root/sound/pci/vx222/vx222_ops.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vx2_reg_addr
  2. vx2_inb
  3. vx2_outb
  4. vx2_inl
  5. vx2_outl
  6. vx2_reset_dsp
  7. vx2_test_xilinx
  8. vx2_setup_pseudo_dma
  9. vx2_release_pseudo_dma
  10. vx2_dma_write
  11. vx2_dma_read
  12. put_xilinx_data
  13. vx2_load_xilinx_binary
  14. vx2_load_dsp
  15. vx2_test_and_ack
  16. vx2_validate_irq
  17. vx2_write_codec_reg
  18. vx2_write_akm
  19. vx2_old_write_codec_bit
  20. vx2_reset_codec
  21. vx2_change_audio_source
  22. vx2_set_clock_source
  23. vx2_reset_board
  24. vx2_set_input_level
  25. vx_input_level_info
  26. vx_input_level_get
  27. vx_input_level_put
  28. vx_mic_level_info
  29. vx_mic_level_get
  30. vx_mic_level_put
  31. vx2_add_mic_controls

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Driver for Digigram VX222 V2/Mic soundcards
   4  *
   5  * VX222-specific low-level routines
   6  *
   7  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
   8  */
   9 
  10 #include <linux/delay.h>
  11 #include <linux/device.h>
  12 #include <linux/firmware.h>
  13 #include <linux/mutex.h>
  14 #include <linux/io.h>
  15 
  16 #include <sound/core.h>
  17 #include <sound/control.h>
  18 #include <sound/tlv.h>
  19 #include "vx222.h"
  20 
  21 
  22 static int vx2_reg_offset[VX_REG_MAX] = {
  23         [VX_ICR]    = 0x00,
  24         [VX_CVR]    = 0x04,
  25         [VX_ISR]    = 0x08,
  26         [VX_IVR]    = 0x0c,
  27         [VX_RXH]    = 0x14,
  28         [VX_RXM]    = 0x18,
  29         [VX_RXL]    = 0x1c,
  30         [VX_DMA]    = 0x10,
  31         [VX_CDSP]   = 0x20,
  32         [VX_CFG]    = 0x24,
  33         [VX_RUER]   = 0x28,
  34         [VX_DATA]   = 0x2c,
  35         [VX_STATUS] = 0x30,
  36         [VX_LOFREQ] = 0x34,
  37         [VX_HIFREQ] = 0x38,
  38         [VX_CSUER]  = 0x3c,
  39         [VX_SELMIC] = 0x40,
  40         [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
  41         [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
  42         [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
  43         [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
  44         [VX_CNTRL]  = 0x50,             // VX_CNTRL_REGISTER_OFFSET
  45         [VX_GPIOC]  = 0x54,             // VX_GPIOC (new with PLX9030)
  46 };
  47 
  48 static int vx2_reg_index[VX_REG_MAX] = {
  49         [VX_ICR]        = 1,
  50         [VX_CVR]        = 1,
  51         [VX_ISR]        = 1,
  52         [VX_IVR]        = 1,
  53         [VX_RXH]        = 1,
  54         [VX_RXM]        = 1,
  55         [VX_RXL]        = 1,
  56         [VX_DMA]        = 1,
  57         [VX_CDSP]       = 1,
  58         [VX_CFG]        = 1,
  59         [VX_RUER]       = 1,
  60         [VX_DATA]       = 1,
  61         [VX_STATUS]     = 1,
  62         [VX_LOFREQ]     = 1,
  63         [VX_HIFREQ]     = 1,
  64         [VX_CSUER]      = 1,
  65         [VX_SELMIC]     = 1,
  66         [VX_COMPOT]     = 1,
  67         [VX_SCOMPR]     = 1,
  68         [VX_GLIMIT]     = 1,
  69         [VX_INTCSR]     = 0,    /* on the PLX */
  70         [VX_CNTRL]      = 0,    /* on the PLX */
  71         [VX_GPIOC]      = 0,    /* on the PLX */
  72 };
  73 
  74 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
  75 {
  76         struct snd_vx222 *chip = to_vx222(_chip);
  77         return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
  78 }
  79 
  80 /**
  81  * snd_vx_inb - read a byte from the register
  82  * @chip: VX core instance
  83  * @offset: register enum
  84  */
  85 static unsigned char vx2_inb(struct vx_core *chip, int offset)
  86 {
  87         return inb(vx2_reg_addr(chip, offset));
  88 }
  89 
  90 /**
  91  * snd_vx_outb - write a byte on the register
  92  * @chip: VX core instance
  93  * @offset: the register offset
  94  * @val: the value to write
  95  */
  96 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
  97 {
  98         outb(val, vx2_reg_addr(chip, offset));
  99         /*
 100         dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 101         */
 102 }
 103 
 104 /**
 105  * snd_vx_inl - read a 32bit word from the register
 106  * @chip: VX core instance
 107  * @offset: register enum
 108  */
 109 static unsigned int vx2_inl(struct vx_core *chip, int offset)
 110 {
 111         return inl(vx2_reg_addr(chip, offset));
 112 }
 113 
 114 /**
 115  * snd_vx_outl - write a 32bit word on the register
 116  * @chip: VX core instance
 117  * @offset: the register enum
 118  * @val: the value to write
 119  */
 120 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
 121 {
 122         /*
 123         dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
 124         */
 125         outl(val, vx2_reg_addr(chip, offset));
 126 }
 127 
 128 /*
 129  * redefine macros to call directly
 130  */
 131 #undef vx_inb
 132 #define vx_inb(chip,reg)        vx2_inb((struct vx_core*)(chip), VX_##reg)
 133 #undef vx_outb
 134 #define vx_outb(chip,reg,val)   vx2_outb((struct vx_core*)(chip), VX_##reg, val)
 135 #undef vx_inl
 136 #define vx_inl(chip,reg)        vx2_inl((struct vx_core*)(chip), VX_##reg)
 137 #undef vx_outl
 138 #define vx_outl(chip,reg,val)   vx2_outl((struct vx_core*)(chip), VX_##reg, val)
 139 
 140 
 141 /*
 142  * vx_reset_dsp - reset the DSP
 143  */
 144 
 145 #define XX_DSP_RESET_WAIT_TIME          2       /* ms */
 146 
 147 static void vx2_reset_dsp(struct vx_core *_chip)
 148 {
 149         struct snd_vx222 *chip = to_vx222(_chip);
 150 
 151         /* set the reset dsp bit to 0 */
 152         vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
 153 
 154         mdelay(XX_DSP_RESET_WAIT_TIME);
 155 
 156         chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
 157         /* set the reset dsp bit to 1 */
 158         vx_outl(chip, CDSP, chip->regCDSP);
 159 }
 160 
 161 
 162 static int vx2_test_xilinx(struct vx_core *_chip)
 163 {
 164         struct snd_vx222 *chip = to_vx222(_chip);
 165         unsigned int data;
 166 
 167         dev_dbg(_chip->card->dev, "testing xilinx...\n");
 168         /* This test uses several write/read sequences on TEST0 and TEST1 bits
 169          * to figure out whever or not the xilinx was correctly loaded
 170          */
 171 
 172         /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
 173         vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
 174         vx_inl(chip, ISR);
 175         data = vx_inl(chip, STATUS);
 176         if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
 177                 dev_dbg(_chip->card->dev, "bad!\n");
 178                 return -ENODEV;
 179         }
 180 
 181         /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
 182         vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
 183         vx_inl(chip, ISR);
 184         data = vx_inl(chip, STATUS);
 185         if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
 186                 dev_dbg(_chip->card->dev, "bad! #2\n");
 187                 return -ENODEV;
 188         }
 189 
 190         if (_chip->type == VX_TYPE_BOARD) {
 191                 /* not implemented on VX_2_BOARDS */
 192                 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
 193                 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
 194                 vx_inl(chip, ISR);
 195                 data = vx_inl(chip, STATUS);
 196                 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
 197                         dev_dbg(_chip->card->dev, "bad! #3\n");
 198                         return -ENODEV;
 199                 }
 200 
 201                 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
 202                 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
 203                 vx_inl(chip, ISR);
 204                 data = vx_inl(chip, STATUS);
 205                 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
 206                         dev_dbg(_chip->card->dev, "bad! #4\n");
 207                         return -ENODEV;
 208                 }
 209         }
 210         dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
 211         return 0;
 212 }
 213 
 214 
 215 /**
 216  * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
 217  * @chip: VX core instance
 218  * @do_write: 0 = read, 1 = set up for DMA write
 219  */
 220 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
 221 {
 222         /* Interrupt mode and HREQ pin enabled for host transmit data transfers
 223          * (in case of the use of the pseudo-dma facility).
 224          */
 225         vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
 226 
 227         /* Reset the pseudo-dma register (in case of the use of the
 228          * pseudo-dma facility).
 229          */
 230         vx_outl(chip, RESET_DMA, 0);
 231 }
 232 
 233 /*
 234  * vx_release_pseudo_dma - disable the pseudo-DMA mode
 235  */
 236 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
 237 {
 238         /* HREQ pin disabled. */
 239         vx_outl(chip, ICR, 0);
 240 }
 241 
 242 
 243 
 244 /* pseudo-dma write */
 245 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 246                           struct vx_pipe *pipe, int count)
 247 {
 248         unsigned long port = vx2_reg_addr(chip, VX_DMA);
 249         int offset = pipe->hw_ptr;
 250         u32 *addr = (u32 *)(runtime->dma_area + offset);
 251 
 252         if (snd_BUG_ON(count % 4))
 253                 return;
 254 
 255         vx2_setup_pseudo_dma(chip, 1);
 256 
 257         /* Transfer using pseudo-dma.
 258          */
 259         if (offset + count >= pipe->buffer_bytes) {
 260                 int length = pipe->buffer_bytes - offset;
 261                 count -= length;
 262                 length >>= 2; /* in 32bit words */
 263                 /* Transfer using pseudo-dma. */
 264                 for (; length > 0; length--) {
 265                         outl(*addr, port);
 266                         addr++;
 267                 }
 268                 addr = (u32 *)runtime->dma_area;
 269                 pipe->hw_ptr = 0;
 270         }
 271         pipe->hw_ptr += count;
 272         count >>= 2; /* in 32bit words */
 273         /* Transfer using pseudo-dma. */
 274         for (; count > 0; count--) {
 275                 outl(*addr, port);
 276                 addr++;
 277         }
 278 
 279         vx2_release_pseudo_dma(chip);
 280 }
 281 
 282 
 283 /* pseudo dma read */
 284 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
 285                          struct vx_pipe *pipe, int count)
 286 {
 287         int offset = pipe->hw_ptr;
 288         u32 *addr = (u32 *)(runtime->dma_area + offset);
 289         unsigned long port = vx2_reg_addr(chip, VX_DMA);
 290 
 291         if (snd_BUG_ON(count % 4))
 292                 return;
 293 
 294         vx2_setup_pseudo_dma(chip, 0);
 295         /* Transfer using pseudo-dma.
 296          */
 297         if (offset + count >= pipe->buffer_bytes) {
 298                 int length = pipe->buffer_bytes - offset;
 299                 count -= length;
 300                 length >>= 2; /* in 32bit words */
 301                 /* Transfer using pseudo-dma. */
 302                 for (; length > 0; length--)
 303                         *addr++ = inl(port);
 304                 addr = (u32 *)runtime->dma_area;
 305                 pipe->hw_ptr = 0;
 306         }
 307         pipe->hw_ptr += count;
 308         count >>= 2; /* in 32bit words */
 309         /* Transfer using pseudo-dma. */
 310         for (; count > 0; count--)
 311                 *addr++ = inl(port);
 312 
 313         vx2_release_pseudo_dma(chip);
 314 }
 315 
 316 #define VX_XILINX_RESET_MASK        0x40000000
 317 #define VX_USERBIT0_MASK            0x00000004
 318 #define VX_USERBIT1_MASK            0x00000020
 319 #define VX_CNTRL_REGISTER_VALUE     0x00172012
 320 
 321 /*
 322  * transfer counts bits to PLX
 323  */
 324 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
 325 {
 326         unsigned int i;
 327 
 328         for (i = 0; i < counts; i++) {
 329                 unsigned int val;
 330 
 331                 /* set the clock bit to 0. */
 332                 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
 333                 vx2_outl(chip, port, val);
 334                 vx2_inl(chip, port);
 335                 udelay(1);
 336 
 337                 if (data & (1 << i))
 338                         val |= VX_USERBIT1_MASK;
 339                 else
 340                         val &= ~VX_USERBIT1_MASK;
 341                 vx2_outl(chip, port, val);
 342                 vx2_inl(chip, port);
 343 
 344                 /* set the clock bit to 1. */
 345                 val |= VX_USERBIT0_MASK;
 346                 vx2_outl(chip, port, val);
 347                 vx2_inl(chip, port);
 348                 udelay(1);
 349         }
 350         return 0;
 351 }
 352 
 353 /*
 354  * load the xilinx image
 355  */
 356 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
 357 {
 358         unsigned int i;
 359         unsigned int port;
 360         const unsigned char *image;
 361 
 362         /* XILINX reset (wait at least 1 millisecond between reset on and off). */
 363         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
 364         vx_inl(chip, CNTRL);
 365         msleep(10);
 366         vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
 367         vx_inl(chip, CNTRL);
 368         msleep(10);
 369 
 370         if (chip->type == VX_TYPE_BOARD)
 371                 port = VX_CNTRL;
 372         else
 373                 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
 374 
 375         image = xilinx->data;
 376         for (i = 0; i < xilinx->size; i++, image++) {
 377                 if (put_xilinx_data(chip, port, 8, *image) < 0)
 378                         return -EINVAL;
 379                 /* don't take too much time in this loop... */
 380                 cond_resched();
 381         }
 382         put_xilinx_data(chip, port, 4, 0xff); /* end signature */
 383 
 384         msleep(200);
 385 
 386         /* test after loading (is buggy with VX222) */
 387         if (chip->type != VX_TYPE_BOARD) {
 388                 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
 389                 i = vx_inl(chip, GPIOC);
 390                 if (i & 0x0100)
 391                         return 0;
 392                 dev_err(chip->card->dev,
 393                         "xilinx test failed after load, GPIOC=0x%x\n", i);
 394                 return -EINVAL;
 395         }
 396 
 397         return 0;
 398 }
 399 
 400         
 401 /*
 402  * load the boot/dsp images
 403  */
 404 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
 405 {
 406         int err;
 407 
 408         switch (index) {
 409         case 1:
 410                 /* xilinx image */
 411                 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
 412                         return err;
 413                 if ((err = vx2_test_xilinx(vx)) < 0)
 414                         return err;
 415                 return 0;
 416         case 2:
 417                 /* DSP boot */
 418                 return snd_vx_dsp_boot(vx, dsp);
 419         case 3:
 420                 /* DSP image */
 421                 return snd_vx_dsp_load(vx, dsp);
 422         default:
 423                 snd_BUG();
 424                 return -EINVAL;
 425         }
 426 }
 427 
 428 
 429 /*
 430  * vx_test_and_ack - test and acknowledge interrupt
 431  *
 432  * called from irq hander, too
 433  *
 434  * spinlock held!
 435  */
 436 static int vx2_test_and_ack(struct vx_core *chip)
 437 {
 438         /* not booted yet? */
 439         if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
 440                 return -ENXIO;
 441 
 442         if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
 443                 return -EIO;
 444         
 445         /* ok, interrupts generated, now ack it */
 446         /* set ACQUIT bit up and down */
 447         vx_outl(chip, STATUS, 0);
 448         /* useless read just to spend some time and maintain
 449          * the ACQUIT signal up for a while ( a bus cycle )
 450          */
 451         vx_inl(chip, STATUS);
 452         /* ack */
 453         vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
 454         /* useless read just to spend some time and maintain
 455          * the ACQUIT signal up for a while ( a bus cycle ) */
 456         vx_inl(chip, STATUS);
 457         /* clear */
 458         vx_outl(chip, STATUS, 0);
 459 
 460         return 0;
 461 }
 462 
 463 
 464 /*
 465  * vx_validate_irq - enable/disable IRQ
 466  */
 467 static void vx2_validate_irq(struct vx_core *_chip, int enable)
 468 {
 469         struct snd_vx222 *chip = to_vx222(_chip);
 470 
 471         /* Set the interrupt enable bit to 1 in CDSP register */
 472         if (enable) {
 473                 /* Set the PCI interrupt enable bit to 1.*/
 474                 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
 475                 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
 476         } else {
 477                 /* Set the PCI interrupt enable bit to 0. */
 478                 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
 479                 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
 480         }
 481         vx_outl(chip, CDSP, chip->regCDSP);
 482 }
 483 
 484 
 485 /*
 486  * write an AKM codec data (24bit)
 487  */
 488 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
 489 {
 490         unsigned int i;
 491 
 492         vx_inl(chip, HIFREQ);
 493 
 494         /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
 495         for (i = 0; i < 24; i++, data <<= 1)
 496                 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 497         /* Terminate access to codec registers */
 498         vx_inl(chip, RUER);
 499 }
 500 
 501 
 502 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
 503 #define AKM_CODEC_RESET_ON_CMD      0xA100
 504 #define AKM_CODEC_RESET_OFF_CMD     0xA103
 505 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
 506 #define AKM_CODEC_MUTE_CMD          0xA38D
 507 #define AKM_CODEC_UNMUTE_CMD        0xA30D
 508 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
 509 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
 510 
 511 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
 512     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
 513     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
 514     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
 515     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
 516     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
 517     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
 518     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
 519     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
 520     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
 521     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
 522     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
 523     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
 524     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
 525     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
 526     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
 527     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
 528     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
 529     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
 530     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
 531     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
 532     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
 533     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
 534     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
 535     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
 536     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
 537     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
 538     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
 539     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
 540     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
 541     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
 542     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
 543     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
 544     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
 545     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
 546     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
 547     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
 548     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
 549     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
 550     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
 551     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
 552     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
 553     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
 554     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
 555     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
 556     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
 557     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
 558     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
 559     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
 560     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
 561     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
 562     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
 563     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
 564     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
 565     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
 566     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
 567     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
 568     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
 569     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
 570     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
 571     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
 572     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
 573     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
 574     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
 575     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
 576     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
 577     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
 578     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
 579     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
 580     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
 581     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
 582     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
 583     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
 584     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
 585     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
 586     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
 587     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
 588     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
 589     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
 590     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
 591     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
 592     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
 593     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
 594     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
 595     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
 596     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
 597     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
 598     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
 599     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
 600     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
 601     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
 602     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
 603     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
 604     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
 605     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
 606     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
 607     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
 608     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
 609     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
 610     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
 611     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
 612     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
 613     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
 614     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
 615     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
 616     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
 617     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
 618     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
 619     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
 620     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
 621     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
 622     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
 623     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
 624     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
 625     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
 626     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
 627     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
 628     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
 629     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
 630     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
 631     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
 632     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
 633     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
 634     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
 635     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
 636     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
 637     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
 638     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
 639     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
 640     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
 641     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
 642     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
 643     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
 644     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
 645     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
 646     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
 647     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
 648     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
 649     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
 650     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
 651     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
 652     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
 653     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
 654     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
 655     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
 656     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
 657     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
 658     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
 659     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
 660 
 661 /*
 662  * pseudo-codec write entry
 663  */
 664 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
 665 {
 666         unsigned int val;
 667 
 668         if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
 669                 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
 670                 return;
 671         }
 672 
 673         /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
 674            a look up table, as there is no linear matching between the driver codec values
 675            and the real dBu value
 676         */
 677         if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
 678                 return;
 679 
 680         switch (reg) {
 681         case XX_CODEC_LEVEL_LEFT_REGISTER:
 682                 val = AKM_CODEC_LEFT_LEVEL_CMD;
 683                 break;
 684         case XX_CODEC_LEVEL_RIGHT_REGISTER:
 685                 val = AKM_CODEC_RIGHT_LEVEL_CMD;
 686                 break;
 687         default:
 688                 snd_BUG();
 689                 return;
 690         }
 691         val |= vx2_akm_gains_lut[data];
 692 
 693         vx2_write_codec_reg(chip, val);
 694 }
 695 
 696 
 697 /*
 698  * write codec bit for old VX222 board
 699  */
 700 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
 701 {
 702         int i;
 703 
 704         /* activate access to codec registers */
 705         vx_inl(chip, HIFREQ);
 706 
 707         for (i = 0; i < 24; i++, data <<= 1)
 708                 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
 709 
 710         /* Terminate access to codec registers */
 711         vx_inl(chip, RUER);
 712 }
 713 
 714 
 715 /*
 716  * reset codec bit
 717  */
 718 static void vx2_reset_codec(struct vx_core *_chip)
 719 {
 720         struct snd_vx222 *chip = to_vx222(_chip);
 721 
 722         /* Set the reset CODEC bit to 0. */
 723         vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
 724         vx_inl(chip, CDSP);
 725         msleep(10);
 726         /* Set the reset CODEC bit to 1. */
 727         chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
 728         vx_outl(chip, CDSP, chip->regCDSP);
 729         vx_inl(chip, CDSP);
 730         if (_chip->type == VX_TYPE_BOARD) {
 731                 msleep(1);
 732                 return;
 733         }
 734 
 735         msleep(5);  /* additionnel wait time for AKM's */
 736 
 737         vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
 738         
 739         vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
 740         vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
 741         vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
 742 
 743         if (_chip->type == VX_TYPE_MIC) {
 744                 /* set up the micro input selector */
 745                 chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
 746                         MICRO_SELECT_PREAMPLI_G_0 |
 747                         MICRO_SELECT_NOISE_T_52DB;
 748 
 749                 /* reset phantom power supply */
 750                 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
 751 
 752                 vx_outl(_chip, SELMIC, chip->regSELMIC);
 753         }
 754 }
 755 
 756 
 757 /*
 758  * change the audio source
 759  */
 760 static void vx2_change_audio_source(struct vx_core *_chip, int src)
 761 {
 762         struct snd_vx222 *chip = to_vx222(_chip);
 763 
 764         switch (src) {
 765         case VX_AUDIO_SRC_DIGITAL:
 766                 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
 767                 break;
 768         default:
 769                 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
 770                 break;
 771         }
 772         vx_outl(chip, CFG, chip->regCFG);
 773 }
 774 
 775 
 776 /*
 777  * set the clock source
 778  */
 779 static void vx2_set_clock_source(struct vx_core *_chip, int source)
 780 {
 781         struct snd_vx222 *chip = to_vx222(_chip);
 782 
 783         if (source == INTERNAL_QUARTZ)
 784                 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
 785         else
 786                 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
 787         vx_outl(chip, CFG, chip->regCFG);
 788 }
 789 
 790 /*
 791  * reset the board
 792  */
 793 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
 794 {
 795         struct snd_vx222 *chip = to_vx222(_chip);
 796 
 797         /* initialize the register values */
 798         chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
 799         chip->regCFG = 0;
 800 }
 801 
 802 
 803 
 804 /*
 805  * input level controls for VX222 Mic
 806  */
 807 
 808 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
 809  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
 810  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
 811  */
 812 #define V2_MICRO_LEVEL_RANGE        (318 - 255)
 813 
 814 static void vx2_set_input_level(struct snd_vx222 *chip)
 815 {
 816         int i, miclevel, preamp;
 817         unsigned int data;
 818 
 819         miclevel = chip->mic_level;
 820         miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
 821         preamp = 0;
 822         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
 823                 preamp++;       /* raise pre ampli + 18dB */
 824                 miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
 825         }
 826         if (snd_BUG_ON(preamp >= 4))
 827                 return;
 828 
 829         /* set pre-amp level */
 830         chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
 831         chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
 832         vx_outl(chip, SELMIC, chip->regSELMIC);
 833 
 834         data = (unsigned int)miclevel << 16 |
 835                 (unsigned int)chip->input_level[1] << 8 |
 836                 (unsigned int)chip->input_level[0];
 837         vx_inl(chip, DATA); /* Activate input level programming */
 838 
 839         /* We have to send 32 bits (4 x 8 bits) */
 840         for (i = 0; i < 32; i++, data <<= 1)
 841                 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
 842 
 843         vx_inl(chip, RUER); /* Terminate input level programming */
 844 }
 845 
 846 
 847 #define MIC_LEVEL_MAX   0xff
 848 
 849 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
 850 
 851 /*
 852  * controls API for input levels
 853  */
 854 
 855 /* input levels */
 856 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 857 {
 858         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 859         uinfo->count = 2;
 860         uinfo->value.integer.min = 0;
 861         uinfo->value.integer.max = MIC_LEVEL_MAX;
 862         return 0;
 863 }
 864 
 865 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 866 {
 867         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 868         struct snd_vx222 *chip = to_vx222(_chip);
 869         mutex_lock(&_chip->mixer_mutex);
 870         ucontrol->value.integer.value[0] = chip->input_level[0];
 871         ucontrol->value.integer.value[1] = chip->input_level[1];
 872         mutex_unlock(&_chip->mixer_mutex);
 873         return 0;
 874 }
 875 
 876 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 877 {
 878         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 879         struct snd_vx222 *chip = to_vx222(_chip);
 880         if (ucontrol->value.integer.value[0] < 0 ||
 881             ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 882                 return -EINVAL;
 883         if (ucontrol->value.integer.value[1] < 0 ||
 884             ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
 885                 return -EINVAL;
 886         mutex_lock(&_chip->mixer_mutex);
 887         if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
 888             chip->input_level[1] != ucontrol->value.integer.value[1]) {
 889                 chip->input_level[0] = ucontrol->value.integer.value[0];
 890                 chip->input_level[1] = ucontrol->value.integer.value[1];
 891                 vx2_set_input_level(chip);
 892                 mutex_unlock(&_chip->mixer_mutex);
 893                 return 1;
 894         }
 895         mutex_unlock(&_chip->mixer_mutex);
 896         return 0;
 897 }
 898 
 899 /* mic level */
 900 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
 901 {
 902         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 903         uinfo->count = 1;
 904         uinfo->value.integer.min = 0;
 905         uinfo->value.integer.max = MIC_LEVEL_MAX;
 906         return 0;
 907 }
 908 
 909 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 910 {
 911         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 912         struct snd_vx222 *chip = to_vx222(_chip);
 913         ucontrol->value.integer.value[0] = chip->mic_level;
 914         return 0;
 915 }
 916 
 917 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
 918 {
 919         struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
 920         struct snd_vx222 *chip = to_vx222(_chip);
 921         if (ucontrol->value.integer.value[0] < 0 ||
 922             ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
 923                 return -EINVAL;
 924         mutex_lock(&_chip->mixer_mutex);
 925         if (chip->mic_level != ucontrol->value.integer.value[0]) {
 926                 chip->mic_level = ucontrol->value.integer.value[0];
 927                 vx2_set_input_level(chip);
 928                 mutex_unlock(&_chip->mixer_mutex);
 929                 return 1;
 930         }
 931         mutex_unlock(&_chip->mixer_mutex);
 932         return 0;
 933 }
 934 
 935 static const struct snd_kcontrol_new vx_control_input_level = {
 936         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
 937         .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
 938                          SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 939         .name =         "Capture Volume",
 940         .info =         vx_input_level_info,
 941         .get =          vx_input_level_get,
 942         .put =          vx_input_level_put,
 943         .tlv = { .p = db_scale_mic },
 944 };
 945 
 946 static const struct snd_kcontrol_new vx_control_mic_level = {
 947         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
 948         .access =       (SNDRV_CTL_ELEM_ACCESS_READWRITE |
 949                          SNDRV_CTL_ELEM_ACCESS_TLV_READ),
 950         .name =         "Mic Capture Volume",
 951         .info =         vx_mic_level_info,
 952         .get =          vx_mic_level_get,
 953         .put =          vx_mic_level_put,
 954         .tlv = { .p = db_scale_mic },
 955 };
 956 
 957 /*
 958  * FIXME: compressor/limiter implementation is missing yet...
 959  */
 960 
 961 static int vx2_add_mic_controls(struct vx_core *_chip)
 962 {
 963         struct snd_vx222 *chip = to_vx222(_chip);
 964         int err;
 965 
 966         if (_chip->type != VX_TYPE_MIC)
 967                 return 0;
 968 
 969         /* mute input levels */
 970         chip->input_level[0] = chip->input_level[1] = 0;
 971         chip->mic_level = 0;
 972         vx2_set_input_level(chip);
 973 
 974         /* controls */
 975         if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
 976                 return err;
 977         if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
 978                 return err;
 979 
 980         return 0;
 981 }
 982 
 983 
 984 /*
 985  * callbacks
 986  */
 987 struct snd_vx_ops vx222_ops = {
 988         .in8 = vx2_inb,
 989         .in32 = vx2_inl,
 990         .out8 = vx2_outb,
 991         .out32 = vx2_outl,
 992         .test_and_ack = vx2_test_and_ack,
 993         .validate_irq = vx2_validate_irq,
 994         .akm_write = vx2_write_akm,
 995         .reset_codec = vx2_reset_codec,
 996         .change_audio_source = vx2_change_audio_source,
 997         .set_clock_source = vx2_set_clock_source,
 998         .load_dsp = vx2_load_dsp,
 999         .reset_dsp = vx2_reset_dsp,
1000         .reset_board = vx2_reset_board,
1001         .dma_write = vx2_dma_write,
1002         .dma_read = vx2_dma_read,
1003         .add_controls = vx2_add_mic_controls,
1004 };
1005 
1006 /* for old VX222 board */
1007 struct snd_vx_ops vx222_old_ops = {
1008         .in8 = vx2_inb,
1009         .in32 = vx2_inl,
1010         .out8 = vx2_outb,
1011         .out32 = vx2_outl,
1012         .test_and_ack = vx2_test_and_ack,
1013         .validate_irq = vx2_validate_irq,
1014         .write_codec = vx2_old_write_codec_bit,
1015         .reset_codec = vx2_reset_codec,
1016         .change_audio_source = vx2_change_audio_source,
1017         .set_clock_source = vx2_set_clock_source,
1018         .load_dsp = vx2_load_dsp,
1019         .reset_dsp = vx2_reset_dsp,
1020         .reset_board = vx2_reset_board,
1021         .dma_write = vx2_dma_write,
1022         .dma_read = vx2_dma_read,
1023 };
1024 

/* [<][>][^][v][top][bottom][index][help] */