree(val);
1186 }
1187 }
1188
1189
1190 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1191 {
1192 if (do_ac3) {
1193
1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1195
1196 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1197
1198 if (cm->can_ac3_hw) {
1199
1200
1201 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1202 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1203 } else {
1204
1205 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206
1207 if (cm->chip_version == 33) {
1208 if (rate >= 48000) {
1209 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1210 } else {
1211 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1212 }
1213 }
1214 }
1215
1216 } else {
1217 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1218 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1219
1220 if (cm->can_ac3_hw) {
1221
1222 if (snd_pcm_format_width(subs->runtime->format) > 16) {
1223 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1224 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1225 } else {
1226 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1227 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1228 }
1229 } else {
1230 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1231 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1232 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1233 }
1234 }
1235 }
1236
1237 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1238 {
1239 int rate, err;
1240
1241 rate = subs->runtime->rate;
1242
1243 if (up && do_ac3)
1244 if ((err = save_mixer_state(cm)) < 0)
1245 return err;
1246
1247 spin_lock_irq(&cm->reg_lock);
1248 cm->spdif_playback_avail = up;
1249 if (up) {
1250
1251
1252
1253 if (cm->spdif_playback_enabled)
1254 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255 setup_ac3(cm, subs, do_ac3, rate);
1256
1257 if (rate == 48000 || rate == 96000)
1258 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1259 else
1260 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1261 if (rate > 48000)
1262 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1263 else
1264 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1265 } else {
1266
1267
1268
1269 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1271 setup_ac3(cm, subs, 0, 0);
1272 }
1273 spin_unlock_irq(&cm->reg_lock);
1274 return 0;
1275 }
1276
1277
1278
1279
1280
1281
1282
1283 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1284 {
1285 struct cmipci *cm = snd_pcm_substream_chip(substream);
1286 int rate = substream->runtime->rate;
1287 int err, do_spdif, do_ac3 = 0;
1288
1289 do_spdif = (rate >= 44100 && rate <= 96000 &&
1290 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1291 substream->runtime->channels == 2);
1292 if (do_spdif && cm->can_ac3_hw)
1293 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1295 return err;
1296 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1297 }
1298
1299
1300 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1301 {
1302 struct cmipci *cm = snd_pcm_substream_chip(substream);
1303 int err, do_ac3;
1304
1305 if (cm->can_ac3_hw)
1306 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307 else
1308 do_ac3 = 1;
1309 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1310 return err;
1311 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1312 }
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1323 {
1324 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1325 unsigned int reg, val;
1326
1327 if (rec->needs_silencing && runtime && runtime->dma_area) {
1328
1329 memset(runtime->dma_area, 0, PAGE_SIZE);
1330 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1331 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1332 snd_cmipci_write(cm, reg, val);
1333
1334
1335 if (runtime->channels > 2)
1336 set_dac_channels(cm, rec, 2);
1337 spin_lock_irq(&cm->reg_lock);
1338 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1339 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1340 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1341 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1342 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1343 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1344 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1345 if (cm->can_96k)
1346 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1347 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1348
1349
1350 cm->ctrl |= CM_CHEN0 << rec->ch;
1351 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1352 spin_unlock_irq(&cm->reg_lock);
1353
1354 msleep(1);
1355
1356
1357 spin_lock_irq(&cm->reg_lock);
1358 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1359 val = CM_RST_CH0 << rec->ch;
1360 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1361 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1362 spin_unlock_irq(&cm->reg_lock);
1363
1364 rec->needs_silencing = 0;
1365 }
1366 }
1367
1368 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1369 {
1370 struct cmipci *cm = snd_pcm_substream_chip(substream);
1371 setup_spdif_playback(cm, substream, 0, 0);
1372 restore_mixer_state(cm);
1373 snd_cmipci_silence_hack(cm, &cm->channel[0]);
1374 return snd_cmipci_hw_free(substream);
1375 }
1376
1377 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1378 {
1379 struct cmipci *cm = snd_pcm_substream_chip(substream);
1380 snd_cmipci_silence_hack(cm, &cm->channel[1]);
1381 return snd_cmipci_hw_free(substream);
1382 }
1383
1384
1385 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1386 {
1387 struct cmipci *cm = snd_pcm_substream_chip(substream);
1388 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1389 }
1390
1391
1392 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1393 {
1394 struct cmipci *cm = snd_pcm_substream_chip(substream);
1395
1396 spin_lock_irq(&cm->reg_lock);
1397 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1398 if (cm->can_96k) {
1399 if (substream->runtime->rate > 48000)
1400 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1401 else
1402 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1403 }
1404 if (snd_pcm_format_width(substream->runtime->format) > 16)
1405 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1406 else
1407 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1408
1409 spin_unlock_irq(&cm->reg_lock);
1410
1411 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1412 }
1413
1414 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1415 {
1416 struct cmipci *cm = snd_pcm_substream_chip(subs);
1417
1418 spin_lock_irq(&cm->reg_lock);
1419 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1420 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421 spin_unlock_irq(&cm->reg_lock);
1422
1423 return snd_cmipci_hw_free(subs);
1424 }
1425
1426
1427
1428
1429
1430 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1431 {
1432 struct cmipci *cm = dev_id;
1433 unsigned int status, mask = 0;
1434
1435
1436 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1437 if (!(status & CM_INTR))
1438 return IRQ_NONE;
1439
1440
1441 spin_lock(&cm->reg_lock);
1442 if (status & CM_CHINT0)
1443 mask |= CM_CH0_INT_EN;
1444 if (status & CM_CHINT1)
1445 mask |= CM_CH1_INT_EN;
1446 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1447 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1448 spin_unlock(&cm->reg_lock);
1449
1450 if (cm->rmidi && (status & CM_UARTINT))
1451 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1452
1453 if (cm->pcm) {
1454 if ((status & CM_CHINT0) && cm->channel[0].running)
1455 snd_pcm_period_elapsed(cm->channel[0].substream);
1456 if ((status & CM_CHINT1) && cm->channel[1].running)
1457 snd_pcm_period_elapsed(cm->channel[1].substream);
1458 }
1459 return IRQ_HANDLED;
1460 }
1461
1462
1463
1464
1465
1466
1467 static const struct snd_pcm_hardware snd_cmipci_playback =
1468 {
1469 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1470 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1471 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1472 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1473 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1474 .rate_min = 5512,
1475 .rate_max = 48000,
1476 .channels_min = 1,
1477 .channels_max = 2,
1478 .buffer_bytes_max = (128*1024),
1479 .period_bytes_min = 64,
1480 .period_bytes_max = (128*1024),
1481 .periods_min = 2,
1482 .periods_max = 1024,
1483 .fifo_size = 0,
1484 };
1485
1486
1487 static const struct snd_pcm_hardware snd_cmipci_capture =
1488 {
1489 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1490 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1491 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1492 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1493 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1494 .rate_min = 5512,
1495 .rate_max = 48000,
1496 .channels_min = 1,
1497 .channels_max = 2,
1498 .buffer_bytes_max = (128*1024),
1499 .period_bytes_min = 64,
1500 .period_bytes_max = (128*1024),
1501 .periods_min = 2,
1502 .periods_max = 1024,
1503 .fifo_size = 0,
1504 };
1505
1506
1507 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1508 {
1509 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1510 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1511 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1512 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1513 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1514 .rate_min = 5512,
1515 .rate_max = 48000,
1516 .channels_min = 2,
1517 .channels_max = 2,
1518 .buffer_bytes_max = (128*1024),
1519 .period_bytes_min = 64,
1520 .period_bytes_max = (128*1024),
1521 .periods_min = 2,
1522 .periods_max = 1024,
1523 .fifo_size = 0,
1524 };
1525
1526
1527 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1528 {
1529 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1530 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1531 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1532 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1533 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1534 .rate_min = 44100,
1535 .rate_max = 48000,
1536 .channels_min = 2,
1537 .channels_max = 2,
1538 .buffer_bytes_max = (128*1024),
1539 .period_bytes_min = 64,
1540 .period_bytes_max = (128*1024),
1541 .periods_min = 2,
1542 .periods_max = 1024,
1543 .fifo_size = 0,
1544 };
1545
1546
1547 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1548 {
1549 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1550 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1551 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1552 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1553 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1554 .rate_min = 44100,
1555 .rate_max = 48000,
1556 .channels_min = 2,
1557 .channels_max = 2,
1558 .buffer_bytes_max = (128*1024),
1559 .period_bytes_min = 64,
1560 .period_bytes_max = (128*1024),
1561 .periods_min = 2,
1562 .periods_max = 1024,
1563 .fifo_size = 0,
1564 };
1565
1566
1567 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1568 {
1569 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1570 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1571 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1572 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1573 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1574 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1575 .rate_min = 44100,
1576 .rate_max = 48000,
1577 .channels_min = 2,
1578 .channels_max = 2,
1579 .buffer_bytes_max = (128*1024),
1580 .period_bytes_min = 64,
1581 .period_bytes_max = (128*1024),
1582 .periods_min = 2,
1583 .periods_max = 1024,
1584 .fifo_size = 0,
1585 };
1586
1587 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1588 32000, 44100, 48000, 88200, 96000, 128000 };
1589 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1590 .count = ARRAY_SIZE(rate_constraints),
1591 .list = rate_constraints,
1592 .mask = 0,
1593 };
1594
1595
1596
1597
1598 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1599 {
1600 int ch = mode & CM_OPEN_CH_MASK;
1601
1602
1603
1604
1605
1606
1607 mutex_lock(&cm->open_mutex);
1608 if (cm->opened[ch]) {
1609 mutex_unlock(&cm->open_mutex);
1610 return -EBUSY;
1611 }
1612 cm->opened[ch] = mode;
1613 cm->channel[ch].substream = subs;
1614 if (! (mode & CM_OPEN_DAC)) {
1615
1616 cm->channel[ch].is_dac = 0;
1617 spin_lock_irq(&cm->reg_lock);
1618 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1619 spin_unlock_irq(&cm->reg_lock);
1620 }
1621 mutex_unlock(&cm->open_mutex);
1622 return 0;
1623 }
1624
1625 static void close_device_check(struct cmipci *cm, int mode)
1626 {
1627 int ch = mode & CM_OPEN_CH_MASK;
1628
1629 mutex_lock(&cm->open_mutex);
1630 if (cm->opened[ch] == mode) {
1631 if (cm->channel[ch].substream) {
1632 snd_cmipci_ch_reset(cm, ch);
1633 cm->channel[ch].running = 0;
1634 cm->channel[ch].substream = NULL;
1635 }
1636 cm->opened[ch] = 0;
1637 if (! cm->channel[ch].is_dac) {
1638
1639 cm->channel[ch].is_dac = 1;
1640 spin_lock_irq(&cm->reg_lock);
1641 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1642 spin_unlock_irq(&cm->reg_lock);
1643 }
1644 }
1645 mutex_unlock(&cm->open_mutex);
1646 }
1647
1648
1649
1650
1651 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1652 {
1653 struct cmipci *cm = snd_pcm_substream_chip(substream);
1654 struct snd_pcm_runtime *runtime = substream->runtime;
1655 int err;
1656
1657 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1658 return err;
1659 runtime->hw = snd_cmipci_playback;
1660 if (cm->chip_version == 68) {
1661 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1662 SNDRV_PCM_RATE_96000;
1663 runtime->hw.rate_max = 96000;
1664 } else if (cm->chip_version == 55) {
1665 err = snd_pcm_hw_constraint_list(runtime, 0,
1666 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1667 if (err < 0)
1668 return err;
1669 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1670 runtime->hw.rate_max = 128000;
1671 }
1672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1673 cm->dig_pcm_status = cm->dig_status;
1674 return 0;
1675 }
1676
1677 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1678 {
1679 struct cmipci *cm = snd_pcm_substream_chip(substream);
1680 struct snd_pcm_runtime *runtime = substream->runtime;
1681 int err;
1682
1683 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1684 return err;
1685 runtime->hw = snd_cmipci_capture;
1686 if (cm->chip_version == 68) {
1687 runtime->hw.rate_min = 41000;
1688 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1689 } else if (cm->chip_version == 55) {
1690 err = snd_pcm_hw_constraint_list(runtime, 0,
1691 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1692 if (err < 0)
1693 return err;
1694 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1695 runtime->hw.rate_max = 128000;
1696 }
1697 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1698 return 0;
1699 }
1700
1701 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1702 {
1703 struct cmipci *cm = snd_pcm_substream_chip(substream);
1704 struct snd_pcm_runtime *runtime = substream->runtime;
1705 int err;
1706
1707 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0)
1708 return err;
1709 runtime->hw = snd_cmipci_playback2;
1710 mutex_lock(&cm->open_mutex);
1711 if (! cm->opened[CM_CH_PLAY]) {
1712 if (cm->can_multi_ch) {
1713 runtime->hw.channels_max = cm->max_channels;
1714 if (cm->max_channels == 4)
1715 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1716 else if (cm->max_channels == 6)
1717 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1718 else if (cm->max_channels == 8)
1719 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1720 }
1721 }
1722 mutex_unlock(&cm->open_mutex);
1723 if (cm->chip_version == 68) {
1724 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1725 SNDRV_PCM_RATE_96000;
1726 runtime->hw.rate_max = 96000;
1727 } else if (cm->chip_version == 55) {
1728 err = snd_pcm_hw_constraint_list(runtime, 0,
1729 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1730 if (err < 0)
1731 return err;
1732 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1733 runtime->hw.rate_max = 128000;
1734 }
1735 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1736 return 0;
1737 }
1738
1739 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1740 {
1741 struct cmipci *cm = snd_pcm_substream_chip(substream);
1742 struct snd_pcm_runtime *runtime = substream->runtime;
1743 int err;
1744
1745 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0)
1746 return err;
1747 if (cm->can_ac3_hw) {
1748 runtime->hw = snd_cmipci_playback_spdif;
1749 if (cm->chip_version >= 37) {
1750 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1751 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1752 }
1753 if (cm->can_96k) {
1754 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1755 SNDRV_PCM_RATE_96000;
1756 runtime->hw.rate_max = 96000;
1757 }
1758 } else {
1759 runtime->hw = snd_cmipci_playback_iec958_subframe;
1760 }
1761 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1762 cm->dig_pcm_status = cm->dig_status;
1763 return 0;
1764 }
1765
1766 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1767 {
1768 struct cmipci *cm = snd_pcm_substream_chip(substream);
1769 struct snd_pcm_runtime *runtime = substream->runtime;
1770 int err;
1771
1772 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0)
1773 return err;
1774 runtime->hw = snd_cmipci_capture_spdif;
1775 if (cm->can_96k && !(cm->chip_version == 68)) {
1776 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1777 SNDRV_PCM_RATE_96000;
1778 runtime->hw.rate_max = 96000;
1779 }
1780 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1781 return 0;
1782 }
1783
1784
1785
1786
1787
1788 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1789 {
1790 struct cmipci *cm = snd_pcm_substream_chip(substream);
1791 close_device_check(cm, CM_OPEN_PLAYBACK);
1792 return 0;
1793 }
1794
1795 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1796 {
1797 struct cmipci *cm = snd_pcm_substream_chip(substream);
1798 close_device_check(cm, CM_OPEN_CAPTURE);
1799 return 0;
1800 }
1801
1802 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1803 {
1804 struct cmipci *cm = snd_pcm_substream_chip(substream);
1805 close_device_check(cm, CM_OPEN_PLAYBACK2);
1806 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1807 return 0;
1808 }
1809
1810 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1811 {
1812 struct cmipci *cm = snd_pcm_substream_chip(substream);
1813 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1814 return 0;
1815 }
1816
1817 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1818 {
1819 struct cmipci *cm = snd_pcm_substream_chip(substream);
1820 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1821 return 0;
1822 }
1823
1824
1825
1826
1827
1828 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1829 .open = snd_cmipci_playback_open,
1830 .close = snd_cmipci_playback_close,
1831 .ioctl = snd_pcm_lib_ioctl,
1832 .hw_params = snd_cmipci_hw_params,
1833 .hw_free = snd_cmipci_playback_hw_free,
1834 .prepare = snd_cmipci_playback_prepare,
1835 .trigger = snd_cmipci_playback_trigger,
1836 .pointer = snd_cmipci_playback_pointer,
1837 };
1838
1839 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1840 .open = snd_cmipci_capture_open,
1841 .close = snd_cmipci_capture_close,
1842 .ioctl = snd_pcm_lib_ioctl,
1843 .hw_params = snd_cmipci_hw_params,
1844 .hw_free = snd_cmipci_hw_free,
1845 .prepare = snd_cmipci_capture_prepare,
1846 .trigger = snd_cmipci_capture_trigger,
1847 .pointer = snd_cmipci_capture_pointer,
1848 };
1849
1850 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1851 .open = snd_cmipci_playback2_open,
1852 .close = snd_cmipci_playback2_close,
1853 .ioctl = snd_pcm_lib_ioctl,
1854 .hw_params = snd_cmipci_playback2_hw_params,
1855 .hw_free = snd_cmipci_playback2_hw_free,
1856 .prepare = snd_cmipci_capture_prepare,
1857 .trigger = snd_cmipci_capture_trigger,
1858 .pointer = snd_cmipci_capture_pointer,
1859 };
1860
1861 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1862 .open = snd_cmipci_playback_spdif_open,
1863 .close = snd_cmipci_playback_spdif_close,
1864 .ioctl = snd_pcm_lib_ioctl,
1865 .hw_params = snd_cmipci_hw_params,
1866 .hw_free = snd_cmipci_playback_hw_free,
1867 .prepare = snd_cmipci_playback_spdif_prepare,
1868 .trigger = snd_cmipci_playback_trigger,
1869 .pointer = snd_cmipci_playback_pointer,
1870 };
1871
1872 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1873 .open = snd_cmipci_capture_spdif_open,
1874 .close = snd_cmipci_capture_spdif_close,
1875 .ioctl = snd_pcm_lib_ioctl,
1876 .hw_params = snd_cmipci_hw_params,
1877 .hw_free = snd_cmipci_capture_spdif_hw_free,
1878 .prepare = snd_cmipci_capture_spdif_prepare,
1879 .trigger = snd_cmipci_capture_trigger,
1880 .pointer = snd_cmipci_capture_pointer,
1881 };
1882
1883
1884
1885
1886
1887 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1888 {
1889 struct snd_pcm *pcm;
1890 int err;
1891
1892 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1893 if (err < 0)
1894 return err;
1895
1896 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1897 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1898
1899 pcm->private_data = cm;
1900 pcm->info_flags = 0;
1901 strcpy(pcm->name, "C-Media PCI DAC/ADC");
1902 cm->pcm = pcm;
1903
1904 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1905 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1906
1907 return 0;
1908 }
1909
1910 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1911 {
1912 struct snd_pcm *pcm;
1913 int err;
1914
1915 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1916 if (err < 0)
1917 return err;
1918
1919 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1920
1921 pcm->private_data = cm;
1922 pcm->info_flags = 0;
1923 strcpy(pcm->name, "C-Media PCI 2nd DAC");
1924 cm->pcm2 = pcm;
1925
1926 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1927 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1928
1929 return 0;
1930 }
1931
1932 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1933 {
1934 struct snd_pcm *pcm;
1935 int err;
1936
1937 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1938 if (err < 0)
1939 return err;
1940
1941 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1942 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1943
1944 pcm->private_data = cm;
1945 pcm->info_flags = 0;
1946 strcpy(pcm->name, "C-Media PCI IEC958");
1947 cm->pcm_spdif = pcm;
1948
1949 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1950 snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1951
1952 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1953 snd_pcm_alt_chmaps, cm->max_channels, 0,
1954 NULL);
1955 if (err < 0)
1956 return err;
1957
1958 return 0;
1959 }
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1971 {
1972 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1973 outb(data, s->iobase + CM_REG_SB16_DATA);
1974 }
1975
1976 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1977 {
1978 unsigned char v;
1979
1980 outb(idx, s->iobase + CM_REG_SB16_ADDR);
1981 v = inb(s->iobase + CM_REG_SB16_DATA);
1982 return v;
1983 }
1984
1985
1986
1987
1988 struct cmipci_sb_reg {
1989 unsigned int left_reg, right_reg;
1990 unsigned int left_shift, right_shift;
1991 unsigned int mask;
1992 unsigned int invert: 1;
1993 unsigned int stereo: 1;
1994 };
1995
1996 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1997 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1998
1999 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2000 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2001 .info = snd_cmipci_info_volume, \
2002 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2003 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2004 }
2005
2006 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2007 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2008 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2009 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2010
2011 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2012 {
2013 r->left_reg = val & 0xff;
2014 r->right_reg = (val >> 8) & 0xff;
2015 r->left_shift = (val >> 16) & 0x07;
2016 r->right_shift = (val >> 19) & 0x07;
2017 r->invert = (val >> 22) & 1;
2018 r->stereo = (val >> 23) & 1;
2019 r->mask = (val >> 24) & 0xff;
2020 }
2021
2022 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2023 struct snd_ctl_elem_info *uinfo)
2024 {
2025 struct cmipci_sb_reg reg;
2026
2027 cmipci_sb_reg_decode(®, kcontrol->private_value);
2028 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2029 uinfo->count = reg.stereo + 1;
2030 uinfo->value.integer.min = 0;
2031 uinfo->value.integer.max = reg.mask;
2032 return 0;
2033 }
2034
2035 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2036 struct snd_ctl_elem_value *ucontrol)
2037 {
2038 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2039 struct cmipci_sb_reg reg;
2040 int val;
2041
2042 cmipci_sb_reg_decode(®, kcontrol->private_value);
2043 spin_lock_irq(&cm->reg_lock);
2044 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2045 if (reg.invert)
2046 val = reg.mask - val;
2047 ucontrol->value.integer.value[0] = val;
2048 if (reg.stereo) {
2049 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2050 if (reg.invert)
2051 val = reg.mask - val;
2052 ucontrol->value.integer.value[1] = val;
2053 }
2054 spin_unlock_irq(&cm->reg_lock);
2055 return 0;
2056 }
2057
2058 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2059 struct snd_ctl_elem_value *ucontrol)
2060 {
2061 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2062 struct cmipci_sb_reg reg;
2063 int change;
2064 int left, right, oleft, oright;
2065
2066 cmipci_sb_reg_decode(®, kcontrol->private_value);
2067 left = ucontrol->value.integer.value[0] & reg.mask;
2068 if (reg.invert)
2069 left = reg.mask - left;
2070 left <<= reg.left_shift;
2071 if (reg.stereo) {
2072 right = ucontrol->value.integer.value[1] & reg.mask;
2073 if (reg.invert)
2074 right = reg.mask - right;
2075 right <<= reg.right_shift;
2076 } else
2077 right = 0;
2078 spin_lock_irq(&cm->reg_lock);
2079 oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2080 left |= oleft & ~(reg.mask << reg.left_shift);
2081 change = left != oleft;
2082 if (reg.stereo) {
2083 if (reg.left_reg != reg.right_reg) {
2084 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2085 oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2086 } else
2087 oright = left;
2088 right |= oright & ~(reg.mask << reg.right_shift);
2089 change |= right != oright;
2090 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2091 } else
2092 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2093 spin_unlock_irq(&cm->reg_lock);
2094 return change;
2095 }
2096
2097
2098
2099
2100 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2101 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2102 .info = snd_cmipci_info_input_sw, \
2103 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2104 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2105 }
2106
2107 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2108 struct snd_ctl_elem_info *uinfo)
2109 {
2110 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2111 uinfo->count = 4;
2112 uinfo->value.integer.min = 0;
2113 uinfo->value.integer.max = 1;
2114 return 0;
2115 }
2116
2117 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2118 struct snd_ctl_elem_value *ucontrol)
2119 {
2120 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2121 struct cmipci_sb_reg reg;
2122 int val1, val2;
2123
2124 cmipci_sb_reg_decode(®, kcontrol->private_value);
2125 spin_lock_irq(&cm->reg_lock);
2126 val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2127 val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2128 spin_unlock_irq(&cm->reg_lock);
2129 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2130 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2131 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2132 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2133 return 0;
2134 }
2135
2136 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2137 struct snd_ctl_elem_value *ucontrol)
2138 {
2139 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2140 struct cmipci_sb_reg reg;
2141 int change;
2142 int val1, val2, oval1, oval2;
2143
2144 cmipci_sb_reg_decode(®, kcontrol->private_value);
2145 spin_lock_irq(&cm->reg_lock);
2146 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2147 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2148 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2150 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2151 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2152 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2153 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2154 change = val1 != oval1 || val2 != oval2;
2155 snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2156 snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2157 spin_unlock_irq(&cm->reg_lock);
2158 return change;
2159 }
2160
2161
2162
2163
2164
2165 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167 .info = snd_cmipci_info_native_mixer, \
2168 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2170 }
2171
2172 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174 .info = snd_cmipci_info_native_mixer, \
2175 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2177 }
2178
2179 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2180 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181 .info = snd_cmipci_info_native_mixer, \
2182 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2184 }
2185
2186 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2187 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188 .info = snd_cmipci_info_native_mixer, \
2189 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2191 }
2192
2193 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2194 struct snd_ctl_elem_info *uinfo)
2195 {
2196 struct cmipci_sb_reg reg;
2197
2198 cmipci_sb_reg_decode(®, kcontrol->private_value);
2199 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2200 uinfo->count = reg.stereo + 1;
2201 uinfo->value.integer.min = 0;
2202 uinfo->value.integer.max = reg.mask;
2203 return 0;
2204
2205 }
2206
2207 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2208 struct snd_ctl_elem_value *ucontrol)
2209 {
2210 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2211 struct cmipci_sb_reg reg;
2212 unsigned char oreg, val;
2213
2214 cmipci_sb_reg_decode(®, kcontrol->private_value);
2215 spin_lock_irq(&cm->reg_lock);
2216 oreg = inb(cm->iobase + reg.left_reg);
2217 val = (oreg >> reg.left_shift) & reg.mask;
2218 if (reg.invert)
2219 val = reg.mask - val;
2220 ucontrol->value.integer.value[0] = val;
2221 if (reg.stereo) {
2222 val = (oreg >> reg.right_shift) & reg.mask;
2223 if (reg.invert)
2224 val = reg.mask - val;
2225 ucontrol->value.integer.value[1] = val;
2226 }
2227 spin_unlock_irq(&cm->reg_lock);
2228 return 0;
2229 }
2230
2231 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2232 struct snd_ctl_elem_value *ucontrol)
2233 {
2234 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235 struct cmipci_sb_reg reg;
2236 unsigned char oreg, nreg, val;
2237
2238 cmipci_sb_reg_decode(®, kcontrol->private_value);
2239 spin_lock_irq(&cm->reg_lock);
2240 oreg = inb(cm->iobase + reg.left_reg);
2241 val = ucontrol->value.integer.value[0] & reg.mask;
2242 if (reg.invert)
2243 val = reg.mask - val;
2244 nreg = oreg & ~(reg.mask << reg.left_shift);
2245 nreg |= (val << reg.left_shift);
2246 if (reg.stereo) {
2247 val = ucontrol->value.integer.value[1] & reg.mask;
2248 if (reg.invert)
2249 val = reg.mask - val;
2250 nreg &= ~(reg.mask << reg.right_shift);
2251 nreg |= (val << reg.right_shift);
2252 }
2253 outb(nreg, cm->iobase + reg.left_reg);
2254 spin_unlock_irq(&cm->reg_lock);
2255 return (nreg != oreg);
2256 }
2257
2258
2259
2260
2261 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2262 struct snd_ctl_elem_value *ucontrol)
2263 {
2264
2265 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2266 }
2267
2268 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269 struct snd_ctl_elem_value *ucontrol)
2270 {
2271 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272 if (cm->mixer_insensitive) {
2273
2274 return 0;
2275 }
2276 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2277 }
2278
2279
2280 static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2281 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2282 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2283 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2284
2285 {
2286 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2287 .name = "PCM Playback Switch",
2288 .info = snd_cmipci_info_native_mixer,
2289 .get = snd_cmipci_get_native_mixer_sensitive,
2290 .put = snd_cmipci_put_native_mixer_sensitive,
2291 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2292 },
2293 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2294 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2295 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2296 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2297 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2298 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2299 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2300 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2301 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2302 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2303 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2304 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2305 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2306 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2307 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2308 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2309 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2310 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2311 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2312 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2313 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2314 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2315 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2316 };
2317
2318
2319
2320
2321
2322 struct cmipci_switch_args {
2323 int reg;
2324 unsigned int mask;
2325 unsigned int mask_on;
2326 unsigned int is_byte: 1;
2327 unsigned int ac3_sensitive: 1;
2328
2329
2330 };
2331
2332 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2333
2334 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335 struct snd_ctl_elem_value *ucontrol,
2336 struct cmipci_switch_args *args)
2337 {
2338 unsigned int val;
2339 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2340
2341 spin_lock_irq(&cm->reg_lock);
2342 if (args->ac3_sensitive && cm->mixer_insensitive) {
2343 ucontrol->value.integer.value[0] = 0;
2344 spin_unlock_irq(&cm->reg_lock);
2345 return 0;
2346 }
2347 if (args->is_byte)
2348 val = inb(cm->iobase + args->reg);
2349 else
2350 val = snd_cmipci_read(cm, args->reg);
2351 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2352 spin_unlock_irq(&cm->reg_lock);
2353 return 0;
2354 }
2355
2356 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2357 struct snd_ctl_elem_value *ucontrol)
2358 {
2359 struct cmipci_switch_args *args;
2360 args = (struct cmipci_switch_args *)kcontrol->private_value;
2361 if (snd_BUG_ON(!args))
2362 return -EINVAL;
2363 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2364 }
2365
2366 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2367 struct snd_ctl_elem_value *ucontrol,
2368 struct cmipci_switch_args *args)
2369 {
2370 unsigned int val;
2371 int change;
2372 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2373
2374 spin_lock_irq(&cm->reg_lock);
2375 if (args->ac3_sensitive && cm->mixer_insensitive) {
2376
2377 spin_unlock_irq(&cm->reg_lock);
2378 return 0;
2379 }
2380 if (args->is_byte)
2381 val = inb(cm->iobase + args->reg);
2382 else
2383 val = snd_cmipci_read(cm, args->reg);
2384 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2385 args->mask_on : (args->mask & ~args->mask_on));
2386 if (change) {
2387 val &= ~args->mask;
2388 if (ucontrol->value.integer.value[0])
2389 val |= args->mask_on;
2390 else
2391 val |= (args->mask & ~args->mask_on);
2392 if (args->is_byte)
2393 outb((unsigned char)val, cm->iobase + args->reg);
2394 else
2395 snd_cmipci_write(cm, args->reg, val);
2396 }
2397 spin_unlock_irq(&cm->reg_lock);
2398 return change;
2399 }
2400
2401 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2402 struct snd_ctl_elem_value *ucontrol)
2403 {
2404 struct cmipci_switch_args *args;
2405 args = (struct cmipci_switch_args *)kcontrol->private_value;
2406 if (snd_BUG_ON(!args))
2407 return -EINVAL;
2408 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2409 }
2410
2411 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2412 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2413 .reg = xreg, \
2414 .mask = xmask, \
2415 .mask_on = xmask_on, \
2416 .is_byte = xis_byte, \
2417 .ac3_sensitive = xac3, \
2418 }
2419
2420 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2421 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2422
2423 #if 0
2424 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2425 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2426 #endif
2427 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2428 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2429 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2430 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2431 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2432 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2433 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2434 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0);
2435
2436 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2437 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2438
2439 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2440 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2441 #if CM_CH_PLAY == 1
2442 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0);
2443 #else
2444 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2445 #endif
2446 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2447
2448
2449
2450 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2451
2452 #define DEFINE_SWITCH(sname, stype, sarg) \
2453 { .name = sname, \
2454 .iface = stype, \
2455 .info = snd_cmipci_uswitch_info, \
2456 .get = snd_cmipci_uswitch_get, \
2457 .put = snd_cmipci_uswitch_put, \
2458 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2459 }
2460
2461 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2462 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2463
2464
2465
2466
2467
2468
2469 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2470 struct snd_ctl_elem_value *ucontrol)
2471 {
2472 int changed;
2473 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2474 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2475 return changed;
2476 }
2477
2478 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2479 struct snd_ctl_elem_value *ucontrol)
2480 {
2481 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2482 int changed;
2483 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2484 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2485 if (changed) {
2486 if (ucontrol->value.integer.value[0]) {
2487 if (chip->spdif_playback_avail)
2488 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2489 } else {
2490 if (chip->spdif_playback_avail)
2491 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2492 }
2493 }
2494 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2495 return changed;
2496 }
2497
2498
2499 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2500 struct snd_ctl_elem_info *uinfo)
2501 {
2502 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2503 static const char *const texts[3] = {
2504 "Line-In", "Rear Output", "Bass Output"
2505 };
2506
2507 return snd_ctl_enum_info(uinfo, 1,
2508 cm->chip_version >= 39 ? 3 : 2, texts);
2509 }
2510
2511 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2512 {
2513 unsigned int val;
2514 if (cm->chip_version >= 39) {
2515 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2516 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2517 return 2;
2518 }
2519 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2520 if (val & CM_REAR2LIN)
2521 return 1;
2522 return 0;
2523 }
2524
2525 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2526 struct snd_ctl_elem_value *ucontrol)
2527 {
2528 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2529
2530 spin_lock_irq(&cm->reg_lock);
2531 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2532 spin_unlock_irq(&cm->reg_lock);
2533 return 0;
2534 }
2535
2536 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2537 struct snd_ctl_elem_value *ucontrol)
2538 {
2539 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2540 int change;
2541
2542 spin_lock_irq(&cm->reg_lock);
2543 if (ucontrol->value.enumerated.item[0] == 2)
2544 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2545 else
2546 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2547 if (ucontrol->value.enumerated.item[0] == 1)
2548 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2549 else
2550 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2551 spin_unlock_irq(&cm->reg_lock);
2552 return change;
2553 }
2554
2555 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2556 struct snd_ctl_elem_info *uinfo)
2557 {
2558 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2559
2560 return snd_ctl_enum_info(uinfo, 1, 2, texts);
2561 }
2562
2563 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2564 struct snd_ctl_elem_value *ucontrol)
2565 {
2566 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2567
2568 spin_lock_irq(&cm->reg_lock);
2569 ucontrol->value.enumerated.item[0] =
2570 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2571 spin_unlock_irq(&cm->reg_lock);
2572 return 0;
2573 }
2574
2575 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2576 struct snd_ctl_elem_value *ucontrol)
2577 {
2578 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2579 int change;
2580
2581 spin_lock_irq(&cm->reg_lock);
2582 if (ucontrol->value.enumerated.item[0])
2583 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2584 else
2585 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2586 spin_unlock_irq(&cm->reg_lock);
2587 return change;
2588 }
2589
2590
2591 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2592 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2593 {
2594 .name = "Line-In Mode",
2595 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2596 .info = snd_cmipci_line_in_mode_info,
2597 .get = snd_cmipci_line_in_mode_get,
2598 .put = snd_cmipci_line_in_mode_put,
2599 },
2600 };
2601
2602
2603 static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2604 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2605
2606
2607 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2608 #if 0
2609 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2610 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2611 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2612 #endif
2613
2614 { .name = "IEC958 Output Switch",
2615 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2616 .info = snd_cmipci_uswitch_info,
2617 .get = snd_cmipci_spdout_enable_get,
2618 .put = snd_cmipci_spdout_enable_put,
2619 },
2620 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2621 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2622 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2623
2624 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2625 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2626 };
2627
2628
2629 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2630 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2631 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2632 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2633 };
2634
2635
2636 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2637 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2638 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2639 {
2640 .name = "Mic-In Mode",
2641 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2642 .info = snd_cmipci_mic_in_mode_info,
2643 .get = snd_cmipci_mic_in_mode_get,
2644 .put = snd_cmipci_mic_in_mode_put,
2645 }
2646 };
2647
2648
2649 static struct snd_kcontrol_new snd_cmipci_modem_switch =
2650 DEFINE_CARD_SWITCH("Modem", modem);
2651
2652
2653 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2654 {
2655 struct snd_card *card;
2656 struct snd_kcontrol_new *sw;
2657 struct snd_kcontrol *kctl;
2658 unsigned int idx;
2659 int err;
2660
2661 if (snd_BUG_ON(!cm || !cm->card))
2662 return -EINVAL;
2663
2664 card = cm->card;
2665
2666 strcpy(card->mixername, "CMedia PCI");
2667
2668 spin_lock_irq(&cm->reg_lock);
2669 snd_cmipci_mixer_write(cm, 0x00, 0x00);
2670 spin_unlock_irq(&cm->reg_lock);
2671
2672 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2673 if (cm->chip_version == 68) {
2674 if (!strcmp(snd_cmipci_mixers[idx].name,
2675 "PCM Playback Volume"))
2676 continue;
2677 }
2678 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2679 return err;
2680 }
2681
2682
2683 sw = snd_cmipci_mixer_switches;
2684 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2685 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686 if (err < 0)
2687 return err;
2688 }
2689 if (! cm->can_multi_ch) {
2690 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2691 if (err < 0)
2692 return err;
2693 }
2694 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2695 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2696 sw = snd_cmipci_8738_mixer_switches;
2697 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2698 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699 if (err < 0)
2700 return err;
2701 }
2702 if (cm->can_ac3_hw) {
2703 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2704 return err;
2705 kctl->id.device = pcm_spdif_device;
2706 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2707 return err;
2708 kctl->id.device = pcm_spdif_device;
2709 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2710 return err;
2711 kctl->id.device = pcm_spdif_device;
2712 }
2713 if (cm->chip_version <= 37) {
2714 sw = snd_cmipci_old_mixer_switches;
2715 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2716 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717 if (err < 0)
2718 return err;
2719 }
2720 }
2721 }
2722 if (cm->chip_version >= 39) {
2723 sw = snd_cmipci_extra_mixer_switches;
2724 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2725 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2726 if (err < 0)
2727 return err;
2728 }
2729 }
2730
2731
2732
2733
2734
2735
2736 if (cm->chip_version < 39) {
2737 err = snd_ctl_add(cm->card,
2738 snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2739 if (err < 0)
2740 return err;
2741 }
2742
2743 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2744 struct snd_ctl_elem_id elem_id;
2745 struct snd_kcontrol *ctl;
2746 memset(&elem_id, 0, sizeof(elem_id));
2747 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2748 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2749 ctl = snd_ctl_find_id(cm->card, &elem_id);
2750 if (ctl)
2751 cm->mixer_res_ctl[idx] = ctl;
2752 }
2753
2754 return 0;
2755 }
2756
2757
2758
2759
2760
2761
2762 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2763 struct snd_info_buffer *buffer)
2764 {
2765 struct cmipci *cm = entry->private_data;
2766 int i, v;
2767
2768 snd_iprintf(buffer, "%s\n", cm->card->longname);
2769 for (i = 0; i < 0x94; i++) {
2770 if (i == 0x28)
2771 i = 0x90;
2772 v = inb(cm->iobase + i);
2773 if (i % 4 == 0)
2774 snd_iprintf(buffer, "\n%02x:", i);
2775 snd_iprintf(buffer, " %02x", v);
2776 }
2777 snd_iprintf(buffer, "\n");
2778 }
2779
2780 static void snd_cmipci_proc_init(struct cmipci *cm)
2781 {
2782 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2783 }
2784
2785 static const struct pci_device_id snd_cmipci_ids[] = {
2786 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2787 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2788 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2789 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2790 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2791 {0,},
2792 };
2793
2794
2795
2796
2797
2798
2799 static void query_chip(struct cmipci *cm)
2800 {
2801 unsigned int detect;
2802
2803
2804 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2805 if (! detect) {
2806
2807 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2808 switch (detect) {
2809 case 0:
2810 cm->chip_version = 33;
2811 if (cm->do_soft_ac3)
2812 cm->can_ac3_sw = 1;
2813 else
2814 cm->can_ac3_hw = 1;
2815 break;
2816 case CM_CHIP_037:
2817 cm->chip_version = 37;
2818 cm->can_ac3_hw = 1;
2819 break;
2820 default:
2821 cm->chip_version = 39;
2822 cm->can_ac3_hw = 1;
2823 break;
2824 }
2825 cm->max_channels = 2;
2826 } else {
2827 if (detect & CM_CHIP_039) {
2828 cm->chip_version = 39;
2829 if (detect & CM_CHIP_039_6CH)
2830 cm->max_channels = 6;
2831 else
2832 cm->max_channels = 4;
2833 } else if (detect & CM_CHIP_8768) {
2834 cm->chip_version = 68;
2835 cm->max_channels = 8;
2836 cm->can_96k = 1;
2837 } else {
2838 cm->chip_version = 55;
2839 cm->max_channels = 6;
2840 cm->can_96k = 1;
2841 }
2842 cm->can_ac3_hw = 1;
2843 cm->can_multi_ch = 1;
2844 }
2845 }
2846
2847 #ifdef SUPPORT_JOYSTICK
2848 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2849 {
2850 static int ports[] = { 0x201, 0x200, 0 };
2851 struct gameport *gp;
2852 struct resource *r = NULL;
2853 int i, io_port = 0;
2854
2855 if (joystick_port[dev] == 0)
2856 return -ENODEV;
2857
2858 if (joystick_port[dev] == 1) {
2859 for (i = 0; ports[i]; i++) {
2860 io_port = ports[i];
2861 r = request_region(io_port, 1, "CMIPCI gameport");
2862 if (r)
2863 break;
2864 }
2865 } else {
2866 io_port = joystick_port[dev];
2867 r = request_region(io_port, 1, "CMIPCI gameport");
2868 }
2869
2870 if (!r) {
2871 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2872 return -EBUSY;
2873 }
2874
2875 cm->gameport = gp = gameport_allocate_port();
2876 if (!gp) {
2877 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2878 release_and_free_resource(r);
2879 return -ENOMEM;
2880 }
2881 gameport_set_name(gp, "C-Media Gameport");
2882 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2883 gameport_set_dev_parent(gp, &cm->pci->dev);
2884 gp->io = io_port;
2885 gameport_set_port_data(gp, r);
2886
2887 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888
2889 gameport_register_port(cm->gameport);
2890
2891 return 0;
2892 }
2893
2894 static void snd_cmipci_free_gameport(struct cmipci *cm)
2895 {
2896 if (cm->gameport) {
2897 struct resource *r = gameport_get_port_data(cm->gameport);
2898
2899 gameport_unregister_port(cm->gameport);
2900 cm->gameport = NULL;
2901
2902 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903 release_and_free_resource(r);
2904 }
2905 }
2906 #else
2907 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2908 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2909 #endif
2910
2911 static int snd_cmipci_free(struct cmipci *cm)
2912 {
2913 if (cm->irq >= 0) {
2914 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2915 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2916 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
2917 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2918 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2919 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);
2920 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2921
2922
2923 snd_cmipci_mixer_write(cm, 0, 0);
2924
2925 free_irq(cm->irq, cm);
2926 }
2927
2928 snd_cmipci_free_gameport(cm);
2929 pci_release_regions(cm->pci);
2930 pci_disable_device(cm->pci);
2931 kfree(cm);
2932 return 0;
2933 }
2934
2935 static int snd_cmipci_dev_free(struct snd_device *device)
2936 {
2937 struct cmipci *cm = device->device_data;
2938 return snd_cmipci_free(cm);
2939 }
2940
2941 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2942 {
2943 long iosynth;
2944 unsigned int val;
2945 struct snd_opl3 *opl3;
2946 int err;
2947
2948 if (!fm_port)
2949 goto disable_fm;
2950
2951 if (cm->chip_version >= 39) {
2952
2953 iosynth = cm->iobase + CM_REG_FM_PCI;
2954 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955 OPL3_HW_OPL3, 1, &opl3);
2956 } else {
2957 err = -EIO;
2958 }
2959 if (err < 0) {
2960
2961 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2962 iosynth = fm_port;
2963 switch (iosynth) {
2964 case 0x3E8: val |= CM_FMSEL_3E8; break;
2965 case 0x3E0: val |= CM_FMSEL_3E0; break;
2966 case 0x3C8: val |= CM_FMSEL_3C8; break;
2967 case 0x388: val |= CM_FMSEL_388; break;
2968 default:
2969 goto disable_fm;
2970 }
2971 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2972
2973 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2974
2975 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976 OPL3_HW_OPL3, 0, &opl3) < 0) {
2977 dev_err(cm->card->dev,
2978 "no OPL device at %#lx, skipping...\n",
2979 iosynth);
2980 goto disable_fm;
2981 }
2982 }
2983 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2984 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2985 return err;
2986 }
2987 return 0;
2988
2989 disable_fm:
2990 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2991 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2992 return 0;
2993 }
2994
2995 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2996 int dev, struct cmipci **rcmipci)
2997 {
2998 struct cmipci *cm;
2999 int err;
3000 static struct snd_device_ops ops = {
3001 .dev_free = snd_cmipci_dev_free,
3002 };
3003 unsigned int val;
3004 long iomidi = 0;
3005 int integrated_midi = 0;
3006 char modelstr[16];
3007 int pcm_index, pcm_spdif_index;
3008 static const struct pci_device_id intel_82437vx[] = {
3009 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3010 { },
3011 };
3012
3013 *rcmipci = NULL;
3014
3015 if ((err = pci_enable_device(pci)) < 0)
3016 return err;
3017
3018 cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3019 if (cm == NULL) {
3020 pci_disable_device(pci);
3021 return -ENOMEM;
3022 }
3023
3024 spin_lock_init(&cm->reg_lock);
3025 mutex_init(&cm->open_mutex);
3026 cm->device = pci->device;
3027 cm->card = card;
3028 cm->pci = pci;
3029 cm->irq = -1;
3030 cm->channel[0].ch = 0;
3031 cm->channel[1].ch = 1;
3032 cm->channel[0].is_dac = cm->channel[1].is_dac = 1;
3033
3034 if ((err = pci_request_regions(pci, card->driver)) < 0) {
3035 kfree(cm);
3036 pci_disable_device(pci);
3037 return err;
3038 }
3039 cm->iobase = pci_resource_start(pci, 0);
3040
3041 if (request_irq(pci->irq, snd_cmipci_interrupt,
3042 IRQF_SHARED, KBUILD_MODNAME, cm)) {
3043 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3044 snd_cmipci_free(cm);
3045 return -EBUSY;
3046 }
3047 cm->irq = pci->irq;
3048
3049 pci_set_master(cm->pci);
3050
3051
3052
3053
3054
3055 cm->chip_version = 0;
3056 cm->max_channels = 2;
3057 cm->do_soft_ac3 = soft_ac3[dev];
3058
3059 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3060 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3061 query_chip(cm);
3062
3063 if (cm->can_multi_ch)
3064 sprintf(cm->card->driver + strlen(cm->card->driver),
3065 "-MC%d", cm->max_channels);
3066 else if (cm->can_ac3_sw)
3067 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3068
3069 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3070 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3071
3072 #if CM_CH_PLAY == 1
3073 cm->ctrl = CM_CHADC0;
3074 #else
3075 cm->ctrl = CM_CHADC1;
3076 #endif
3077
3078
3079 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3080 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3081 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3082 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3083 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3084 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);
3085 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3086
3087 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3088 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3089 #if CM_CH_PLAY == 1
3090 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091 #else
3092 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3093 #endif
3094 if (cm->chip_version) {
3095 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20);
3096 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09);
3097 }
3098
3099 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3100
3101
3102 switch (pci->device) {
3103 case PCI_DEVICE_ID_CMEDIA_CM8738:
3104 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3105 if (!pci_dev_present(intel_82437vx))
3106 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3107 break;
3108 default:
3109 break;
3110 }
3111
3112 if (cm->chip_version < 68) {
3113 val = pci->device < 0x110 ? 8338 : 8738;
3114 } else {
3115 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3116 case 0:
3117 val = 8769;
3118 break;
3119 case 2:
3120 val = 8762;
3121 break;
3122 default:
3123 switch ((pci->subsystem_vendor << 16) |
3124 pci->subsystem_device) {
3125 case 0x13f69761:
3126 case 0x584d3741:
3127 case 0x584d3751:
3128 case 0x584d3761:
3129 case 0x584d3771:
3130 case 0x72848384:
3131 val = 8770;
3132 break;
3133 default:
3134 val = 8768;
3135 break;
3136 }
3137 }
3138 }
3139 sprintf(card->shortname, "C-Media CMI%d", val);
3140 if (cm->chip_version < 68)
3141 sprintf(modelstr, " (model %d)", cm->chip_version);
3142 else
3143 modelstr[0] = '\0';
3144 sprintf(card->longname, "%s%s at %#lx, irq %i",
3145 card->shortname, modelstr, cm->iobase, cm->irq);
3146
3147 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3148 snd_cmipci_free(cm);
3149 return err;
3150 }
3151
3152 if (cm->chip_version >= 39) {
3153 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3154 if (val != 0x00 && val != 0xff) {
3155 iomidi = cm->iobase + CM_REG_MPU_PCI;
3156 integrated_midi = 1;
3157 }
3158 }
3159 if (!integrated_midi) {
3160 val = 0;
3161 iomidi = mpu_port[dev];
3162 switch (iomidi) {
3163 case 0x320: val = CM_VMPU_320; break;
3164 case 0x310: val = CM_VMPU_310; break;
3165 case 0x300: val = CM_VMPU_300; break;
3166 case 0x330: val = CM_VMPU_330; break;
3167 default:
3168 iomidi = 0; break;
3169 }
3170 if (iomidi > 0) {
3171 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172
3173 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174 if (inb(iomidi + 1) == 0xff) {
3175 dev_err(cm->card->dev,
3176 "cannot enable MPU-401 port at %#lx\n",
3177 iomidi);
3178 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179 CM_UART_EN);
3180 iomidi = 0;
3181 }
3182 }
3183 }
3184
3185 if (cm->chip_version < 68) {
3186 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187 if (err < 0)
3188 return err;
3189 }
3190
3191
3192 snd_cmipci_mixer_write(cm, 0, 0);
3193
3194 snd_cmipci_proc_init(cm);
3195
3196
3197 pcm_index = pcm_spdif_index = 0;
3198 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3199 return err;
3200 pcm_index++;
3201 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3202 return err;
3203 pcm_index++;
3204 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3205 pcm_spdif_index = pcm_index;
3206 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3207 return err;
3208 }
3209
3210
3211 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3212 return err;
3213
3214 if (iomidi > 0) {
3215 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3216 iomidi,
3217 (integrated_midi ?
3218 MPU401_INFO_INTEGRATED : 0) |
3219 MPU401_INFO_IRQ_HOOK,
3220 -1, &cm->rmidi)) < 0) {
3221 dev_err(cm->card->dev,
3222 "no UART401 device at 0x%lx\n", iomidi);
3223 }
3224 }
3225
3226 #ifdef USE_VAR48KRATE
3227 for (val = 0; val < ARRAY_SIZE(rates); val++)
3228 snd_cmipci_set_pll(cm, rates[val], val);
3229
3230
3231
3232
3233 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3234 #endif
3235
3236 if (snd_cmipci_create_gameport(cm, dev) < 0)
3237 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3238
3239 *rcmipci = cm;
3240 return 0;
3241 }
3242
3243
3244
3245
3246 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3247
3248 static int snd_cmipci_probe(struct pci_dev *pci,
3249 const struct pci_device_id *pci_id)
3250 {
3251 static int dev;
3252 struct snd_card *card;
3253 struct cmipci *cm;
3254 int err;
3255
3256 if (dev >= SNDRV_CARDS)
3257 return -ENODEV;
3258 if (! enable[dev]) {
3259 dev++;
3260 return -ENOENT;
3261 }
3262
3263 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3264 0, &card);
3265 if (err < 0)
3266 return err;
3267
3268 switch (pci->device) {
3269 case PCI_DEVICE_ID_CMEDIA_CM8738:
3270 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3271 strcpy(card->driver, "CMI8738");
3272 break;
3273 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3274 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3275 strcpy(card->driver, "CMI8338");
3276 break;
3277 default:
3278 strcpy(card->driver, "CMIPCI");
3279 break;
3280 }
3281
3282 err = snd_cmipci_create(card, pci, dev, &cm);
3283 if (err < 0)
3284 goto free_card;
3285
3286 card->private_data = cm;
3287
3288 err = snd_card_register(card);
3289 if (err < 0)
3290 goto free_card;
3291
3292 pci_set_drvdata(pci, card);
3293 dev++;
3294 return 0;
3295
3296 free_card:
3297 snd_card_free(card);
3298 return err;
3299 }
3300
3301 static void snd_cmipci_remove(struct pci_dev *pci)
3302 {
3303 snd_card_free(pci_get_drvdata(pci));
3304 }
3305
3306
3307 #ifdef CONFIG_PM_SLEEP
3308
3309
3310
3311 static unsigned char saved_regs[] = {
3312 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3313 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3314 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3315 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3316 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3317 };
3318
3319 static unsigned char saved_mixers[] = {
3320 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3321 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3322 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3323 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3324 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3325 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3326 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3327 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3328 };
3329
3330 static int snd_cmipci_suspend(struct device *dev)
3331 {
3332 struct snd_card *card = dev_get_drvdata(dev);
3333 struct cmipci *cm = card->private_data;
3334 int i;
3335
3336 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3337
3338
3339 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3340 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3341 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3342 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3343
3344
3345 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3346 return 0;
3347 }
3348
3349 static int snd_cmipci_resume(struct device *dev)
3350 {
3351 struct snd_card *card = dev_get_drvdata(dev);
3352 struct cmipci *cm = card->private_data;
3353 int i;
3354
3355
3356 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3357 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3358 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3359 snd_cmipci_mixer_write(cm, 0, 0);
3360
3361
3362 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3363 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3364 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3365 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3366
3367 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3368 return 0;
3369 }
3370
3371 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3372 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm
3373 #else
3374 #define SND_CMIPCI_PM_OPS NULL
3375 #endif
3376
3377 static struct pci_driver cmipci_driver = {
3378 .name = KBUILD_MODNAME,
3379 .id_table = snd_cmipci_ids,
3380 .probe = snd_cmipci_probe,
3381 .remove = snd_cmipci_remove,
3382 .driver = {
3383 .pm = SND_CMIPCI_PM_OPS,
3384 },
3385 };
3386
3387 module_pci_driver(cmipci_driver);