This source file includes following definitions.
- get_vm_block
- put_vm_block
- ct_vm_map
- ct_vm_unmap
- ct_get_ptp_phys
- ct_vm_create
- ct_vm_destroy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 #include "ctvmem.h"
16 #include "ctatc.h"
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <sound/pcm.h>
21
22 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
23 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
24
25
26
27
28
29 static struct ct_vm_block *
30 get_vm_block(struct ct_vm *vm, unsigned int size, struct ct_atc *atc)
31 {
32 struct ct_vm_block *block = NULL, *entry;
33 struct list_head *pos;
34
35 size = CT_PAGE_ALIGN(size);
36 if (size > vm->size) {
37 dev_err(atc->card->dev,
38 "Fail! No sufficient device virtual memory space available!\n");
39 return NULL;
40 }
41
42 mutex_lock(&vm->lock);
43 list_for_each(pos, &vm->unused) {
44 entry = list_entry(pos, struct ct_vm_block, list);
45 if (entry->size >= size)
46 break;
47 }
48 if (pos == &vm->unused)
49 goto out;
50
51 if (entry->size == size) {
52
53 list_move(&entry->list, &vm->used);
54 vm->size -= size;
55 block = entry;
56 goto out;
57 }
58
59 block = kzalloc(sizeof(*block), GFP_KERNEL);
60 if (!block)
61 goto out;
62
63 block->addr = entry->addr;
64 block->size = size;
65 list_add(&block->list, &vm->used);
66 entry->addr += size;
67 entry->size -= size;
68 vm->size -= size;
69
70 out:
71 mutex_unlock(&vm->lock);
72 return block;
73 }
74
75 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
76 {
77 struct ct_vm_block *entry, *pre_ent;
78 struct list_head *pos, *pre;
79
80 block->size = CT_PAGE_ALIGN(block->size);
81
82 mutex_lock(&vm->lock);
83 list_del(&block->list);
84 vm->size += block->size;
85
86 list_for_each(pos, &vm->unused) {
87 entry = list_entry(pos, struct ct_vm_block, list);
88 if (entry->addr >= (block->addr + block->size))
89 break;
90 }
91 if (pos == &vm->unused) {
92 list_add_tail(&block->list, &vm->unused);
93 entry = block;
94 } else {
95 if ((block->addr + block->size) == entry->addr) {
96 entry->addr = block->addr;
97 entry->size += block->size;
98 kfree(block);
99 } else {
100 __list_add(&block->list, pos->prev, pos);
101 entry = block;
102 }
103 }
104
105 pos = &entry->list;
106 pre = pos->prev;
107 while (pre != &vm->unused) {
108 entry = list_entry(pos, struct ct_vm_block, list);
109 pre_ent = list_entry(pre, struct ct_vm_block, list);
110 if ((pre_ent->addr + pre_ent->size) > entry->addr)
111 break;
112
113 pre_ent->size += entry->size;
114 list_del(pos);
115 kfree(entry);
116 pos = pre;
117 pre = pos->prev;
118 }
119 mutex_unlock(&vm->lock);
120 }
121
122
123 static struct ct_vm_block *
124 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
125 {
126 struct ct_vm_block *block;
127 unsigned int pte_start;
128 unsigned i, pages;
129 unsigned long *ptp;
130 struct ct_atc *atc = snd_pcm_substream_chip(substream);
131
132 block = get_vm_block(vm, size, atc);
133 if (block == NULL) {
134 dev_err(atc->card->dev,
135 "No virtual memory block that is big enough to allocate!\n");
136 return NULL;
137 }
138
139 ptp = (unsigned long *)vm->ptp[0].area;
140 pte_start = (block->addr >> CT_PAGE_SHIFT);
141 pages = block->size >> CT_PAGE_SHIFT;
142 for (i = 0; i < pages; i++) {
143 unsigned long addr;
144 addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
145 ptp[pte_start + i] = addr;
146 }
147
148 block->size = size;
149 return block;
150 }
151
152 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
153 {
154
155 put_vm_block(vm, block);
156 }
157
158
159
160
161
162
163 static dma_addr_t
164 ct_get_ptp_phys(struct ct_vm *vm, int index)
165 {
166 return (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
167 }
168
169 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
170 {
171 struct ct_vm *vm;
172 struct ct_vm_block *block;
173 int i, err = 0;
174
175 *rvm = NULL;
176
177 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
178 if (!vm)
179 return -ENOMEM;
180
181 mutex_init(&vm->lock);
182
183
184 for (i = 0; i < CT_PTP_NUM; i++) {
185 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
186 snd_dma_pci_data(pci),
187 PAGE_SIZE, &vm->ptp[i]);
188 if (err < 0)
189 break;
190 }
191 if (err < 0) {
192
193 ct_vm_destroy(vm);
194 return -ENOMEM;
195 }
196 vm->size = CT_ADDRS_PER_PAGE * i;
197 vm->map = ct_vm_map;
198 vm->unmap = ct_vm_unmap;
199 vm->get_ptp_phys = ct_get_ptp_phys;
200 INIT_LIST_HEAD(&vm->unused);
201 INIT_LIST_HEAD(&vm->used);
202 block = kzalloc(sizeof(*block), GFP_KERNEL);
203 if (NULL != block) {
204 block->addr = 0;
205 block->size = vm->size;
206 list_add(&block->list, &vm->unused);
207 }
208
209 *rvm = vm;
210 return 0;
211 }
212
213
214
215 void ct_vm_destroy(struct ct_vm *vm)
216 {
217 int i;
218 struct list_head *pos;
219 struct ct_vm_block *entry;
220
221
222 while (!list_empty(&vm->used)) {
223 pos = vm->used.next;
224 list_del(pos);
225 entry = list_entry(pos, struct ct_vm_block, list);
226 kfree(entry);
227 }
228 while (!list_empty(&vm->unused)) {
229 pos = vm->unused.next;
230 list_del(pos);
231 entry = list_entry(pos, struct ct_vm_block, list);
232 kfree(entry);
233 }
234
235
236 for (i = 0; i < CT_PTP_NUM; i++)
237 snd_dma_free_pages(&vm->ptp[i]);
238
239 vm->size = 0;
240
241 kfree(vm);
242 }