root/sound/pci/ymfpci/ymfpci_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_ymfpci_readb
  2. snd_ymfpci_writeb
  3. snd_ymfpci_readw
  4. snd_ymfpci_writew
  5. snd_ymfpci_readl
  6. snd_ymfpci_writel
  7. snd_ymfpci_codec_ready
  8. snd_ymfpci_codec_write
  9. snd_ymfpci_codec_read
  10. snd_ymfpci_calc_delta
  11. snd_ymfpci_calc_lpfK
  12. snd_ymfpci_calc_lpfQ
  13. snd_ymfpci_hw_start
  14. snd_ymfpci_hw_stop
  15. voice_alloc
  16. snd_ymfpci_voice_alloc
  17. snd_ymfpci_voice_free
  18. snd_ymfpci_pcm_interrupt
  19. snd_ymfpci_pcm_capture_interrupt
  20. snd_ymfpci_playback_trigger
  21. snd_ymfpci_capture_trigger
  22. snd_ymfpci_pcm_voice_alloc
  23. snd_ymfpci_pcm_init_voice
  24. snd_ymfpci_ac3_init
  25. snd_ymfpci_ac3_done
  26. snd_ymfpci_playback_hw_params
  27. snd_ymfpci_playback_hw_free
  28. snd_ymfpci_playback_prepare
  29. snd_ymfpci_capture_hw_params
  30. snd_ymfpci_capture_hw_free
  31. snd_ymfpci_capture_prepare
  32. snd_ymfpci_playback_pointer
  33. snd_ymfpci_capture_pointer
  34. snd_ymfpci_irq_wait
  35. snd_ymfpci_interrupt
  36. snd_ymfpci_pcm_free_substream
  37. snd_ymfpci_playback_open_1
  38. ymfpci_open_extension
  39. ymfpci_close_extension
  40. snd_ymfpci_playback_open
  41. snd_ymfpci_playback_spdif_open
  42. snd_ymfpci_playback_4ch_open
  43. snd_ymfpci_capture_open
  44. snd_ymfpci_capture_rec_open
  45. snd_ymfpci_capture_ac97_open
  46. snd_ymfpci_playback_close_1
  47. snd_ymfpci_playback_close
  48. snd_ymfpci_playback_spdif_close
  49. snd_ymfpci_playback_4ch_close
  50. snd_ymfpci_capture_close
  51. snd_ymfpci_pcm
  52. snd_ymfpci_pcm2
  53. snd_ymfpci_pcm_spdif
  54. snd_ymfpci_pcm_4ch
  55. snd_ymfpci_spdif_default_info
  56. snd_ymfpci_spdif_default_get
  57. snd_ymfpci_spdif_default_put
  58. snd_ymfpci_spdif_mask_info
  59. snd_ymfpci_spdif_mask_get
  60. snd_ymfpci_spdif_stream_info
  61. snd_ymfpci_spdif_stream_get
  62. snd_ymfpci_spdif_stream_put
  63. snd_ymfpci_drec_source_info
  64. snd_ymfpci_drec_source_get
  65. snd_ymfpci_drec_source_put
  66. snd_ymfpci_get_single
  67. snd_ymfpci_put_single
  68. snd_ymfpci_info_double
  69. snd_ymfpci_get_double
  70. snd_ymfpci_put_double
  71. snd_ymfpci_put_nativedacvol
  72. snd_ymfpci_get_dup4ch
  73. snd_ymfpci_put_dup4ch
  74. snd_ymfpci_get_gpio_out
  75. snd_ymfpci_set_gpio_out
  76. snd_ymfpci_gpio_sw_get
  77. snd_ymfpci_gpio_sw_put
  78. snd_ymfpci_pcm_vol_info
  79. snd_ymfpci_pcm_vol_get
  80. snd_ymfpci_pcm_vol_put
  81. snd_ymfpci_mixer_free_ac97_bus
  82. snd_ymfpci_mixer_free_ac97
  83. snd_ymfpci_mixer
  84. snd_ymfpci_timer_start
  85. snd_ymfpci_timer_stop
  86. snd_ymfpci_timer_precise_resolution
  87. snd_ymfpci_timer
  88. snd_ymfpci_proc_read
  89. snd_ymfpci_proc_init
  90. snd_ymfpci_aclink_reset
  91. snd_ymfpci_enable_dsp
  92. snd_ymfpci_disable_dsp
  93. snd_ymfpci_request_firmware
  94. snd_ymfpci_download_image
  95. snd_ymfpci_memalloc
  96. snd_ymfpci_free
  97. snd_ymfpci_dev_free
  98. snd_ymfpci_suspend
  99. snd_ymfpci_resume
  100. snd_ymfpci_create

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   4  *  Routines for control of YMF724/740/744/754 chips
   5  */
   6 
   7 #include <linux/delay.h>
   8 #include <linux/firmware.h>
   9 #include <linux/init.h>
  10 #include <linux/interrupt.h>
  11 #include <linux/pci.h>
  12 #include <linux/sched.h>
  13 #include <linux/slab.h>
  14 #include <linux/mutex.h>
  15 #include <linux/module.h>
  16 #include <linux/io.h>
  17 
  18 #include <sound/core.h>
  19 #include <sound/control.h>
  20 #include <sound/info.h>
  21 #include <sound/tlv.h>
  22 #include "ymfpci.h"
  23 #include <sound/asoundef.h>
  24 #include <sound/mpu401.h>
  25 
  26 #include <asm/byteorder.h>
  27 
  28 /*
  29  *  common I/O routines
  30  */
  31 
  32 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
  33 
  34 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
  35 {
  36         return readb(chip->reg_area_virt + offset);
  37 }
  38 
  39 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
  40 {
  41         writeb(val, chip->reg_area_virt + offset);
  42 }
  43 
  44 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
  45 {
  46         return readw(chip->reg_area_virt + offset);
  47 }
  48 
  49 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
  50 {
  51         writew(val, chip->reg_area_virt + offset);
  52 }
  53 
  54 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
  55 {
  56         return readl(chip->reg_area_virt + offset);
  57 }
  58 
  59 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
  60 {
  61         writel(val, chip->reg_area_virt + offset);
  62 }
  63 
  64 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
  65 {
  66         unsigned long end_time;
  67         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
  68         
  69         end_time = jiffies + msecs_to_jiffies(750);
  70         do {
  71                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
  72                         return 0;
  73                 schedule_timeout_uninterruptible(1);
  74         } while (time_before(jiffies, end_time));
  75         dev_err(chip->card->dev,
  76                 "codec_ready: codec %i is not ready [0x%x]\n",
  77                 secondary, snd_ymfpci_readw(chip, reg));
  78         return -EBUSY;
  79 }
  80 
  81 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
  82 {
  83         struct snd_ymfpci *chip = ac97->private_data;
  84         u32 cmd;
  85         
  86         snd_ymfpci_codec_ready(chip, 0);
  87         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
  88         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
  89 }
  90 
  91 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
  92 {
  93         struct snd_ymfpci *chip = ac97->private_data;
  94 
  95         if (snd_ymfpci_codec_ready(chip, 0))
  96                 return ~0;
  97         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
  98         if (snd_ymfpci_codec_ready(chip, 0))
  99                 return ~0;
 100         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
 101                 int i;
 102                 for (i = 0; i < 600; i++)
 103                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
 104         }
 105         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
 106 }
 107 
 108 /*
 109  *  Misc routines
 110  */
 111 
 112 static u32 snd_ymfpci_calc_delta(u32 rate)
 113 {
 114         switch (rate) {
 115         case 8000:      return 0x02aaab00;
 116         case 11025:     return 0x03accd00;
 117         case 16000:     return 0x05555500;
 118         case 22050:     return 0x07599a00;
 119         case 32000:     return 0x0aaaab00;
 120         case 44100:     return 0x0eb33300;
 121         default:        return ((rate << 16) / 375) << 5;
 122         }
 123 }
 124 
 125 static u32 def_rate[8] = {
 126         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
 127 };
 128 
 129 static u32 snd_ymfpci_calc_lpfK(u32 rate)
 130 {
 131         u32 i;
 132         static u32 val[8] = {
 133                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
 134                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
 135         };
 136         
 137         if (rate == 44100)
 138                 return 0x40000000;      /* FIXME: What's the right value? */
 139         for (i = 0; i < 8; i++)
 140                 if (rate <= def_rate[i])
 141                         return val[i];
 142         return val[0];
 143 }
 144 
 145 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
 146 {
 147         u32 i;
 148         static u32 val[8] = {
 149                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
 150                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
 151         };
 152         
 153         if (rate == 44100)
 154                 return 0x370A0000;
 155         for (i = 0; i < 8; i++)
 156                 if (rate <= def_rate[i])
 157                         return val[i];
 158         return val[0];
 159 }
 160 
 161 /*
 162  *  Hardware start management
 163  */
 164 
 165 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
 166 {
 167         unsigned long flags;
 168 
 169         spin_lock_irqsave(&chip->reg_lock, flags);
 170         if (chip->start_count++ > 0)
 171                 goto __end;
 172         snd_ymfpci_writel(chip, YDSXGR_MODE,
 173                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
 174         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
 175       __end:
 176         spin_unlock_irqrestore(&chip->reg_lock, flags);
 177 }
 178 
 179 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
 180 {
 181         unsigned long flags;
 182         long timeout = 1000;
 183 
 184         spin_lock_irqsave(&chip->reg_lock, flags);
 185         if (--chip->start_count > 0)
 186                 goto __end;
 187         snd_ymfpci_writel(chip, YDSXGR_MODE,
 188                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
 189         while (timeout-- > 0) {
 190                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
 191                         break;
 192         }
 193         if (atomic_read(&chip->interrupt_sleep_count)) {
 194                 atomic_set(&chip->interrupt_sleep_count, 0);
 195                 wake_up(&chip->interrupt_sleep);
 196         }
 197       __end:
 198         spin_unlock_irqrestore(&chip->reg_lock, flags);
 199 }
 200 
 201 /*
 202  *  Playback voice management
 203  */
 204 
 205 static int voice_alloc(struct snd_ymfpci *chip,
 206                        enum snd_ymfpci_voice_type type, int pair,
 207                        struct snd_ymfpci_voice **rvoice)
 208 {
 209         struct snd_ymfpci_voice *voice, *voice2;
 210         int idx;
 211         
 212         *rvoice = NULL;
 213         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
 214                 voice = &chip->voices[idx];
 215                 voice2 = pair ? &chip->voices[idx+1] : NULL;
 216                 if (voice->use || (voice2 && voice2->use))
 217                         continue;
 218                 voice->use = 1;
 219                 if (voice2)
 220                         voice2->use = 1;
 221                 switch (type) {
 222                 case YMFPCI_PCM:
 223                         voice->pcm = 1;
 224                         if (voice2)
 225                                 voice2->pcm = 1;
 226                         break;
 227                 case YMFPCI_SYNTH:
 228                         voice->synth = 1;
 229                         break;
 230                 case YMFPCI_MIDI:
 231                         voice->midi = 1;
 232                         break;
 233                 }
 234                 snd_ymfpci_hw_start(chip);
 235                 if (voice2)
 236                         snd_ymfpci_hw_start(chip);
 237                 *rvoice = voice;
 238                 return 0;
 239         }
 240         return -ENOMEM;
 241 }
 242 
 243 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
 244                                   enum snd_ymfpci_voice_type type, int pair,
 245                                   struct snd_ymfpci_voice **rvoice)
 246 {
 247         unsigned long flags;
 248         int result;
 249         
 250         if (snd_BUG_ON(!rvoice))
 251                 return -EINVAL;
 252         if (snd_BUG_ON(pair && type != YMFPCI_PCM))
 253                 return -EINVAL;
 254         
 255         spin_lock_irqsave(&chip->voice_lock, flags);
 256         for (;;) {
 257                 result = voice_alloc(chip, type, pair, rvoice);
 258                 if (result == 0 || type != YMFPCI_PCM)
 259                         break;
 260                 /* TODO: synth/midi voice deallocation */
 261                 break;
 262         }
 263         spin_unlock_irqrestore(&chip->voice_lock, flags);       
 264         return result;          
 265 }
 266 
 267 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
 268 {
 269         unsigned long flags;
 270         
 271         if (snd_BUG_ON(!pvoice))
 272                 return -EINVAL;
 273         snd_ymfpci_hw_stop(chip);
 274         spin_lock_irqsave(&chip->voice_lock, flags);
 275         if (pvoice->number == chip->src441_used) {
 276                 chip->src441_used = -1;
 277                 pvoice->ypcm->use_441_slot = 0;
 278         }
 279         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
 280         pvoice->ypcm = NULL;
 281         pvoice->interrupt = NULL;
 282         spin_unlock_irqrestore(&chip->voice_lock, flags);
 283         return 0;
 284 }
 285 
 286 /*
 287  *  PCM part
 288  */
 289 
 290 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
 291 {
 292         struct snd_ymfpci_pcm *ypcm;
 293         u32 pos, delta;
 294         
 295         if ((ypcm = voice->ypcm) == NULL)
 296                 return;
 297         if (ypcm->substream == NULL)
 298                 return;
 299         spin_lock(&chip->reg_lock);
 300         if (ypcm->running) {
 301                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
 302                 if (pos < ypcm->last_pos)
 303                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
 304                 else
 305                         delta = pos - ypcm->last_pos;
 306                 ypcm->period_pos += delta;
 307                 ypcm->last_pos = pos;
 308                 if (ypcm->period_pos >= ypcm->period_size) {
 309                         /*
 310                         dev_dbg(chip->card->dev,
 311                                "done - active_bank = 0x%x, start = 0x%x\n",
 312                                chip->active_bank,
 313                                voice->bank[chip->active_bank].start);
 314                         */
 315                         ypcm->period_pos %= ypcm->period_size;
 316                         spin_unlock(&chip->reg_lock);
 317                         snd_pcm_period_elapsed(ypcm->substream);
 318                         spin_lock(&chip->reg_lock);
 319                 }
 320 
 321                 if (unlikely(ypcm->update_pcm_vol)) {
 322                         unsigned int subs = ypcm->substream->number;
 323                         unsigned int next_bank = 1 - chip->active_bank;
 324                         struct snd_ymfpci_playback_bank *bank;
 325                         __le32 volume;
 326                         
 327                         bank = &voice->bank[next_bank];
 328                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
 329                         bank->left_gain_end = volume;
 330                         if (ypcm->output_rear)
 331                                 bank->eff2_gain_end = volume;
 332                         if (ypcm->voices[1])
 333                                 bank = &ypcm->voices[1]->bank[next_bank];
 334                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
 335                         bank->right_gain_end = volume;
 336                         if (ypcm->output_rear)
 337                                 bank->eff3_gain_end = volume;
 338                         ypcm->update_pcm_vol--;
 339                 }
 340         }
 341         spin_unlock(&chip->reg_lock);
 342 }
 343 
 344 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
 345 {
 346         struct snd_pcm_runtime *runtime = substream->runtime;
 347         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
 348         struct snd_ymfpci *chip = ypcm->chip;
 349         u32 pos, delta;
 350         
 351         spin_lock(&chip->reg_lock);
 352         if (ypcm->running) {
 353                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
 354                 if (pos < ypcm->last_pos)
 355                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
 356                 else
 357                         delta = pos - ypcm->last_pos;
 358                 ypcm->period_pos += delta;
 359                 ypcm->last_pos = pos;
 360                 if (ypcm->period_pos >= ypcm->period_size) {
 361                         ypcm->period_pos %= ypcm->period_size;
 362                         /*
 363                         dev_dbg(chip->card->dev,
 364                                "done - active_bank = 0x%x, start = 0x%x\n",
 365                                chip->active_bank,
 366                                voice->bank[chip->active_bank].start);
 367                         */
 368                         spin_unlock(&chip->reg_lock);
 369                         snd_pcm_period_elapsed(substream);
 370                         spin_lock(&chip->reg_lock);
 371                 }
 372         }
 373         spin_unlock(&chip->reg_lock);
 374 }
 375 
 376 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
 377                                        int cmd)
 378 {
 379         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 380         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
 381         struct snd_kcontrol *kctl = NULL;
 382         int result = 0;
 383 
 384         spin_lock(&chip->reg_lock);
 385         if (ypcm->voices[0] == NULL) {
 386                 result = -EINVAL;
 387                 goto __unlock;
 388         }
 389         switch (cmd) {
 390         case SNDRV_PCM_TRIGGER_START:
 391         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 392         case SNDRV_PCM_TRIGGER_RESUME:
 393                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
 394                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
 395                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
 396                 ypcm->running = 1;
 397                 break;
 398         case SNDRV_PCM_TRIGGER_STOP:
 399                 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
 400                         kctl = chip->pcm_mixer[substream->number].ctl;
 401                         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
 402                 }
 403                 /* fall through */
 404         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 405         case SNDRV_PCM_TRIGGER_SUSPEND:
 406                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
 407                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
 408                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
 409                 ypcm->running = 0;
 410                 break;
 411         default:
 412                 result = -EINVAL;
 413                 break;
 414         }
 415       __unlock:
 416         spin_unlock(&chip->reg_lock);
 417         if (kctl)
 418                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
 419         return result;
 420 }
 421 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
 422                                       int cmd)
 423 {
 424         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 425         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
 426         int result = 0;
 427         u32 tmp;
 428 
 429         spin_lock(&chip->reg_lock);
 430         switch (cmd) {
 431         case SNDRV_PCM_TRIGGER_START:
 432         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 433         case SNDRV_PCM_TRIGGER_RESUME:
 434                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
 435                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
 436                 ypcm->running = 1;
 437                 break;
 438         case SNDRV_PCM_TRIGGER_STOP:
 439         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 440         case SNDRV_PCM_TRIGGER_SUSPEND:
 441                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
 442                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
 443                 ypcm->running = 0;
 444                 break;
 445         default:
 446                 result = -EINVAL;
 447                 break;
 448         }
 449         spin_unlock(&chip->reg_lock);
 450         return result;
 451 }
 452 
 453 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
 454 {
 455         int err;
 456 
 457         if (ypcm->voices[1] != NULL && voices < 2) {
 458                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
 459                 ypcm->voices[1] = NULL;
 460         }
 461         if (voices == 1 && ypcm->voices[0] != NULL)
 462                 return 0;               /* already allocated */
 463         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
 464                 return 0;               /* already allocated */
 465         if (voices > 1) {
 466                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
 467                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
 468                         ypcm->voices[0] = NULL;
 469                 }               
 470         }
 471         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
 472         if (err < 0)
 473                 return err;
 474         ypcm->voices[0]->ypcm = ypcm;
 475         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
 476         if (voices > 1) {
 477                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
 478                 ypcm->voices[1]->ypcm = ypcm;
 479         }
 480         return 0;
 481 }
 482 
 483 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
 484                                       struct snd_pcm_runtime *runtime,
 485                                       int has_pcm_volume)
 486 {
 487         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
 488         u32 format;
 489         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
 490         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
 491         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
 492         struct snd_ymfpci_playback_bank *bank;
 493         unsigned int nbank;
 494         __le32 vol_left, vol_right;
 495         u8 use_left, use_right;
 496         unsigned long flags;
 497 
 498         if (snd_BUG_ON(!voice))
 499                 return;
 500         if (runtime->channels == 1) {
 501                 use_left = 1;
 502                 use_right = 1;
 503         } else {
 504                 use_left = (voiceidx & 1) == 0;
 505                 use_right = !use_left;
 506         }
 507         if (has_pcm_volume) {
 508                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
 509                                        [ypcm->substream->number].left << 15);
 510                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
 511                                         [ypcm->substream->number].right << 15);
 512         } else {
 513                 vol_left = cpu_to_le32(0x40000000);
 514                 vol_right = cpu_to_le32(0x40000000);
 515         }
 516         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
 517         format = runtime->channels == 2 ? 0x00010000 : 0;
 518         if (snd_pcm_format_width(runtime->format) == 8)
 519                 format |= 0x80000000;
 520         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
 521                  runtime->rate == 44100 && runtime->channels == 2 &&
 522                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
 523                                    ypcm->chip->src441_used == voice->number)) {
 524                 ypcm->chip->src441_used = voice->number;
 525                 ypcm->use_441_slot = 1;
 526                 format |= 0x10000000;
 527         }
 528         if (ypcm->chip->src441_used == voice->number &&
 529             (format & 0x10000000) == 0) {
 530                 ypcm->chip->src441_used = -1;
 531                 ypcm->use_441_slot = 0;
 532         }
 533         if (runtime->channels == 2 && (voiceidx & 1) != 0)
 534                 format |= 1;
 535         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
 536         for (nbank = 0; nbank < 2; nbank++) {
 537                 bank = &voice->bank[nbank];
 538                 memset(bank, 0, sizeof(*bank));
 539                 bank->format = cpu_to_le32(format);
 540                 bank->base = cpu_to_le32(runtime->dma_addr);
 541                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
 542                 bank->lpfQ = cpu_to_le32(lpfQ);
 543                 bank->delta =
 544                 bank->delta_end = cpu_to_le32(delta);
 545                 bank->lpfK =
 546                 bank->lpfK_end = cpu_to_le32(lpfK);
 547                 bank->eg_gain =
 548                 bank->eg_gain_end = cpu_to_le32(0x40000000);
 549 
 550                 if (ypcm->output_front) {
 551                         if (use_left) {
 552                                 bank->left_gain =
 553                                 bank->left_gain_end = vol_left;
 554                         }
 555                         if (use_right) {
 556                                 bank->right_gain =
 557                                 bank->right_gain_end = vol_right;
 558                         }
 559                 }
 560                 if (ypcm->output_rear) {
 561                         if (!ypcm->swap_rear) {
 562                                 if (use_left) {
 563                                         bank->eff2_gain =
 564                                         bank->eff2_gain_end = vol_left;
 565                                 }
 566                                 if (use_right) {
 567                                         bank->eff3_gain =
 568                                         bank->eff3_gain_end = vol_right;
 569                                 }
 570                         } else {
 571                                 /* The SPDIF out channels seem to be swapped, so we have
 572                                  * to swap them here, too.  The rear analog out channels
 573                                  * will be wrong, but otherwise AC3 would not work.
 574                                  */
 575                                 if (use_left) {
 576                                         bank->eff3_gain =
 577                                         bank->eff3_gain_end = vol_left;
 578                                 }
 579                                 if (use_right) {
 580                                         bank->eff2_gain =
 581                                         bank->eff2_gain_end = vol_right;
 582                                 }
 583                         }
 584                 }
 585         }
 586 }
 587 
 588 static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
 589 {
 590         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
 591                                 4096, &chip->ac3_tmp_base) < 0)
 592                 return -ENOMEM;
 593 
 594         chip->bank_effect[3][0]->base =
 595         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
 596         chip->bank_effect[3][0]->loop_end =
 597         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
 598         chip->bank_effect[4][0]->base =
 599         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
 600         chip->bank_effect[4][0]->loop_end =
 601         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
 602 
 603         spin_lock_irq(&chip->reg_lock);
 604         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
 605                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
 606         spin_unlock_irq(&chip->reg_lock);
 607         return 0;
 608 }
 609 
 610 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
 611 {
 612         spin_lock_irq(&chip->reg_lock);
 613         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
 614                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
 615         spin_unlock_irq(&chip->reg_lock);
 616         // snd_ymfpci_irq_wait(chip);
 617         if (chip->ac3_tmp_base.area) {
 618                 snd_dma_free_pages(&chip->ac3_tmp_base);
 619                 chip->ac3_tmp_base.area = NULL;
 620         }
 621         return 0;
 622 }
 623 
 624 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
 625                                          struct snd_pcm_hw_params *hw_params)
 626 {
 627         struct snd_pcm_runtime *runtime = substream->runtime;
 628         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
 629         int err;
 630 
 631         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
 632                 return err;
 633         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
 634                 return err;
 635         return 0;
 636 }
 637 
 638 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
 639 {
 640         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 641         struct snd_pcm_runtime *runtime = substream->runtime;
 642         struct snd_ymfpci_pcm *ypcm;
 643         
 644         if (runtime->private_data == NULL)
 645                 return 0;
 646         ypcm = runtime->private_data;
 647 
 648         /* wait, until the PCI operations are not finished */
 649         snd_ymfpci_irq_wait(chip);
 650         snd_pcm_lib_free_pages(substream);
 651         if (ypcm->voices[1]) {
 652                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
 653                 ypcm->voices[1] = NULL;
 654         }
 655         if (ypcm->voices[0]) {
 656                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
 657                 ypcm->voices[0] = NULL;
 658         }
 659         return 0;
 660 }
 661 
 662 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
 663 {
 664         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 665         struct snd_pcm_runtime *runtime = substream->runtime;
 666         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
 667         struct snd_kcontrol *kctl;
 668         unsigned int nvoice;
 669 
 670         ypcm->period_size = runtime->period_size;
 671         ypcm->buffer_size = runtime->buffer_size;
 672         ypcm->period_pos = 0;
 673         ypcm->last_pos = 0;
 674         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
 675                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
 676                                           substream->pcm == chip->pcm);
 677 
 678         if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
 679                 kctl = chip->pcm_mixer[substream->number].ctl;
 680                 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
 681                 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
 682         }
 683         return 0;
 684 }
 685 
 686 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
 687                                         struct snd_pcm_hw_params *hw_params)
 688 {
 689         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 690 }
 691 
 692 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
 693 {
 694         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 695 
 696         /* wait, until the PCI operations are not finished */
 697         snd_ymfpci_irq_wait(chip);
 698         return snd_pcm_lib_free_pages(substream);
 699 }
 700 
 701 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
 702 {
 703         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 704         struct snd_pcm_runtime *runtime = substream->runtime;
 705         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
 706         struct snd_ymfpci_capture_bank * bank;
 707         int nbank;
 708         u32 rate, format;
 709 
 710         ypcm->period_size = runtime->period_size;
 711         ypcm->buffer_size = runtime->buffer_size;
 712         ypcm->period_pos = 0;
 713         ypcm->last_pos = 0;
 714         ypcm->shift = 0;
 715         rate = ((48000 * 4096) / runtime->rate) - 1;
 716         format = 0;
 717         if (runtime->channels == 2) {
 718                 format |= 2;
 719                 ypcm->shift++;
 720         }
 721         if (snd_pcm_format_width(runtime->format) == 8)
 722                 format |= 1;
 723         else
 724                 ypcm->shift++;
 725         switch (ypcm->capture_bank_number) {
 726         case 0:
 727                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
 728                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
 729                 break;
 730         case 1:
 731                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
 732                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
 733                 break;
 734         }
 735         for (nbank = 0; nbank < 2; nbank++) {
 736                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
 737                 bank->base = cpu_to_le32(runtime->dma_addr);
 738                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
 739                 bank->start = 0;
 740                 bank->num_of_loops = 0;
 741         }
 742         return 0;
 743 }
 744 
 745 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
 746 {
 747         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 748         struct snd_pcm_runtime *runtime = substream->runtime;
 749         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
 750         struct snd_ymfpci_voice *voice = ypcm->voices[0];
 751 
 752         if (!(ypcm->running && voice))
 753                 return 0;
 754         return le32_to_cpu(voice->bank[chip->active_bank].start);
 755 }
 756 
 757 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
 758 {
 759         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 760         struct snd_pcm_runtime *runtime = substream->runtime;
 761         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
 762 
 763         if (!ypcm->running)
 764                 return 0;
 765         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
 766 }
 767 
 768 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
 769 {
 770         wait_queue_entry_t wait;
 771         int loops = 4;
 772 
 773         while (loops-- > 0) {
 774                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
 775                         continue;
 776                 init_waitqueue_entry(&wait, current);
 777                 add_wait_queue(&chip->interrupt_sleep, &wait);
 778                 atomic_inc(&chip->interrupt_sleep_count);
 779                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
 780                 remove_wait_queue(&chip->interrupt_sleep, &wait);
 781         }
 782 }
 783 
 784 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
 785 {
 786         struct snd_ymfpci *chip = dev_id;
 787         u32 status, nvoice, mode;
 788         struct snd_ymfpci_voice *voice;
 789 
 790         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
 791         if (status & 0x80000000) {
 792                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
 793                 spin_lock(&chip->voice_lock);
 794                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
 795                         voice = &chip->voices[nvoice];
 796                         if (voice->interrupt)
 797                                 voice->interrupt(chip, voice);
 798                 }
 799                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
 800                         if (chip->capture_substream[nvoice])
 801                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
 802                 }
 803 #if 0
 804                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
 805                         if (chip->effect_substream[nvoice])
 806                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
 807                 }
 808 #endif
 809                 spin_unlock(&chip->voice_lock);
 810                 spin_lock(&chip->reg_lock);
 811                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
 812                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
 813                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
 814                 spin_unlock(&chip->reg_lock);
 815 
 816                 if (atomic_read(&chip->interrupt_sleep_count)) {
 817                         atomic_set(&chip->interrupt_sleep_count, 0);
 818                         wake_up(&chip->interrupt_sleep);
 819                 }
 820         }
 821 
 822         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
 823         if (status & 1) {
 824                 if (chip->timer)
 825                         snd_timer_interrupt(chip->timer, chip->timer_ticks);
 826         }
 827         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
 828 
 829         if (chip->rawmidi)
 830                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
 831         return IRQ_HANDLED;
 832 }
 833 
 834 static const struct snd_pcm_hardware snd_ymfpci_playback =
 835 {
 836         .info =                 (SNDRV_PCM_INFO_MMAP |
 837                                  SNDRV_PCM_INFO_MMAP_VALID | 
 838                                  SNDRV_PCM_INFO_INTERLEAVED |
 839                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
 840                                  SNDRV_PCM_INFO_PAUSE |
 841                                  SNDRV_PCM_INFO_RESUME),
 842         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
 843         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
 844         .rate_min =             8000,
 845         .rate_max =             48000,
 846         .channels_min =         1,
 847         .channels_max =         2,
 848         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
 849         .period_bytes_min =     64,
 850         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
 851         .periods_min =          3,
 852         .periods_max =          1024,
 853         .fifo_size =            0,
 854 };
 855 
 856 static const struct snd_pcm_hardware snd_ymfpci_capture =
 857 {
 858         .info =                 (SNDRV_PCM_INFO_MMAP |
 859                                  SNDRV_PCM_INFO_MMAP_VALID |
 860                                  SNDRV_PCM_INFO_INTERLEAVED |
 861                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
 862                                  SNDRV_PCM_INFO_PAUSE |
 863                                  SNDRV_PCM_INFO_RESUME),
 864         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
 865         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
 866         .rate_min =             8000,
 867         .rate_max =             48000,
 868         .channels_min =         1,
 869         .channels_max =         2,
 870         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
 871         .period_bytes_min =     64,
 872         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
 873         .periods_min =          3,
 874         .periods_max =          1024,
 875         .fifo_size =            0,
 876 };
 877 
 878 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
 879 {
 880         kfree(runtime->private_data);
 881 }
 882 
 883 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
 884 {
 885         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 886         struct snd_pcm_runtime *runtime = substream->runtime;
 887         struct snd_ymfpci_pcm *ypcm;
 888         int err;
 889 
 890         runtime->hw = snd_ymfpci_playback;
 891         /* FIXME? True value is 256/48 = 5.33333 ms */
 892         err = snd_pcm_hw_constraint_minmax(runtime,
 893                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
 894                                            5334, UINT_MAX);
 895         if (err < 0)
 896                 return err;
 897         err = snd_pcm_hw_rule_noresample(runtime, 48000);
 898         if (err < 0)
 899                 return err;
 900 
 901         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
 902         if (ypcm == NULL)
 903                 return -ENOMEM;
 904         ypcm->chip = chip;
 905         ypcm->type = PLAYBACK_VOICE;
 906         ypcm->substream = substream;
 907         runtime->private_data = ypcm;
 908         runtime->private_free = snd_ymfpci_pcm_free_substream;
 909         return 0;
 910 }
 911 
 912 /* call with spinlock held */
 913 static void ymfpci_open_extension(struct snd_ymfpci *chip)
 914 {
 915         if (! chip->rear_opened) {
 916                 if (! chip->spdif_opened) /* set AC3 */
 917                         snd_ymfpci_writel(chip, YDSXGR_MODE,
 918                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
 919                 /* enable second codec (4CHEN) */
 920                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
 921                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
 922         }
 923 }
 924 
 925 /* call with spinlock held */
 926 static void ymfpci_close_extension(struct snd_ymfpci *chip)
 927 {
 928         if (! chip->rear_opened) {
 929                 if (! chip->spdif_opened)
 930                         snd_ymfpci_writel(chip, YDSXGR_MODE,
 931                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
 932                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
 933                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
 934         }
 935 }
 936 
 937 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
 938 {
 939         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 940         struct snd_pcm_runtime *runtime = substream->runtime;
 941         struct snd_ymfpci_pcm *ypcm;
 942         int err;
 943         
 944         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
 945                 return err;
 946         ypcm = runtime->private_data;
 947         ypcm->output_front = 1;
 948         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
 949         ypcm->swap_rear = 0;
 950         spin_lock_irq(&chip->reg_lock);
 951         if (ypcm->output_rear) {
 952                 ymfpci_open_extension(chip);
 953                 chip->rear_opened++;
 954         }
 955         spin_unlock_irq(&chip->reg_lock);
 956         return 0;
 957 }
 958 
 959 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
 960 {
 961         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 962         struct snd_pcm_runtime *runtime = substream->runtime;
 963         struct snd_ymfpci_pcm *ypcm;
 964         int err;
 965         
 966         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
 967                 return err;
 968         ypcm = runtime->private_data;
 969         ypcm->output_front = 0;
 970         ypcm->output_rear = 1;
 971         ypcm->swap_rear = 1;
 972         spin_lock_irq(&chip->reg_lock);
 973         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
 974                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
 975         ymfpci_open_extension(chip);
 976         chip->spdif_pcm_bits = chip->spdif_bits;
 977         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
 978         chip->spdif_opened++;
 979         spin_unlock_irq(&chip->reg_lock);
 980 
 981         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
 982         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
 983                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
 984         return 0;
 985 }
 986 
 987 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
 988 {
 989         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
 990         struct snd_pcm_runtime *runtime = substream->runtime;
 991         struct snd_ymfpci_pcm *ypcm;
 992         int err;
 993         
 994         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
 995                 return err;
 996         ypcm = runtime->private_data;
 997         ypcm->output_front = 0;
 998         ypcm->output_rear = 1;
 999         ypcm->swap_rear = 0;
1000         spin_lock_irq(&chip->reg_lock);
1001         ymfpci_open_extension(chip);
1002         chip->rear_opened++;
1003         spin_unlock_irq(&chip->reg_lock);
1004         return 0;
1005 }
1006 
1007 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1008                                    u32 capture_bank_number)
1009 {
1010         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1011         struct snd_pcm_runtime *runtime = substream->runtime;
1012         struct snd_ymfpci_pcm *ypcm;
1013         int err;
1014 
1015         runtime->hw = snd_ymfpci_capture;
1016         /* FIXME? True value is 256/48 = 5.33333 ms */
1017         err = snd_pcm_hw_constraint_minmax(runtime,
1018                                            SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1019                                            5334, UINT_MAX);
1020         if (err < 0)
1021                 return err;
1022         err = snd_pcm_hw_rule_noresample(runtime, 48000);
1023         if (err < 0)
1024                 return err;
1025 
1026         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1027         if (ypcm == NULL)
1028                 return -ENOMEM;
1029         ypcm->chip = chip;
1030         ypcm->type = capture_bank_number + CAPTURE_REC;
1031         ypcm->substream = substream;    
1032         ypcm->capture_bank_number = capture_bank_number;
1033         chip->capture_substream[capture_bank_number] = substream;
1034         runtime->private_data = ypcm;
1035         runtime->private_free = snd_ymfpci_pcm_free_substream;
1036         snd_ymfpci_hw_start(chip);
1037         return 0;
1038 }
1039 
1040 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1041 {
1042         return snd_ymfpci_capture_open(substream, 0);
1043 }
1044 
1045 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1046 {
1047         return snd_ymfpci_capture_open(substream, 1);
1048 }
1049 
1050 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1051 {
1052         return 0;
1053 }
1054 
1055 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1056 {
1057         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1058         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1059 
1060         spin_lock_irq(&chip->reg_lock);
1061         if (ypcm->output_rear && chip->rear_opened > 0) {
1062                 chip->rear_opened--;
1063                 ymfpci_close_extension(chip);
1064         }
1065         spin_unlock_irq(&chip->reg_lock);
1066         return snd_ymfpci_playback_close_1(substream);
1067 }
1068 
1069 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1070 {
1071         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1072 
1073         spin_lock_irq(&chip->reg_lock);
1074         chip->spdif_opened = 0;
1075         ymfpci_close_extension(chip);
1076         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1077                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1078         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1079         spin_unlock_irq(&chip->reg_lock);
1080         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1081         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1082                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1083         return snd_ymfpci_playback_close_1(substream);
1084 }
1085 
1086 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1087 {
1088         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1089 
1090         spin_lock_irq(&chip->reg_lock);
1091         if (chip->rear_opened > 0) {
1092                 chip->rear_opened--;
1093                 ymfpci_close_extension(chip);
1094         }
1095         spin_unlock_irq(&chip->reg_lock);
1096         return snd_ymfpci_playback_close_1(substream);
1097 }
1098 
1099 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1100 {
1101         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1102         struct snd_pcm_runtime *runtime = substream->runtime;
1103         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1104 
1105         if (ypcm != NULL) {
1106                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1107                 snd_ymfpci_hw_stop(chip);
1108         }
1109         return 0;
1110 }
1111 
1112 static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
1113         .open =                 snd_ymfpci_playback_open,
1114         .close =                snd_ymfpci_playback_close,
1115         .ioctl =                snd_pcm_lib_ioctl,
1116         .hw_params =            snd_ymfpci_playback_hw_params,
1117         .hw_free =              snd_ymfpci_playback_hw_free,
1118         .prepare =              snd_ymfpci_playback_prepare,
1119         .trigger =              snd_ymfpci_playback_trigger,
1120         .pointer =              snd_ymfpci_playback_pointer,
1121 };
1122 
1123 static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1124         .open =                 snd_ymfpci_capture_rec_open,
1125         .close =                snd_ymfpci_capture_close,
1126         .ioctl =                snd_pcm_lib_ioctl,
1127         .hw_params =            snd_ymfpci_capture_hw_params,
1128         .hw_free =              snd_ymfpci_capture_hw_free,
1129         .prepare =              snd_ymfpci_capture_prepare,
1130         .trigger =              snd_ymfpci_capture_trigger,
1131         .pointer =              snd_ymfpci_capture_pointer,
1132 };
1133 
1134 int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
1135 {
1136         struct snd_pcm *pcm;
1137         int err;
1138 
1139         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1140                 return err;
1141         pcm->private_data = chip;
1142 
1143         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1144         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1145 
1146         /* global setup */
1147         pcm->info_flags = 0;
1148         strcpy(pcm->name, "YMFPCI");
1149         chip->pcm = pcm;
1150 
1151         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1152                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1153 
1154         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1155                                      snd_pcm_std_chmaps, 2, 0, NULL);
1156 }
1157 
1158 static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1159         .open =                 snd_ymfpci_capture_ac97_open,
1160         .close =                snd_ymfpci_capture_close,
1161         .ioctl =                snd_pcm_lib_ioctl,
1162         .hw_params =            snd_ymfpci_capture_hw_params,
1163         .hw_free =              snd_ymfpci_capture_hw_free,
1164         .prepare =              snd_ymfpci_capture_prepare,
1165         .trigger =              snd_ymfpci_capture_trigger,
1166         .pointer =              snd_ymfpci_capture_pointer,
1167 };
1168 
1169 int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
1170 {
1171         struct snd_pcm *pcm;
1172         int err;
1173 
1174         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1175                 return err;
1176         pcm->private_data = chip;
1177 
1178         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1179 
1180         /* global setup */
1181         pcm->info_flags = 0;
1182         sprintf(pcm->name, "YMFPCI - %s",
1183                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1184         chip->pcm2 = pcm;
1185 
1186         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1187                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1188 
1189         return 0;
1190 }
1191 
1192 static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1193         .open =                 snd_ymfpci_playback_spdif_open,
1194         .close =                snd_ymfpci_playback_spdif_close,
1195         .ioctl =                snd_pcm_lib_ioctl,
1196         .hw_params =            snd_ymfpci_playback_hw_params,
1197         .hw_free =              snd_ymfpci_playback_hw_free,
1198         .prepare =              snd_ymfpci_playback_prepare,
1199         .trigger =              snd_ymfpci_playback_trigger,
1200         .pointer =              snd_ymfpci_playback_pointer,
1201 };
1202 
1203 int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
1204 {
1205         struct snd_pcm *pcm;
1206         int err;
1207 
1208         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1209                 return err;
1210         pcm->private_data = chip;
1211 
1212         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1213 
1214         /* global setup */
1215         pcm->info_flags = 0;
1216         strcpy(pcm->name, "YMFPCI - IEC958");
1217         chip->pcm_spdif = pcm;
1218 
1219         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1220                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1221 
1222         return 0;
1223 }
1224 
1225 static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1226         .open =                 snd_ymfpci_playback_4ch_open,
1227         .close =                snd_ymfpci_playback_4ch_close,
1228         .ioctl =                snd_pcm_lib_ioctl,
1229         .hw_params =            snd_ymfpci_playback_hw_params,
1230         .hw_free =              snd_ymfpci_playback_hw_free,
1231         .prepare =              snd_ymfpci_playback_prepare,
1232         .trigger =              snd_ymfpci_playback_trigger,
1233         .pointer =              snd_ymfpci_playback_pointer,
1234 };
1235 
1236 static const struct snd_pcm_chmap_elem surround_map[] = {
1237         { .channels = 1,
1238           .map = { SNDRV_CHMAP_MONO } },
1239         { .channels = 2,
1240           .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
1241         { }
1242 };
1243 
1244 int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
1245 {
1246         struct snd_pcm *pcm;
1247         int err;
1248 
1249         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1250                 return err;
1251         pcm->private_data = chip;
1252 
1253         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1254 
1255         /* global setup */
1256         pcm->info_flags = 0;
1257         strcpy(pcm->name, "YMFPCI - Rear PCM");
1258         chip->pcm_4ch = pcm;
1259 
1260         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1261                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1262 
1263         return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1264                                      surround_map, 2, 0, NULL);
1265 }
1266 
1267 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1268 {
1269         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1270         uinfo->count = 1;
1271         return 0;
1272 }
1273 
1274 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1275                                         struct snd_ctl_elem_value *ucontrol)
1276 {
1277         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1278 
1279         spin_lock_irq(&chip->reg_lock);
1280         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1281         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1282         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1283         spin_unlock_irq(&chip->reg_lock);
1284         return 0;
1285 }
1286 
1287 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1288                                          struct snd_ctl_elem_value *ucontrol)
1289 {
1290         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1291         unsigned int val;
1292         int change;
1293 
1294         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1295               (ucontrol->value.iec958.status[1] << 8);
1296         spin_lock_irq(&chip->reg_lock);
1297         change = chip->spdif_bits != val;
1298         chip->spdif_bits = val;
1299         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1300                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1301         spin_unlock_irq(&chip->reg_lock);
1302         return change;
1303 }
1304 
1305 static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
1306 {
1307         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1308         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1309         .info =         snd_ymfpci_spdif_default_info,
1310         .get =          snd_ymfpci_spdif_default_get,
1311         .put =          snd_ymfpci_spdif_default_put
1312 };
1313 
1314 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1315 {
1316         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1317         uinfo->count = 1;
1318         return 0;
1319 }
1320 
1321 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1322                                       struct snd_ctl_elem_value *ucontrol)
1323 {
1324         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1325 
1326         spin_lock_irq(&chip->reg_lock);
1327         ucontrol->value.iec958.status[0] = 0x3e;
1328         ucontrol->value.iec958.status[1] = 0xff;
1329         spin_unlock_irq(&chip->reg_lock);
1330         return 0;
1331 }
1332 
1333 static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
1334 {
1335         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1336         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1337         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1338         .info =         snd_ymfpci_spdif_mask_info,
1339         .get =          snd_ymfpci_spdif_mask_get,
1340 };
1341 
1342 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1343 {
1344         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1345         uinfo->count = 1;
1346         return 0;
1347 }
1348 
1349 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1350                                         struct snd_ctl_elem_value *ucontrol)
1351 {
1352         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1353 
1354         spin_lock_irq(&chip->reg_lock);
1355         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1356         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1357         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1358         spin_unlock_irq(&chip->reg_lock);
1359         return 0;
1360 }
1361 
1362 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1363                                         struct snd_ctl_elem_value *ucontrol)
1364 {
1365         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1366         unsigned int val;
1367         int change;
1368 
1369         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1370               (ucontrol->value.iec958.status[1] << 8);
1371         spin_lock_irq(&chip->reg_lock);
1372         change = chip->spdif_pcm_bits != val;
1373         chip->spdif_pcm_bits = val;
1374         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1375                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1376         spin_unlock_irq(&chip->reg_lock);
1377         return change;
1378 }
1379 
1380 static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
1381 {
1382         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1383         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1384         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1385         .info =         snd_ymfpci_spdif_stream_info,
1386         .get =          snd_ymfpci_spdif_stream_get,
1387         .put =          snd_ymfpci_spdif_stream_put
1388 };
1389 
1390 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1391 {
1392         static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
1393 
1394         return snd_ctl_enum_info(info, 1, 3, texts);
1395 }
1396 
1397 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1398 {
1399         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1400         u16 reg;
1401 
1402         spin_lock_irq(&chip->reg_lock);
1403         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1404         spin_unlock_irq(&chip->reg_lock);
1405         if (!(reg & 0x100))
1406                 value->value.enumerated.item[0] = 0;
1407         else
1408                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1409         return 0;
1410 }
1411 
1412 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1413 {
1414         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1415         u16 reg, old_reg;
1416 
1417         spin_lock_irq(&chip->reg_lock);
1418         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1419         if (value->value.enumerated.item[0] == 0)
1420                 reg = old_reg & ~0x100;
1421         else
1422                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1423         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1424         spin_unlock_irq(&chip->reg_lock);
1425         return reg != old_reg;
1426 }
1427 
1428 static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
1429         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1430         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1431         .name =         "Direct Recording Source",
1432         .info =         snd_ymfpci_drec_source_info,
1433         .get =          snd_ymfpci_drec_source_get,
1434         .put =          snd_ymfpci_drec_source_put
1435 };
1436 
1437 /*
1438  *  Mixer controls
1439  */
1440 
1441 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1442 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1443   .info = snd_ymfpci_info_single, \
1444   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1445   .private_value = ((reg) | ((shift) << 16)) }
1446 
1447 #define snd_ymfpci_info_single          snd_ctl_boolean_mono_info
1448 
1449 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1450                                  struct snd_ctl_elem_value *ucontrol)
1451 {
1452         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1453         int reg = kcontrol->private_value & 0xffff;
1454         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1455         unsigned int mask = 1;
1456         
1457         switch (reg) {
1458         case YDSXGR_SPDIFOUTCTRL: break;
1459         case YDSXGR_SPDIFINCTRL: break;
1460         default: return -EINVAL;
1461         }
1462         ucontrol->value.integer.value[0] =
1463                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1464         return 0;
1465 }
1466 
1467 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1468                                  struct snd_ctl_elem_value *ucontrol)
1469 {
1470         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1471         int reg = kcontrol->private_value & 0xffff;
1472         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1473         unsigned int mask = 1;
1474         int change;
1475         unsigned int val, oval;
1476         
1477         switch (reg) {
1478         case YDSXGR_SPDIFOUTCTRL: break;
1479         case YDSXGR_SPDIFINCTRL: break;
1480         default: return -EINVAL;
1481         }
1482         val = (ucontrol->value.integer.value[0] & mask);
1483         val <<= shift;
1484         spin_lock_irq(&chip->reg_lock);
1485         oval = snd_ymfpci_readl(chip, reg);
1486         val = (oval & ~(mask << shift)) | val;
1487         change = val != oval;
1488         snd_ymfpci_writel(chip, reg, val);
1489         spin_unlock_irq(&chip->reg_lock);
1490         return change;
1491 }
1492 
1493 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1494 
1495 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1496 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1497   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1498   .info = snd_ymfpci_info_double, \
1499   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1500   .private_value = reg, \
1501   .tlv = { .p = db_scale_native } }
1502 
1503 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1504 {
1505         unsigned int reg = kcontrol->private_value;
1506 
1507         if (reg < 0x80 || reg >= 0xc0)
1508                 return -EINVAL;
1509         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1510         uinfo->count = 2;
1511         uinfo->value.integer.min = 0;
1512         uinfo->value.integer.max = 16383;
1513         return 0;
1514 }
1515 
1516 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1517 {
1518         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1519         unsigned int reg = kcontrol->private_value;
1520         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1521         unsigned int val;
1522         
1523         if (reg < 0x80 || reg >= 0xc0)
1524                 return -EINVAL;
1525         spin_lock_irq(&chip->reg_lock);
1526         val = snd_ymfpci_readl(chip, reg);
1527         spin_unlock_irq(&chip->reg_lock);
1528         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1529         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1530         return 0;
1531 }
1532 
1533 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1534 {
1535         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1536         unsigned int reg = kcontrol->private_value;
1537         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1538         int change;
1539         unsigned int val1, val2, oval;
1540         
1541         if (reg < 0x80 || reg >= 0xc0)
1542                 return -EINVAL;
1543         val1 = ucontrol->value.integer.value[0] & mask;
1544         val2 = ucontrol->value.integer.value[1] & mask;
1545         val1 <<= shift_left;
1546         val2 <<= shift_right;
1547         spin_lock_irq(&chip->reg_lock);
1548         oval = snd_ymfpci_readl(chip, reg);
1549         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1550         change = val1 != oval;
1551         snd_ymfpci_writel(chip, reg, val1);
1552         spin_unlock_irq(&chip->reg_lock);
1553         return change;
1554 }
1555 
1556 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
1557                                        struct snd_ctl_elem_value *ucontrol)
1558 {
1559         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1560         unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
1561         unsigned int reg2 = YDSXGR_BUF441OUTVOL;
1562         int change;
1563         unsigned int value, oval;
1564         
1565         value = ucontrol->value.integer.value[0] & 0x3fff;
1566         value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
1567         spin_lock_irq(&chip->reg_lock);
1568         oval = snd_ymfpci_readl(chip, reg);
1569         change = value != oval;
1570         snd_ymfpci_writel(chip, reg, value);
1571         snd_ymfpci_writel(chip, reg2, value);
1572         spin_unlock_irq(&chip->reg_lock);
1573         return change;
1574 }
1575 
1576 /*
1577  * 4ch duplication
1578  */
1579 #define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info
1580 
1581 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1582 {
1583         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1584         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1585         return 0;
1586 }
1587 
1588 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1589 {
1590         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1591         int change;
1592         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1593         if (change)
1594                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1595         return change;
1596 }
1597 
1598 static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
1599         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1600         .name = "4ch Duplication",
1601         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
1602         .info = snd_ymfpci_info_dup4ch,
1603         .get = snd_ymfpci_get_dup4ch,
1604         .put = snd_ymfpci_put_dup4ch,
1605 };
1606 
1607 static struct snd_kcontrol_new snd_ymfpci_controls[] = {
1608 {
1609         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1610         .name = "Wave Playback Volume",
1611         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1612                   SNDRV_CTL_ELEM_ACCESS_TLV_READ,
1613         .info = snd_ymfpci_info_double,
1614         .get = snd_ymfpci_get_double,
1615         .put = snd_ymfpci_put_nativedacvol,
1616         .private_value = YDSXGR_NATIVEDACOUTVOL,
1617         .tlv = { .p = db_scale_native },
1618 },
1619 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1620 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1621 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1622 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1623 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1624 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1625 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1626 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
1627 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1628 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1629 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1630 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1631 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1632 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1633 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1634 };
1635 
1636 
1637 /*
1638  * GPIO
1639  */
1640 
1641 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1642 {
1643         u16 reg, mode;
1644         unsigned long flags;
1645 
1646         spin_lock_irqsave(&chip->reg_lock, flags);
1647         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1648         reg &= ~(1 << (pin + 8));
1649         reg |= (1 << pin);
1650         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1651         /* set the level mode for input line */
1652         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1653         mode &= ~(3 << (pin * 2));
1654         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1655         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1656         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1657         spin_unlock_irqrestore(&chip->reg_lock, flags);
1658         return (mode >> pin) & 1;
1659 }
1660 
1661 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1662 {
1663         u16 reg;
1664         unsigned long flags;
1665 
1666         spin_lock_irqsave(&chip->reg_lock, flags);
1667         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1668         reg &= ~(1 << pin);
1669         reg &= ~(1 << (pin + 8));
1670         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1671         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1672         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1673         spin_unlock_irqrestore(&chip->reg_lock, flags);
1674 
1675         return 0;
1676 }
1677 
1678 #define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info
1679 
1680 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1681 {
1682         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1683         int pin = (int)kcontrol->private_value;
1684         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1685         return 0;
1686 }
1687 
1688 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1689 {
1690         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1691         int pin = (int)kcontrol->private_value;
1692 
1693         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1694                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1695                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1696                 return 1;
1697         }
1698         return 0;
1699 }
1700 
1701 static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
1702         .name = "Shared Rear/Line-In Switch",
1703         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1704         .info = snd_ymfpci_gpio_sw_info,
1705         .get = snd_ymfpci_gpio_sw_get,
1706         .put = snd_ymfpci_gpio_sw_put,
1707         .private_value = 2,
1708 };
1709 
1710 /*
1711  * PCM voice volume
1712  */
1713 
1714 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1715                                    struct snd_ctl_elem_info *uinfo)
1716 {
1717         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1718         uinfo->count = 2;
1719         uinfo->value.integer.min = 0;
1720         uinfo->value.integer.max = 0x8000;
1721         return 0;
1722 }
1723 
1724 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1725                                   struct snd_ctl_elem_value *ucontrol)
1726 {
1727         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1728         unsigned int subs = kcontrol->id.subdevice;
1729 
1730         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1731         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1732         return 0;
1733 }
1734 
1735 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1736                                   struct snd_ctl_elem_value *ucontrol)
1737 {
1738         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1739         unsigned int subs = kcontrol->id.subdevice;
1740         struct snd_pcm_substream *substream;
1741         unsigned long flags;
1742 
1743         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1744             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1745                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1746                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1747                 if (chip->pcm_mixer[subs].left > 0x8000)
1748                         chip->pcm_mixer[subs].left = 0x8000;
1749                 if (chip->pcm_mixer[subs].right > 0x8000)
1750                         chip->pcm_mixer[subs].right = 0x8000;
1751 
1752                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1753                 spin_lock_irqsave(&chip->voice_lock, flags);
1754                 if (substream->runtime && substream->runtime->private_data) {
1755                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1756                         if (!ypcm->use_441_slot)
1757                                 ypcm->update_pcm_vol = 2;
1758                 }
1759                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1760                 return 1;
1761         }
1762         return 0;
1763 }
1764 
1765 static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
1766         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1767         .name = "PCM Playback Volume",
1768         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1769                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1770         .info = snd_ymfpci_pcm_vol_info,
1771         .get = snd_ymfpci_pcm_vol_get,
1772         .put = snd_ymfpci_pcm_vol_put,
1773 };
1774 
1775 
1776 /*
1777  *  Mixer routines
1778  */
1779 
1780 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1781 {
1782         struct snd_ymfpci *chip = bus->private_data;
1783         chip->ac97_bus = NULL;
1784 }
1785 
1786 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1787 {
1788         struct snd_ymfpci *chip = ac97->private_data;
1789         chip->ac97 = NULL;
1790 }
1791 
1792 int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1793 {
1794         struct snd_ac97_template ac97;
1795         struct snd_kcontrol *kctl;
1796         struct snd_pcm_substream *substream;
1797         unsigned int idx;
1798         int err;
1799         static struct snd_ac97_bus_ops ops = {
1800                 .write = snd_ymfpci_codec_write,
1801                 .read = snd_ymfpci_codec_read,
1802         };
1803 
1804         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1805                 return err;
1806         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1807         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1808 
1809         memset(&ac97, 0, sizeof(ac97));
1810         ac97.private_data = chip;
1811         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1812         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1813                 return err;
1814 
1815         /* to be sure */
1816         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1817                              AC97_EA_VRA|AC97_EA_VRM, 0);
1818 
1819         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1820                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1821                         return err;
1822         }
1823         if (chip->ac97->ext_id & AC97_EI_SDAC) {
1824                 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
1825                 err = snd_ctl_add(chip->card, kctl);
1826                 if (err < 0)
1827                         return err;
1828         }
1829 
1830         /* add S/PDIF control */
1831         if (snd_BUG_ON(!chip->pcm_spdif))
1832                 return -ENXIO;
1833         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1834                 return err;
1835         kctl->id.device = chip->pcm_spdif->device;
1836         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1837                 return err;
1838         kctl->id.device = chip->pcm_spdif->device;
1839         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1840                 return err;
1841         kctl->id.device = chip->pcm_spdif->device;
1842         chip->spdif_pcm_ctl = kctl;
1843 
1844         /* direct recording source */
1845         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1846             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1847                 return err;
1848 
1849         /*
1850          * shared rear/line-in
1851          */
1852         if (rear_switch) {
1853                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1854                         return err;
1855         }
1856 
1857         /* per-voice volume */
1858         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1859         for (idx = 0; idx < 32; ++idx) {
1860                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1861                 if (!kctl)
1862                         return -ENOMEM;
1863                 kctl->id.device = chip->pcm->device;
1864                 kctl->id.subdevice = idx;
1865                 kctl->private_value = (unsigned long)substream;
1866                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1867                         return err;
1868                 chip->pcm_mixer[idx].left = 0x8000;
1869                 chip->pcm_mixer[idx].right = 0x8000;
1870                 chip->pcm_mixer[idx].ctl = kctl;
1871                 substream = substream->next;
1872         }
1873 
1874         return 0;
1875 }
1876 
1877 
1878 /*
1879  * timer
1880  */
1881 
1882 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1883 {
1884         struct snd_ymfpci *chip;
1885         unsigned long flags;
1886         unsigned int count;
1887 
1888         chip = snd_timer_chip(timer);
1889         spin_lock_irqsave(&chip->reg_lock, flags);
1890         if (timer->sticks > 1) {
1891                 chip->timer_ticks = timer->sticks;
1892                 count = timer->sticks - 1;
1893         } else {
1894                 /*
1895                  * Divisor 1 is not allowed; fake it by using divisor 2 and
1896                  * counting two ticks for each interrupt.
1897                  */
1898                 chip->timer_ticks = 2;
1899                 count = 2 - 1;
1900         }
1901         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1902         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1903         spin_unlock_irqrestore(&chip->reg_lock, flags);
1904         return 0;
1905 }
1906 
1907 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1908 {
1909         struct snd_ymfpci *chip;
1910         unsigned long flags;
1911 
1912         chip = snd_timer_chip(timer);
1913         spin_lock_irqsave(&chip->reg_lock, flags);
1914         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1915         spin_unlock_irqrestore(&chip->reg_lock, flags);
1916         return 0;
1917 }
1918 
1919 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1920                                                unsigned long *num, unsigned long *den)
1921 {
1922         *num = 1;
1923         *den = 96000;
1924         return 0;
1925 }
1926 
1927 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1928         .flags = SNDRV_TIMER_HW_AUTO,
1929         .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
1930         .ticks = 0x10000,
1931         .start = snd_ymfpci_timer_start,
1932         .stop = snd_ymfpci_timer_stop,
1933         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1934 };
1935 
1936 int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1937 {
1938         struct snd_timer *timer = NULL;
1939         struct snd_timer_id tid;
1940         int err;
1941 
1942         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1943         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1944         tid.card = chip->card->number;
1945         tid.device = device;
1946         tid.subdevice = 0;
1947         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1948                 strcpy(timer->name, "YMFPCI timer");
1949                 timer->private_data = chip;
1950                 timer->hw = snd_ymfpci_timer_hw;
1951         }
1952         chip->timer = timer;
1953         return err;
1954 }
1955 
1956 
1957 /*
1958  *  proc interface
1959  */
1960 
1961 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1962                                  struct snd_info_buffer *buffer)
1963 {
1964         struct snd_ymfpci *chip = entry->private_data;
1965         int i;
1966         
1967         snd_iprintf(buffer, "YMFPCI\n\n");
1968         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1969                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1970 }
1971 
1972 static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1973 {
1974         return snd_card_ro_proc_new(card, "ymfpci", chip, snd_ymfpci_proc_read);
1975 }
1976 
1977 /*
1978  *  initialization routines
1979  */
1980 
1981 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1982 {
1983         u8 cmd;
1984 
1985         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1986 #if 0 // force to reset
1987         if (cmd & 0x03) {
1988 #endif
1989                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1990                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1991                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1992                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1993                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1994 #if 0
1995         }
1996 #endif
1997 }
1998 
1999 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
2000 {
2001         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
2002 }
2003 
2004 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
2005 {
2006         u32 val;
2007         int timeout = 1000;
2008 
2009         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
2010         if (val)
2011                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
2012         while (timeout-- > 0) {
2013                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
2014                 if ((val & 0x00000002) == 0)
2015                         break;
2016         }
2017 }
2018 
2019 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2020 {
2021         int err, is_1e;
2022         const char *name;
2023 
2024         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2025                                &chip->pci->dev);
2026         if (err >= 0) {
2027                 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
2028                         dev_err(chip->card->dev,
2029                                 "DSP microcode has wrong size\n");
2030                         err = -EINVAL;
2031                 }
2032         }
2033         if (err < 0)
2034                 return err;
2035         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2036                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2037                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2038                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2039         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2040         err = request_firmware(&chip->controller_microcode, name,
2041                                &chip->pci->dev);
2042         if (err >= 0) {
2043                 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
2044                         dev_err(chip->card->dev,
2045                                 "controller microcode has wrong size\n");
2046                         err = -EINVAL;
2047                 }
2048         }
2049         if (err < 0)
2050                 return err;
2051         return 0;
2052 }
2053 
2054 MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
2055 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
2056 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
2057 
2058 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2059 {
2060         int i;
2061         u16 ctrl;
2062         const __le32 *inst;
2063 
2064         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2065         snd_ymfpci_disable_dsp(chip);
2066         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2067         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2068         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2069         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2070         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2071         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2072         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2073         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2074         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2075 
2076         /* setup DSP instruction code */
2077         inst = (const __le32 *)chip->dsp_microcode->data;
2078         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2079                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
2080                                   le32_to_cpu(inst[i]));
2081 
2082         /* setup control instruction code */
2083         inst = (const __le32 *)chip->controller_microcode->data;
2084         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2085                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
2086                                   le32_to_cpu(inst[i]));
2087 
2088         snd_ymfpci_enable_dsp(chip);
2089 }
2090 
2091 static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2092 {
2093         long size, playback_ctrl_size;
2094         int voice, bank, reg;
2095         u8 *ptr;
2096         dma_addr_t ptr_addr;
2097 
2098         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2099         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2100         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2101         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2102         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2103         
2104         size = ALIGN(playback_ctrl_size, 0x100) +
2105                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2106                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2107                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2108                chip->work_size;
2109         /* work_ptr must be aligned to 256 bytes, but it's already
2110            covered with the kernel page allocation mechanism */
2111         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2112                                 size, &chip->work_ptr) < 0) 
2113                 return -ENOMEM;
2114         ptr = chip->work_ptr.area;
2115         ptr_addr = chip->work_ptr.addr;
2116         memset(ptr, 0, size);   /* for sure */
2117 
2118         chip->bank_base_playback = ptr;
2119         chip->bank_base_playback_addr = ptr_addr;
2120         chip->ctrl_playback = (__le32 *)ptr;
2121         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2122         ptr += ALIGN(playback_ctrl_size, 0x100);
2123         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2124         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2125                 chip->voices[voice].number = voice;
2126                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2127                 chip->voices[voice].bank_addr = ptr_addr;
2128                 for (bank = 0; bank < 2; bank++) {
2129                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2130                         ptr += chip->bank_size_playback;
2131                         ptr_addr += chip->bank_size_playback;
2132                 }
2133         }
2134         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2135         ptr_addr = ALIGN(ptr_addr, 0x100);
2136         chip->bank_base_capture = ptr;
2137         chip->bank_base_capture_addr = ptr_addr;
2138         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2139                 for (bank = 0; bank < 2; bank++) {
2140                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2141                         ptr += chip->bank_size_capture;
2142                         ptr_addr += chip->bank_size_capture;
2143                 }
2144         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2145         ptr_addr = ALIGN(ptr_addr, 0x100);
2146         chip->bank_base_effect = ptr;
2147         chip->bank_base_effect_addr = ptr_addr;
2148         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2149                 for (bank = 0; bank < 2; bank++) {
2150                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2151                         ptr += chip->bank_size_effect;
2152                         ptr_addr += chip->bank_size_effect;
2153                 }
2154         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2155         ptr_addr = ALIGN(ptr_addr, 0x100);
2156         chip->work_base = ptr;
2157         chip->work_base_addr = ptr_addr;
2158         
2159         snd_BUG_ON(ptr + chip->work_size !=
2160                    chip->work_ptr.area + chip->work_ptr.bytes);
2161 
2162         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2163         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2164         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2165         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2166         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2167 
2168         /* S/PDIF output initialization */
2169         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2170         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2171         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2172 
2173         /* S/PDIF input initialization */
2174         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2175 
2176         /* digital mixer setup */
2177         for (reg = 0x80; reg < 0xc0; reg += 4)
2178                 snd_ymfpci_writel(chip, reg, 0);
2179         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2180         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
2181         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2182         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2183         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2184         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2185         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2186         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2187         
2188         return 0;
2189 }
2190 
2191 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2192 {
2193         u16 ctrl;
2194 
2195         if (snd_BUG_ON(!chip))
2196                 return -EINVAL;
2197 
2198         if (chip->res_reg_area) {       /* don't touch busy hardware */
2199                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2200                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2201                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2202                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2203                 snd_ymfpci_disable_dsp(chip);
2204                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2205                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2206                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2207                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2208                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2209                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2210                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2211         }
2212 
2213         snd_ymfpci_ac3_done(chip);
2214 
2215         /* Set PCI device to D3 state */
2216 #if 0
2217         /* FIXME: temporarily disabled, otherwise we cannot fire up
2218          * the chip again unless reboot.  ACPI bug?
2219          */
2220         pci_set_power_state(chip->pci, PCI_D3hot);
2221 #endif
2222 
2223 #ifdef CONFIG_PM_SLEEP
2224         kfree(chip->saved_regs);
2225 #endif
2226         if (chip->irq >= 0)
2227                 free_irq(chip->irq, chip);
2228         release_and_free_resource(chip->mpu_res);
2229         release_and_free_resource(chip->fm_res);
2230         snd_ymfpci_free_gameport(chip);
2231         iounmap(chip->reg_area_virt);
2232         if (chip->work_ptr.area)
2233                 snd_dma_free_pages(&chip->work_ptr);
2234         
2235         release_and_free_resource(chip->res_reg_area);
2236 
2237         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2238         
2239         pci_disable_device(chip->pci);
2240         release_firmware(chip->dsp_microcode);
2241         release_firmware(chip->controller_microcode);
2242         kfree(chip);
2243         return 0;
2244 }
2245 
2246 static int snd_ymfpci_dev_free(struct snd_device *device)
2247 {
2248         struct snd_ymfpci *chip = device->device_data;
2249         return snd_ymfpci_free(chip);
2250 }
2251 
2252 #ifdef CONFIG_PM_SLEEP
2253 static int saved_regs_index[] = {
2254         /* spdif */
2255         YDSXGR_SPDIFOUTCTRL,
2256         YDSXGR_SPDIFOUTSTATUS,
2257         YDSXGR_SPDIFINCTRL,
2258         /* volumes */
2259         YDSXGR_PRIADCLOOPVOL,
2260         YDSXGR_NATIVEDACINVOL,
2261         YDSXGR_NATIVEDACOUTVOL,
2262         YDSXGR_BUF441OUTVOL,
2263         YDSXGR_NATIVEADCINVOL,
2264         YDSXGR_SPDIFLOOPVOL,
2265         YDSXGR_SPDIFOUTVOL,
2266         YDSXGR_ZVOUTVOL,
2267         YDSXGR_LEGACYOUTVOL,
2268         /* address bases */
2269         YDSXGR_PLAYCTRLBASE,
2270         YDSXGR_RECCTRLBASE,
2271         YDSXGR_EFFCTRLBASE,
2272         YDSXGR_WORKBASE,
2273         /* capture set up */
2274         YDSXGR_MAPOFREC,
2275         YDSXGR_RECFORMAT,
2276         YDSXGR_RECSLOTSR,
2277         YDSXGR_ADCFORMAT,
2278         YDSXGR_ADCSLOTSR,
2279 };
2280 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2281 
2282 static int snd_ymfpci_suspend(struct device *dev)
2283 {
2284         struct snd_card *card = dev_get_drvdata(dev);
2285         struct snd_ymfpci *chip = card->private_data;
2286         unsigned int i;
2287         
2288         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2289         snd_ac97_suspend(chip->ac97);
2290         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2291                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2292         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2293         pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
2294                              &chip->saved_dsxg_legacy);
2295         pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2296                              &chip->saved_dsxg_elegacy);
2297         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2298         snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2299         snd_ymfpci_disable_dsp(chip);
2300         return 0;
2301 }
2302 
2303 static int snd_ymfpci_resume(struct device *dev)
2304 {
2305         struct pci_dev *pci = to_pci_dev(dev);
2306         struct snd_card *card = dev_get_drvdata(dev);
2307         struct snd_ymfpci *chip = card->private_data;
2308         unsigned int i;
2309 
2310         snd_ymfpci_aclink_reset(pci);
2311         snd_ymfpci_codec_ready(chip, 0);
2312         snd_ymfpci_download_image(chip);
2313         udelay(100);
2314 
2315         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2316                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2317 
2318         snd_ac97_resume(chip->ac97);
2319 
2320         pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
2321                               chip->saved_dsxg_legacy);
2322         pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
2323                               chip->saved_dsxg_elegacy);
2324 
2325         /* start hw again */
2326         if (chip->start_count > 0) {
2327                 spin_lock_irq(&chip->reg_lock);
2328                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2329                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2330                 spin_unlock_irq(&chip->reg_lock);
2331         }
2332         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2333         return 0;
2334 }
2335 
2336 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
2337 #endif /* CONFIG_PM_SLEEP */
2338 
2339 int snd_ymfpci_create(struct snd_card *card,
2340                       struct pci_dev *pci,
2341                       unsigned short old_legacy_ctrl,
2342                       struct snd_ymfpci **rchip)
2343 {
2344         struct snd_ymfpci *chip;
2345         int err;
2346         static struct snd_device_ops ops = {
2347                 .dev_free =     snd_ymfpci_dev_free,
2348         };
2349         
2350         *rchip = NULL;
2351 
2352         /* enable PCI device */
2353         if ((err = pci_enable_device(pci)) < 0)
2354                 return err;
2355 
2356         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2357         if (chip == NULL) {
2358                 pci_disable_device(pci);
2359                 return -ENOMEM;
2360         }
2361         chip->old_legacy_ctrl = old_legacy_ctrl;
2362         spin_lock_init(&chip->reg_lock);
2363         spin_lock_init(&chip->voice_lock);
2364         init_waitqueue_head(&chip->interrupt_sleep);
2365         atomic_set(&chip->interrupt_sleep_count, 0);
2366         chip->card = card;
2367         chip->pci = pci;
2368         chip->irq = -1;
2369         chip->device_id = pci->device;
2370         chip->rev = pci->revision;
2371         chip->reg_area_phys = pci_resource_start(pci, 0);
2372         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2373         pci_set_master(pci);
2374         chip->src441_used = -1;
2375 
2376         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2377                 dev_err(chip->card->dev,
2378                         "unable to grab memory region 0x%lx-0x%lx\n",
2379                         chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2380                 err = -EBUSY;
2381                 goto free_chip;
2382         }
2383         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2384                         KBUILD_MODNAME, chip)) {
2385                 dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
2386                 err = -EBUSY;
2387                 goto free_chip;
2388         }
2389         chip->irq = pci->irq;
2390 
2391         snd_ymfpci_aclink_reset(pci);
2392         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2393                 err = -EIO;
2394                 goto free_chip;
2395         }
2396 
2397         err = snd_ymfpci_request_firmware(chip);
2398         if (err < 0) {
2399                 dev_err(chip->card->dev, "firmware request failed: %d\n", err);
2400                 goto free_chip;
2401         }
2402         snd_ymfpci_download_image(chip);
2403 
2404         udelay(100); /* seems we need a delay after downloading image.. */
2405 
2406         if (snd_ymfpci_memalloc(chip) < 0) {
2407                 err = -EIO;
2408                 goto free_chip;
2409         }
2410 
2411         err = snd_ymfpci_ac3_init(chip);
2412         if (err < 0)
2413                 goto free_chip;
2414 
2415 #ifdef CONFIG_PM_SLEEP
2416         chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32),
2417                                          GFP_KERNEL);
2418         if (chip->saved_regs == NULL) {
2419                 err = -ENOMEM;
2420                 goto free_chip;
2421         }
2422 #endif
2423 
2424         err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
2425         if (err < 0)
2426                 goto free_chip;
2427 
2428         snd_ymfpci_proc_init(card, chip);
2429 
2430         *rchip = chip;
2431         return 0;
2432 
2433 free_chip:
2434         snd_ymfpci_free(chip);
2435         return err;
2436 }

/* [<][>][^][v][top][bottom][index][help] */