This source file includes following definitions.
- snd_wm8766_write
- snd_wm8766_init
- snd_wm8766_resume
- snd_wm8766_set_if
- snd_wm8766_volume_restore
- snd_wm8766_volume_info
- snd_wm8766_enum_info
- snd_wm8766_ctl_get
- snd_wm8766_ctl_put
- snd_wm8766_add_control
- snd_wm8766_build_controls
1
2
3
4
5
6
7
8
9
10 #include <linux/delay.h>
11 #include <sound/core.h>
12 #include <sound/control.h>
13 #include <sound/tlv.h>
14 #include "wm8766.h"
15
16
17
18 static void snd_wm8766_write(struct snd_wm8766 *wm, u16 addr, u16 data)
19 {
20 if (addr < WM8766_REG_COUNT)
21 wm->regs[addr] = data;
22 wm->ops.write(wm, addr, data);
23 }
24
25
26
27 static const DECLARE_TLV_DB_SCALE(wm8766_tlv, -12750, 50, 1);
28
29 static struct snd_wm8766_ctl snd_wm8766_default_ctl[WM8766_CTL_COUNT] = {
30 [WM8766_CTL_CH1_VOL] = {
31 .name = "Channel 1 Playback Volume",
32 .type = SNDRV_CTL_ELEM_TYPE_INTEGER,
33 .tlv = wm8766_tlv,
34 .reg1 = WM8766_REG_DACL1,
35 .reg2 = WM8766_REG_DACR1,
36 .mask1 = WM8766_VOL_MASK,
37 .mask2 = WM8766_VOL_MASK,
38 .max = 0xff,
39 .flags = WM8766_FLAG_STEREO | WM8766_FLAG_VOL_UPDATE,
40 },
41 [WM8766_CTL_CH2_VOL] = {
42 .name = "Channel 2 Playback Volume",
43 .type = SNDRV_CTL_ELEM_TYPE_INTEGER,
44 .tlv = wm8766_tlv,
45 .reg1 = WM8766_REG_DACL2,
46 .reg2 = WM8766_REG_DACR2,
47 .mask1 = WM8766_VOL_MASK,
48 .mask2 = WM8766_VOL_MASK,
49 .max = 0xff,
50 .flags = WM8766_FLAG_STEREO | WM8766_FLAG_VOL_UPDATE,
51 },
52 [WM8766_CTL_CH3_VOL] = {
53 .name = "Channel 3 Playback Volume",
54 .type = SNDRV_CTL_ELEM_TYPE_INTEGER,
55 .tlv = wm8766_tlv,
56 .reg1 = WM8766_REG_DACL3,
57 .reg2 = WM8766_REG_DACR3,
58 .mask1 = WM8766_VOL_MASK,
59 .mask2 = WM8766_VOL_MASK,
60 .max = 0xff,
61 .flags = WM8766_FLAG_STEREO | WM8766_FLAG_VOL_UPDATE,
62 },
63 [WM8766_CTL_CH1_SW] = {
64 .name = "Channel 1 Playback Switch",
65 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
66 .reg1 = WM8766_REG_DACCTRL2,
67 .mask1 = WM8766_DAC2_MUTE1,
68 .flags = WM8766_FLAG_INVERT,
69 },
70 [WM8766_CTL_CH2_SW] = {
71 .name = "Channel 2 Playback Switch",
72 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
73 .reg1 = WM8766_REG_DACCTRL2,
74 .mask1 = WM8766_DAC2_MUTE2,
75 .flags = WM8766_FLAG_INVERT,
76 },
77 [WM8766_CTL_CH3_SW] = {
78 .name = "Channel 3 Playback Switch",
79 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
80 .reg1 = WM8766_REG_DACCTRL2,
81 .mask1 = WM8766_DAC2_MUTE3,
82 .flags = WM8766_FLAG_INVERT,
83 },
84 [WM8766_CTL_PHASE1_SW] = {
85 .name = "Channel 1 Phase Invert Playback Switch",
86 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
87 .reg1 = WM8766_REG_IFCTRL,
88 .mask1 = WM8766_PHASE_INVERT1,
89 },
90 [WM8766_CTL_PHASE2_SW] = {
91 .name = "Channel 2 Phase Invert Playback Switch",
92 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
93 .reg1 = WM8766_REG_IFCTRL,
94 .mask1 = WM8766_PHASE_INVERT2,
95 },
96 [WM8766_CTL_PHASE3_SW] = {
97 .name = "Channel 3 Phase Invert Playback Switch",
98 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
99 .reg1 = WM8766_REG_IFCTRL,
100 .mask1 = WM8766_PHASE_INVERT3,
101 },
102 [WM8766_CTL_DEEMPH1_SW] = {
103 .name = "Channel 1 Deemphasis Playback Switch",
104 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
105 .reg1 = WM8766_REG_DACCTRL2,
106 .mask1 = WM8766_DAC2_DEEMP1,
107 },
108 [WM8766_CTL_DEEMPH2_SW] = {
109 .name = "Channel 2 Deemphasis Playback Switch",
110 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
111 .reg1 = WM8766_REG_DACCTRL2,
112 .mask1 = WM8766_DAC2_DEEMP2,
113 },
114 [WM8766_CTL_DEEMPH3_SW] = {
115 .name = "Channel 3 Deemphasis Playback Switch",
116 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
117 .reg1 = WM8766_REG_DACCTRL2,
118 .mask1 = WM8766_DAC2_DEEMP3,
119 },
120 [WM8766_CTL_IZD_SW] = {
121 .name = "Infinite Zero Detect Playback Switch",
122 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
123 .reg1 = WM8766_REG_DACCTRL1,
124 .mask1 = WM8766_DAC_IZD,
125 },
126 [WM8766_CTL_ZC_SW] = {
127 .name = "Zero Cross Detect Playback Switch",
128 .type = SNDRV_CTL_ELEM_TYPE_BOOLEAN,
129 .reg1 = WM8766_REG_DACCTRL2,
130 .mask1 = WM8766_DAC2_ZCD,
131 .flags = WM8766_FLAG_INVERT,
132 },
133 };
134
135
136
137 void snd_wm8766_init(struct snd_wm8766 *wm)
138 {
139 int i;
140 static const u16 default_values[] = {
141 0x000, 0x100,
142 0x120, 0x000,
143 0x000, 0x100, 0x000, 0x100, 0x000,
144 0x000, 0x080,
145 };
146
147 memcpy(wm->ctl, snd_wm8766_default_ctl, sizeof(wm->ctl));
148
149 snd_wm8766_write(wm, WM8766_REG_RESET, 0x00);
150 udelay(10);
151
152 for (i = 0; i < ARRAY_SIZE(default_values); i++)
153 snd_wm8766_write(wm, i, default_values[i]);
154 }
155
156 void snd_wm8766_resume(struct snd_wm8766 *wm)
157 {
158 int i;
159
160 for (i = 0; i < WM8766_REG_COUNT; i++)
161 snd_wm8766_write(wm, i, wm->regs[i]);
162 }
163
164 void snd_wm8766_set_if(struct snd_wm8766 *wm, u16 dac)
165 {
166 u16 val = wm->regs[WM8766_REG_IFCTRL] & ~WM8766_IF_MASK;
167
168 dac &= WM8766_IF_MASK;
169 snd_wm8766_write(wm, WM8766_REG_IFCTRL, val | dac);
170 }
171
172 void snd_wm8766_volume_restore(struct snd_wm8766 *wm)
173 {
174 u16 val = wm->regs[WM8766_REG_DACR1];
175
176 snd_wm8766_write(wm, WM8766_REG_DACR1, val | WM8766_VOL_UPDATE);
177 }
178
179
180
181 static int snd_wm8766_volume_info(struct snd_kcontrol *kcontrol,
182 struct snd_ctl_elem_info *uinfo)
183 {
184 struct snd_wm8766 *wm = snd_kcontrol_chip(kcontrol);
185 int n = kcontrol->private_value;
186
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
188 uinfo->count = (wm->ctl[n].flags & WM8766_FLAG_STEREO) ? 2 : 1;
189 uinfo->value.integer.min = wm->ctl[n].min;
190 uinfo->value.integer.max = wm->ctl[n].max;
191
192 return 0;
193 }
194
195 static int snd_wm8766_enum_info(struct snd_kcontrol *kcontrol,
196 struct snd_ctl_elem_info *uinfo)
197 {
198 struct snd_wm8766 *wm = snd_kcontrol_chip(kcontrol);
199 int n = kcontrol->private_value;
200
201 return snd_ctl_enum_info(uinfo, 1, wm->ctl[n].max,
202 wm->ctl[n].enum_names);
203 }
204
205 static int snd_wm8766_ctl_get(struct snd_kcontrol *kcontrol,
206 struct snd_ctl_elem_value *ucontrol)
207 {
208 struct snd_wm8766 *wm = snd_kcontrol_chip(kcontrol);
209 int n = kcontrol->private_value;
210 u16 val1, val2;
211
212 if (wm->ctl[n].get)
213 wm->ctl[n].get(wm, &val1, &val2);
214 else {
215 val1 = wm->regs[wm->ctl[n].reg1] & wm->ctl[n].mask1;
216 val1 >>= __ffs(wm->ctl[n].mask1);
217 if (wm->ctl[n].flags & WM8766_FLAG_STEREO) {
218 val2 = wm->regs[wm->ctl[n].reg2] & wm->ctl[n].mask2;
219 val2 >>= __ffs(wm->ctl[n].mask2);
220 if (wm->ctl[n].flags & WM8766_FLAG_VOL_UPDATE)
221 val2 &= ~WM8766_VOL_UPDATE;
222 }
223 }
224 if (wm->ctl[n].flags & WM8766_FLAG_INVERT) {
225 val1 = wm->ctl[n].max - (val1 - wm->ctl[n].min);
226 if (wm->ctl[n].flags & WM8766_FLAG_STEREO)
227 val2 = wm->ctl[n].max - (val2 - wm->ctl[n].min);
228 }
229 ucontrol->value.integer.value[0] = val1;
230 if (wm->ctl[n].flags & WM8766_FLAG_STEREO)
231 ucontrol->value.integer.value[1] = val2;
232
233 return 0;
234 }
235
236 static int snd_wm8766_ctl_put(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238 {
239 struct snd_wm8766 *wm = snd_kcontrol_chip(kcontrol);
240 int n = kcontrol->private_value;
241 u16 val, regval1, regval2;
242
243
244 regval1 = ucontrol->value.integer.value[0];
245 regval2 = ucontrol->value.integer.value[1];
246 if (wm->ctl[n].flags & WM8766_FLAG_INVERT) {
247 regval1 = wm->ctl[n].max - (regval1 - wm->ctl[n].min);
248 regval2 = wm->ctl[n].max - (regval2 - wm->ctl[n].min);
249 }
250 if (wm->ctl[n].set)
251 wm->ctl[n].set(wm, regval1, regval2);
252 else {
253 val = wm->regs[wm->ctl[n].reg1] & ~wm->ctl[n].mask1;
254 val |= regval1 << __ffs(wm->ctl[n].mask1);
255
256 if (wm->ctl[n].flags & WM8766_FLAG_STEREO &&
257 wm->ctl[n].reg1 == wm->ctl[n].reg2) {
258 val &= ~wm->ctl[n].mask2;
259 val |= regval2 << __ffs(wm->ctl[n].mask2);
260 }
261 snd_wm8766_write(wm, wm->ctl[n].reg1, val);
262
263 if (wm->ctl[n].flags & WM8766_FLAG_STEREO &&
264 wm->ctl[n].reg1 != wm->ctl[n].reg2) {
265 val = wm->regs[wm->ctl[n].reg2] & ~wm->ctl[n].mask2;
266 val |= regval2 << __ffs(wm->ctl[n].mask2);
267 if (wm->ctl[n].flags & WM8766_FLAG_VOL_UPDATE)
268 val |= WM8766_VOL_UPDATE;
269 snd_wm8766_write(wm, wm->ctl[n].reg2, val);
270 }
271 }
272
273 return 0;
274 }
275
276 static int snd_wm8766_add_control(struct snd_wm8766 *wm, int num)
277 {
278 struct snd_kcontrol_new cont;
279 struct snd_kcontrol *ctl;
280
281 memset(&cont, 0, sizeof(cont));
282 cont.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
283 cont.private_value = num;
284 cont.name = wm->ctl[num].name;
285 cont.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
286 if (wm->ctl[num].flags & WM8766_FLAG_LIM ||
287 wm->ctl[num].flags & WM8766_FLAG_ALC)
288 cont.access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
289 cont.tlv.p = NULL;
290 cont.get = snd_wm8766_ctl_get;
291 cont.put = snd_wm8766_ctl_put;
292
293 switch (wm->ctl[num].type) {
294 case SNDRV_CTL_ELEM_TYPE_INTEGER:
295 cont.info = snd_wm8766_volume_info;
296 cont.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
297 cont.tlv.p = wm->ctl[num].tlv;
298 break;
299 case SNDRV_CTL_ELEM_TYPE_BOOLEAN:
300 wm->ctl[num].max = 1;
301 if (wm->ctl[num].flags & WM8766_FLAG_STEREO)
302 cont.info = snd_ctl_boolean_stereo_info;
303 else
304 cont.info = snd_ctl_boolean_mono_info;
305 break;
306 case SNDRV_CTL_ELEM_TYPE_ENUMERATED:
307 cont.info = snd_wm8766_enum_info;
308 break;
309 default:
310 return -EINVAL;
311 }
312 ctl = snd_ctl_new1(&cont, wm);
313 if (!ctl)
314 return -ENOMEM;
315 wm->ctl[num].kctl = ctl;
316
317 return snd_ctl_add(wm->card, ctl);
318 }
319
320 int snd_wm8766_build_controls(struct snd_wm8766 *wm)
321 {
322 int err, i;
323
324 for (i = 0; i < WM8766_CTL_COUNT; i++)
325 if (wm->ctl[i].name) {
326 err = snd_wm8766_add_control(wm, i);
327 if (err < 0)
328 return err;
329 }
330
331 return 0;
332 }