root/sound/sparc/dbri.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. reverse_bytes
  2. dbri_cmdwait
  3. dbri_cmdlock
  4. dbri_cmdsend
  5. dbri_reset
  6. dbri_initialize
  7. pipe_active
  8. reset_pipe
  9. setup_pipe
  10. link_time_slot
  11. unlink_time_slot
  12. xmit_fixed
  13. recv_fixed
  14. setup_descs
  15. reset_chi
  16. cs4215_setup_pipes
  17. cs4215_init_data
  18. cs4215_setdata
  19. cs4215_open
  20. cs4215_setctrl
  21. cs4215_prepare
  22. cs4215_init
  23. xmit_descs
  24. transmission_complete_intr
  25. reception_complete_intr
  26. dbri_process_one_interrupt
  27. dbri_process_interrupt_buffer
  28. snd_dbri_interrupt
  29. snd_hw_rule_format
  30. snd_hw_rule_channels
  31. snd_dbri_open
  32. snd_dbri_close
  33. snd_dbri_hw_params
  34. snd_dbri_hw_free
  35. snd_dbri_prepare
  36. snd_dbri_trigger
  37. snd_dbri_pointer
  38. snd_dbri_pcm
  39. snd_cs4215_info_volume
  40. snd_cs4215_get_volume
  41. snd_cs4215_put_volume
  42. snd_cs4215_info_single
  43. snd_cs4215_get_single
  44. snd_cs4215_put_single
  45. snd_dbri_mixer
  46. dbri_regs_read
  47. dbri_debug_read
  48. snd_dbri_proc
  49. snd_dbri_create
  50. snd_dbri_free
  51. dbri_probe
  52. dbri_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Driver for DBRI sound chip found on Sparcs.
   4  * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5  *
   6  * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7  *
   8  * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9  * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10  * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11  *
  12  * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13  * on Sun SPARCStation 10, 20, LX and Voyager models.
  14  *
  15  * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16  *   data time multiplexer with ISDN support (aka T7259)
  17  *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18  *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19  *   Documentation:
  20  *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21  *     Sparc Technology Business (courtesy of Sun Support)
  22  *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23  *     available from the Lucent (formerly AT&T microelectronics) home
  24  *     page.
  25  *   - http://www.freesoft.org/Linux/DBRI/
  26  * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27  *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28  *   Documentation: from the Crystal Semiconductor home page.
  29  *
  30  * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31  * memory and a serial device (long pipes, no. 0-15) or between two serial
  32  * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33  * device (short pipes).
  34  * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35  * The timeslots are linked to 6 circular lists, one for each direction for
  36  * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37  * (the second one is a monitor/tee pipe, valid only for serial input).
  38  *
  39  * The mmcodec is connected via the CHI bus and needs the data & some
  40  * parameters (volume, output selection) time multiplexed in 8 byte
  41  * chunks. It also has a control mode, which serves for audio format setting.
  42  *
  43  * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44  * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45  * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46  * audio devices. But the SUN HW group decided against it, at least on my
  47  * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48  * connected.
  49  *
  50  * I've tried to stick to the following function naming conventions:
  51  * snd_*        ALSA stuff
  52  * cs4215_*     CS4215 codec specific stuff
  53  * dbri_*       DBRI high-level stuff
  54  * other        DBRI low-level stuff
  55  */
  56 
  57 #include <linux/interrupt.h>
  58 #include <linux/delay.h>
  59 #include <linux/irq.h>
  60 #include <linux/io.h>
  61 #include <linux/dma-mapping.h>
  62 #include <linux/gfp.h>
  63 
  64 #include <sound/core.h>
  65 #include <sound/pcm.h>
  66 #include <sound/pcm_params.h>
  67 #include <sound/info.h>
  68 #include <sound/control.h>
  69 #include <sound/initval.h>
  70 
  71 #include <linux/of.h>
  72 #include <linux/of_device.h>
  73 #include <linux/atomic.h>
  74 #include <linux/module.h>
  75 
  76 MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77 MODULE_DESCRIPTION("Sun DBRI");
  78 MODULE_LICENSE("GPL");
  79 MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  80 
  81 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  82 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  83 /* Enable this card */
  84 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  85 
  86 module_param_array(index, int, NULL, 0444);
  87 MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  88 module_param_array(id, charp, NULL, 0444);
  89 MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  90 module_param_array(enable, bool, NULL, 0444);
  91 MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  92 
  93 #undef DBRI_DEBUG
  94 
  95 #define D_INT   (1<<0)
  96 #define D_GEN   (1<<1)
  97 #define D_CMD   (1<<2)
  98 #define D_MM    (1<<3)
  99 #define D_USR   (1<<4)
 100 #define D_DESC  (1<<5)
 101 
 102 static int dbri_debug;
 103 module_param(dbri_debug, int, 0644);
 104 MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 105 
 106 #ifdef DBRI_DEBUG
 107 static char *cmds[] = {
 108         "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 109         "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 110 };
 111 
 112 #define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 113 
 114 #else
 115 #define dprintk(a, x...) do { } while (0)
 116 
 117 #endif                          /* DBRI_DEBUG */
 118 
 119 #define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
 120                                     (intr << 27) |      \
 121                                     value)
 122 
 123 /***************************************************************************
 124         CS4215 specific definitions and structures
 125 ****************************************************************************/
 126 
 127 struct cs4215 {
 128         __u8 data[4];           /* Data mode: Time slots 5-8 */
 129         __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
 130         __u8 onboard;
 131         __u8 offset;            /* Bit offset from frame sync to time slot 1 */
 132         volatile __u32 status;
 133         volatile __u32 version;
 134         __u8 precision;         /* In bits, either 8 or 16 */
 135         __u8 channels;          /* 1 or 2 */
 136 };
 137 
 138 /*
 139  * Control mode first
 140  */
 141 
 142 /* Time Slot 1, Status register */
 143 #define CS4215_CLB      (1<<2)  /* Control Latch Bit */
 144 #define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
 145                                 /* 0: line: 2.8V, speaker 8V */
 146 #define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
 147 #define CS4215_RSRVD_1  (1<<5)
 148 
 149 /* Time Slot 2, Data Format Register */
 150 #define CS4215_DFR_LINEAR16     0
 151 #define CS4215_DFR_ULAW         1
 152 #define CS4215_DFR_ALAW         2
 153 #define CS4215_DFR_LINEAR8      3
 154 #define CS4215_DFR_STEREO       (1<<2)
 155 static struct {
 156         unsigned short freq;
 157         unsigned char xtal;
 158         unsigned char csval;
 159 } CS4215_FREQ[] = {
 160         {  8000, (1 << 4), (0 << 3) },
 161         { 16000, (1 << 4), (1 << 3) },
 162         { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
 163         { 32000, (1 << 4), (3 << 3) },
 164      /* {    NA, (1 << 4), (4 << 3) }, */
 165      /* {    NA, (1 << 4), (5 << 3) }, */
 166         { 48000, (1 << 4), (6 << 3) },
 167         {  9600, (1 << 4), (7 << 3) },
 168         {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
 169         { 11025, (2 << 4), (1 << 3) },
 170         { 18900, (2 << 4), (2 << 3) },
 171         { 22050, (2 << 4), (3 << 3) },
 172         { 37800, (2 << 4), (4 << 3) },
 173         { 44100, (2 << 4), (5 << 3) },
 174         { 33075, (2 << 4), (6 << 3) },
 175         {  6615, (2 << 4), (7 << 3) },
 176         { 0, 0, 0}
 177 };
 178 
 179 #define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
 180 
 181 #define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
 182 
 183 /* Time Slot 3, Serial Port Control register */
 184 #define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
 185 #define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
 186 #define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
 187 #define CS4215_BSEL_128 (1<<2)
 188 #define CS4215_BSEL_256 (2<<2)
 189 #define CS4215_MCK_MAST (0<<4)  /* Master clock */
 190 #define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
 191 #define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
 192 #define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
 193 #define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
 194 
 195 /* Time Slot 4, Test Register */
 196 #define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 197 #define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
 198 
 199 /* Time Slot 5, Parallel Port Register */
 200 /* Read only here and the same as the in data mode */
 201 
 202 /* Time Slot 6, Reserved  */
 203 
 204 /* Time Slot 7, Version Register  */
 205 #define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
 206 
 207 /* Time Slot 8, Reserved  */
 208 
 209 /*
 210  * Data mode
 211  */
 212 /* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 213 
 214 /* Time Slot 5, Output Setting  */
 215 #define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
 216 #define CS4215_LE       (1<<6)  /* Line Out Enable */
 217 #define CS4215_HE       (1<<7)  /* Headphone Enable */
 218 
 219 /* Time Slot 6, Output Setting  */
 220 #define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
 221 #define CS4215_SE       (1<<6)  /* Speaker Enable */
 222 #define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
 223 
 224 /* Time Slot 7, Input Setting */
 225 #define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
 226 #define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
 227 #define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
 228 #define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
 229 #define CS4215_PIO1     (1<<7)
 230 
 231 /* Time Slot 8, Input Setting */
 232 #define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
 233 #define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
 234 
 235 /***************************************************************************
 236                 DBRI specific definitions and structures
 237 ****************************************************************************/
 238 
 239 /* DBRI main registers */
 240 #define REG0    0x00            /* Status and Control */
 241 #define REG1    0x04            /* Mode and Interrupt */
 242 #define REG2    0x08            /* Parallel IO */
 243 #define REG3    0x0c            /* Test */
 244 #define REG8    0x20            /* Command Queue Pointer */
 245 #define REG9    0x24            /* Interrupt Queue Pointer */
 246 
 247 #define DBRI_NO_CMDS    64
 248 #define DBRI_INT_BLK    64
 249 #define DBRI_NO_DESCS   64
 250 #define DBRI_NO_PIPES   32
 251 #define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
 252 
 253 #define DBRI_REC        0
 254 #define DBRI_PLAY       1
 255 #define DBRI_NO_STREAMS 2
 256 
 257 /* One transmit/receive descriptor */
 258 /* When ba != 0 descriptor is used */
 259 struct dbri_mem {
 260         volatile __u32 word1;
 261         __u32 ba;       /* Transmit/Receive Buffer Address */
 262         __u32 nda;      /* Next Descriptor Address */
 263         volatile __u32 word4;
 264 };
 265 
 266 /* This structure is in a DMA region where it can accessed by both
 267  * the CPU and the DBRI
 268  */
 269 struct dbri_dma {
 270         s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
 271         volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
 272         struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
 273 };
 274 
 275 #define dbri_dma_off(member, elem)      \
 276         ((u32)(unsigned long)           \
 277          (&(((struct dbri_dma *)0)->member[elem])))
 278 
 279 enum in_or_out { PIPEinput, PIPEoutput };
 280 
 281 struct dbri_pipe {
 282         u32 sdp;                /* SDP command word */
 283         int nextpipe;           /* Next pipe in linked list */
 284         int length;             /* Length of timeslot (bits) */
 285         int first_desc;         /* Index of first descriptor */
 286         int desc;               /* Index of active descriptor */
 287         volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
 288 };
 289 
 290 /* Per stream (playback or record) information */
 291 struct dbri_streaminfo {
 292         struct snd_pcm_substream *substream;
 293         u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
 294         int size;               /* Size of DMA buffer             */
 295         size_t offset;          /* offset in user buffer          */
 296         int pipe;               /* Data pipe used                 */
 297         int left_gain;          /* mixer elements                 */
 298         int right_gain;
 299 };
 300 
 301 /* This structure holds the information for both chips (DBRI & CS4215) */
 302 struct snd_dbri {
 303         int regs_size, irq;     /* Needed for unload */
 304         struct platform_device *op;     /* OF device info */
 305         spinlock_t lock;
 306 
 307         struct dbri_dma *dma;   /* Pointer to our DMA block */
 308         dma_addr_t dma_dvma;    /* DBRI visible DMA address */
 309 
 310         void __iomem *regs;     /* dbri HW regs */
 311         int dbri_irqp;          /* intr queue pointer */
 312 
 313         struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
 314         int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
 315         spinlock_t cmdlock;     /* Protects cmd queue accesses */
 316         s32 *cmdptr;            /* Pointer to the last queued cmd */
 317 
 318         int chi_bpf;
 319 
 320         struct cs4215 mm;       /* mmcodec special info */
 321                                 /* per stream (playback/record) info */
 322         struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 323 };
 324 
 325 #define DBRI_MAX_VOLUME         63      /* Output volume */
 326 #define DBRI_MAX_GAIN           15      /* Input gain */
 327 
 328 /* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 329 #define D_P             (1<<15) /* Program command & queue pointer valid */
 330 #define D_G             (1<<14) /* Allow 4-Word SBus Burst */
 331 #define D_S             (1<<13) /* Allow 16-Word SBus Burst */
 332 #define D_E             (1<<12) /* Allow 8-Word SBus Burst */
 333 #define D_X             (1<<7)  /* Sanity Timer Disable */
 334 #define D_T             (1<<6)  /* Permit activation of the TE interface */
 335 #define D_N             (1<<5)  /* Permit activation of the NT interface */
 336 #define D_C             (1<<4)  /* Permit activation of the CHI interface */
 337 #define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
 338 #define D_D             (1<<2)  /* Disable Master Mode */
 339 #define D_H             (1<<1)  /* Halt for Analysis */
 340 #define D_R             (1<<0)  /* Soft Reset */
 341 
 342 /* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 343 #define D_LITTLE_END    (1<<8)  /* Byte Order */
 344 #define D_BIG_END       (0<<8)  /* Byte Order */
 345 #define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
 346 #define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
 347 #define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
 348 #define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
 349 #define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
 350 
 351 /* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 352 #define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
 353 #define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
 354 #define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
 355 #define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
 356 #define D_ENPIO         (0xf0)  /* Enable all the pins */
 357 #define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
 358 #define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
 359 #define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
 360 #define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
 361 
 362 /* DBRI Commands (Page 20) */
 363 #define D_WAIT          0x0     /* Stop execution */
 364 #define D_PAUSE         0x1     /* Flush long pipes */
 365 #define D_JUMP          0x2     /* New command queue */
 366 #define D_IIQ           0x3     /* Initialize Interrupt Queue */
 367 #define D_REX           0x4     /* Report command execution via interrupt */
 368 #define D_SDP           0x5     /* Setup Data Pipe */
 369 #define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
 370 #define D_DTS           0x7     /* Define Time Slot */
 371 #define D_SSP           0x8     /* Set short Data Pipe */
 372 #define D_CHI           0x9     /* Set CHI Global Mode */
 373 #define D_NT            0xa     /* NT Command */
 374 #define D_TE            0xb     /* TE Command */
 375 #define D_CDEC          0xc     /* Codec setup */
 376 #define D_TEST          0xd     /* No comment */
 377 #define D_CDM           0xe     /* CHI Data mode command */
 378 
 379 /* Special bits for some commands */
 380 #define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
 381 
 382 /* Setup Data Pipe */
 383 /* IRM */
 384 #define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
 385 #define D_SDP_CHANGE    (2<<18) /* Report any changes */
 386 #define D_SDP_EVERY     (3<<18) /* Report any changes */
 387 #define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
 388 #define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
 389 
 390 /* Pipe data MODE */
 391 #define D_SDP_MEM       (0<<13) /* To/from memory */
 392 #define D_SDP_HDLC      (2<<13)
 393 #define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
 394 #define D_SDP_SER       (4<<13) /* Serial to serial */
 395 #define D_SDP_FIXED     (6<<13) /* Short only */
 396 #define D_SDP_MODE(v)   ((v)&(7<<13))
 397 
 398 #define D_SDP_TO_SER    (1<<12) /* Direction */
 399 #define D_SDP_FROM_SER  (0<<12) /* Direction */
 400 #define D_SDP_MSB       (1<<11) /* Bit order within Byte */
 401 #define D_SDP_LSB       (0<<11) /* Bit order within Byte */
 402 #define D_SDP_P         (1<<10) /* Pointer Valid */
 403 #define D_SDP_A         (1<<8)  /* Abort */
 404 #define D_SDP_C         (1<<7)  /* Clear */
 405 
 406 /* Define Time Slot */
 407 #define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
 408 #define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
 409 #define D_DTS_INS       (1<<15) /* Insert Time Slot */
 410 #define D_DTS_DEL       (0<<15) /* Delete Time Slot */
 411 #define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
 412 #define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
 413 
 414 /* Time Slot defines */
 415 #define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
 416 #define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
 417 #define D_TS_DI         (1<<13) /* Data Invert */
 418 #define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
 419 #define D_TS_MONITOR    (2<<10) /* Monitor pipe */
 420 #define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
 421 #define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
 422 #define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
 423 #define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
 424 
 425 /* Concentration Highway Interface Modes */
 426 #define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
 427 #define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
 428 #define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
 429 #define D_CHI_OD        (1<<13) /* Open Drain Enable */
 430 #define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
 431 #define D_CHI_FD        (1<<11) /* Frame Drive */
 432 #define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
 433 
 434 /* NT: These are here for completeness */
 435 #define D_NT_FBIT       (1<<17) /* Frame Bit */
 436 #define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
 437 #define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
 438 #define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
 439 #define D_NT_ISNT       (1<<13) /* Configure interface as NT */
 440 #define D_NT_FT         (1<<12) /* Fixed Timing */
 441 #define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
 442 #define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
 443 #define D_NT_ACT        (1<<9)  /* Activate Interface */
 444 #define D_NT_MFE        (1<<8)  /* Multiframe Enable */
 445 #define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
 446 #define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
 447 #define D_NT_FACT       (1<<1)  /* Force Activation */
 448 #define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
 449 
 450 /* Codec Setup */
 451 #define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
 452 #define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
 453 #define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
 454 
 455 /* Test */
 456 #define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
 457 #define D_TEST_SIZE(v)  ((v)<<11)       /* */
 458 #define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
 459 #define D_TEST_PROC     0x6     /* Microprocessor test */
 460 #define D_TEST_SER      0x7     /* Serial-Controller test */
 461 #define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
 462 #define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
 463 #define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
 464 #define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
 465 #define D_TEST_DUMP     0xe     /* ROM Dump */
 466 
 467 /* CHI Data Mode */
 468 #define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
 469 #define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
 470 #define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
 471 #define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
 472 #define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
 473 #define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
 474 
 475 /* The Interrupts */
 476 #define D_INTR_BRDY     1       /* Buffer Ready for processing */
 477 #define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
 478 #define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
 479 #define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
 480 #define D_INTR_EOL      5       /* End of List */
 481 #define D_INTR_CMDI     6       /* Command has bean read */
 482 #define D_INTR_XCMP     8       /* Transmission of frame complete */
 483 #define D_INTR_SBRI     9       /* BRI status change info */
 484 #define D_INTR_FXDT     10      /* Fixed data change */
 485 #define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
 486 #define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
 487 #define D_INTR_DBYT     12      /* Dropped by frame slip */
 488 #define D_INTR_RBYT     13      /* Repeated by frame slip */
 489 #define D_INTR_LINT     14      /* Lost Interrupt */
 490 #define D_INTR_UNDR     15      /* DMA underrun */
 491 
 492 #define D_INTR_TE       32
 493 #define D_INTR_NT       34
 494 #define D_INTR_CHI      36
 495 #define D_INTR_CMD      38
 496 
 497 #define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
 498 #define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
 499 #define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
 500 #define D_INTR_GETVAL(v)        ((v) & 0xffff)
 501 #define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
 502 
 503 #define D_P_0           0       /* TE receive anchor */
 504 #define D_P_1           1       /* TE transmit anchor */
 505 #define D_P_2           2       /* NT transmit anchor */
 506 #define D_P_3           3       /* NT receive anchor */
 507 #define D_P_4           4       /* CHI send data */
 508 #define D_P_5           5       /* CHI receive data */
 509 #define D_P_6           6       /* */
 510 #define D_P_7           7       /* */
 511 #define D_P_8           8       /* */
 512 #define D_P_9           9       /* */
 513 #define D_P_10          10      /* */
 514 #define D_P_11          11      /* */
 515 #define D_P_12          12      /* */
 516 #define D_P_13          13      /* */
 517 #define D_P_14          14      /* */
 518 #define D_P_15          15      /* */
 519 #define D_P_16          16      /* CHI anchor pipe */
 520 #define D_P_17          17      /* CHI send */
 521 #define D_P_18          18      /* CHI receive */
 522 #define D_P_19          19      /* CHI receive */
 523 #define D_P_20          20      /* CHI receive */
 524 #define D_P_21          21      /* */
 525 #define D_P_22          22      /* */
 526 #define D_P_23          23      /* */
 527 #define D_P_24          24      /* */
 528 #define D_P_25          25      /* */
 529 #define D_P_26          26      /* */
 530 #define D_P_27          27      /* */
 531 #define D_P_28          28      /* */
 532 #define D_P_29          29      /* */
 533 #define D_P_30          30      /* */
 534 #define D_P_31          31      /* */
 535 
 536 /* Transmit descriptor defines */
 537 #define DBRI_TD_F       (1 << 31)       /* End of Frame */
 538 #define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
 539 #define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
 540 #define DBRI_TD_B       (1 << 15)       /* Final interrupt */
 541 #define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
 542 #define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
 543 #define DBRI_TD_FCNT(v) (v)             /* Flag Count */
 544 #define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
 545 #define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
 546 #define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
 547 #define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
 548                         /* Maximum buffer size per TD: almost 8KB */
 549 #define DBRI_TD_MAXCNT  ((1 << 13) - 4)
 550 
 551 /* Receive descriptor defines */
 552 #define DBRI_RD_F       (1 << 31)       /* End of Frame */
 553 #define DBRI_RD_C       (1 << 30)       /* Completed buffer */
 554 #define DBRI_RD_B       (1 << 15)       /* Final interrupt */
 555 #define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
 556 #define DBRI_RD_BCNT(v) (v)             /* Buffer size */
 557 #define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
 558 #define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
 559 #define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
 560 #define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
 561 #define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
 562 #define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
 563 
 564 /* stream_info[] access */
 565 /* Translate the ALSA direction into the array index */
 566 #define DBRI_STREAMNO(substream)                                \
 567                 (substream->stream ==                           \
 568                  SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 569 
 570 /* Return a pointer to dbri_streaminfo */
 571 #define DBRI_STREAM(dbri, substream)    \
 572                 &dbri->stream_info[DBRI_STREAMNO(substream)]
 573 
 574 /*
 575  * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 576  * So we have to reverse the bits. Note: not all bit lengths are supported
 577  */
 578 static __u32 reverse_bytes(__u32 b, int len)
 579 {
 580         switch (len) {
 581         case 32:
 582                 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 583                 /* fall through */
 584         case 16:
 585                 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 586                 /* fall through */
 587         case 8:
 588                 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 589                 /* fall through */
 590         case 4:
 591                 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 592                 /* fall through */
 593         case 2:
 594                 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 595         case 1:
 596         case 0:
 597                 break;
 598         default:
 599                 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 600         }
 601 
 602         return b;
 603 }
 604 
 605 /*
 606 ****************************************************************************
 607 ************** DBRI initialization and command synchronization *************
 608 ****************************************************************************
 609 
 610 Commands are sent to the DBRI by building a list of them in memory,
 611 then writing the address of the first list item to DBRI register 8.
 612 The list is terminated with a WAIT command, which generates a
 613 CPU interrupt to signal completion.
 614 
 615 Since the DBRI can run in parallel with the CPU, several means of
 616 synchronization present themselves. The method implemented here uses
 617 the dbri_cmdwait() to wait for execution of batch of sent commands.
 618 
 619 A circular command buffer is used here. A new command is being added
 620 while another can be executed. The scheme works by adding two WAIT commands
 621 after each sent batch of commands. When the next batch is prepared it is
 622 added after the WAIT commands then the WAITs are replaced with single JUMP
 623 command to the new batch. The the DBRI is forced to reread the last WAIT
 624 command (replaced by the JUMP by then). If the DBRI is still executing
 625 previous commands the request to reread the WAIT command is ignored.
 626 
 627 Every time a routine wants to write commands to the DBRI, it must
 628 first call dbri_cmdlock() and get pointer to a free space in
 629 dbri->dma->cmd buffer. After this, the commands can be written to
 630 the buffer, and dbri_cmdsend() is called with the final pointer value
 631 to send them to the DBRI.
 632 
 633 */
 634 
 635 #define MAXLOOPS 20
 636 /*
 637  * Wait for the current command string to execute
 638  */
 639 static void dbri_cmdwait(struct snd_dbri *dbri)
 640 {
 641         int maxloops = MAXLOOPS;
 642         unsigned long flags;
 643 
 644         /* Delay if previous commands are still being processed */
 645         spin_lock_irqsave(&dbri->lock, flags);
 646         while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 647                 spin_unlock_irqrestore(&dbri->lock, flags);
 648                 msleep_interruptible(1);
 649                 spin_lock_irqsave(&dbri->lock, flags);
 650         }
 651         spin_unlock_irqrestore(&dbri->lock, flags);
 652 
 653         if (maxloops == 0)
 654                 printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 655         else
 656                 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 657                         MAXLOOPS - maxloops - 1);
 658 }
 659 /*
 660  * Lock the command queue and return pointer to space for len cmd words
 661  * It locks the cmdlock spinlock.
 662  */
 663 static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 664 {
 665         u32 dvma_addr = (u32)dbri->dma_dvma;
 666 
 667         /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 668         len += 2;
 669         spin_lock(&dbri->cmdlock);
 670         if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 671                 return dbri->cmdptr + 2;
 672         else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 673                 return dbri->dma->cmd;
 674         else
 675                 printk(KERN_ERR "DBRI: no space for commands.");
 676 
 677         return NULL;
 678 }
 679 
 680 /*
 681  * Send prepared cmd string. It works by writing a JUMP cmd into
 682  * the last WAIT cmd and force DBRI to reread the cmd.
 683  * The JUMP cmd points to the new cmd string.
 684  * It also releases the cmdlock spinlock.
 685  *
 686  * Lock must be held before calling this.
 687  */
 688 static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 689 {
 690         u32 dvma_addr = (u32)dbri->dma_dvma;
 691         s32 tmp, addr;
 692         static int wait_id = 0;
 693 
 694         wait_id++;
 695         wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
 696         *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 697         *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 698 
 699         /* Replace the last command with JUMP */
 700         addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 701         *(dbri->cmdptr+1) = addr;
 702         *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 703 
 704 #ifdef DBRI_DEBUG
 705         if (cmd > dbri->cmdptr) {
 706                 s32 *ptr;
 707 
 708                 for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 709                         dprintk(D_CMD, "cmd: %lx:%08x\n",
 710                                 (unsigned long)ptr, *ptr);
 711         } else {
 712                 s32 *ptr = dbri->cmdptr;
 713 
 714                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 715                 ptr++;
 716                 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 717                 for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 718                         dprintk(D_CMD, "cmd: %lx:%08x\n",
 719                                 (unsigned long)ptr, *ptr);
 720         }
 721 #endif
 722 
 723         /* Reread the last command */
 724         tmp = sbus_readl(dbri->regs + REG0);
 725         tmp |= D_P;
 726         sbus_writel(tmp, dbri->regs + REG0);
 727 
 728         dbri->cmdptr = cmd;
 729         spin_unlock(&dbri->cmdlock);
 730 }
 731 
 732 /* Lock must be held when calling this */
 733 static void dbri_reset(struct snd_dbri *dbri)
 734 {
 735         int i;
 736         u32 tmp;
 737 
 738         dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 739                 sbus_readl(dbri->regs + REG0),
 740                 sbus_readl(dbri->regs + REG2),
 741                 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 742 
 743         sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
 744         for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 745                 udelay(10);
 746 
 747         /* A brute approach - DBRI falls back to working burst size by itself
 748          * On SS20 D_S does not work, so do not try so high. */
 749         tmp = sbus_readl(dbri->regs + REG0);
 750         tmp |= D_G | D_E;
 751         tmp &= ~D_S;
 752         sbus_writel(tmp, dbri->regs + REG0);
 753 }
 754 
 755 /* Lock must not be held before calling this */
 756 static void dbri_initialize(struct snd_dbri *dbri)
 757 {
 758         u32 dvma_addr = (u32)dbri->dma_dvma;
 759         s32 *cmd;
 760         u32 dma_addr;
 761         unsigned long flags;
 762         int n;
 763 
 764         spin_lock_irqsave(&dbri->lock, flags);
 765 
 766         dbri_reset(dbri);
 767 
 768         /* Initialize pipes */
 769         for (n = 0; n < DBRI_NO_PIPES; n++)
 770                 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 771 
 772         spin_lock_init(&dbri->cmdlock);
 773         /*
 774          * Initialize the interrupt ring buffer.
 775          */
 776         dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 777         dbri->dma->intr[0] = dma_addr;
 778         dbri->dbri_irqp = 1;
 779         /*
 780          * Set up the interrupt queue
 781          */
 782         spin_lock(&dbri->cmdlock);
 783         cmd = dbri->cmdptr = dbri->dma->cmd;
 784         *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 785         *(cmd++) = dma_addr;
 786         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 787         dbri->cmdptr = cmd;
 788         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 789         *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 790         dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 791         sbus_writel(dma_addr, dbri->regs + REG8);
 792         spin_unlock(&dbri->cmdlock);
 793 
 794         spin_unlock_irqrestore(&dbri->lock, flags);
 795         dbri_cmdwait(dbri);
 796 }
 797 
 798 /*
 799 ****************************************************************************
 800 ************************** DBRI data pipe management ***********************
 801 ****************************************************************************
 802 
 803 While DBRI control functions use the command and interrupt buffers, the
 804 main data path takes the form of data pipes, which can be short (command
 805 and interrupt driven), or long (attached to DMA buffers).  These functions
 806 provide a rudimentary means of setting up and managing the DBRI's pipes,
 807 but the calling functions have to make sure they respect the pipes' linked
 808 list ordering, among other things.  The transmit and receive functions
 809 here interface closely with the transmit and receive interrupt code.
 810 
 811 */
 812 static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 813 {
 814         return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 815 }
 816 
 817 /* reset_pipe(dbri, pipe)
 818  *
 819  * Called on an in-use pipe to clear anything being transmitted or received
 820  * Lock must be held before calling this.
 821  */
 822 static void reset_pipe(struct snd_dbri *dbri, int pipe)
 823 {
 824         int sdp;
 825         int desc;
 826         s32 *cmd;
 827 
 828         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 829                 printk(KERN_ERR "DBRI: reset_pipe called with "
 830                         "illegal pipe number\n");
 831                 return;
 832         }
 833 
 834         sdp = dbri->pipes[pipe].sdp;
 835         if (sdp == 0) {
 836                 printk(KERN_ERR "DBRI: reset_pipe called "
 837                         "on uninitialized pipe\n");
 838                 return;
 839         }
 840 
 841         cmd = dbri_cmdlock(dbri, 3);
 842         *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 843         *(cmd++) = 0;
 844         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 845         dbri_cmdsend(dbri, cmd, 3);
 846 
 847         desc = dbri->pipes[pipe].first_desc;
 848         if (desc >= 0)
 849                 do {
 850                         dbri->dma->desc[desc].ba = 0;
 851                         dbri->dma->desc[desc].nda = 0;
 852                         desc = dbri->next_desc[desc];
 853                 } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 854 
 855         dbri->pipes[pipe].desc = -1;
 856         dbri->pipes[pipe].first_desc = -1;
 857 }
 858 
 859 /*
 860  * Lock must be held before calling this.
 861  */
 862 static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 863 {
 864         if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 865                 printk(KERN_ERR "DBRI: setup_pipe called "
 866                         "with illegal pipe number\n");
 867                 return;
 868         }
 869 
 870         if ((sdp & 0xf800) != sdp) {
 871                 printk(KERN_ERR "DBRI: setup_pipe called "
 872                         "with strange SDP value\n");
 873                 /* sdp &= 0xf800; */
 874         }
 875 
 876         /* If this is a fixed receive pipe, arrange for an interrupt
 877          * every time its data changes
 878          */
 879         if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 880                 sdp |= D_SDP_CHANGE;
 881 
 882         sdp |= D_PIPE(pipe);
 883         dbri->pipes[pipe].sdp = sdp;
 884         dbri->pipes[pipe].desc = -1;
 885         dbri->pipes[pipe].first_desc = -1;
 886 
 887         reset_pipe(dbri, pipe);
 888 }
 889 
 890 /*
 891  * Lock must be held before calling this.
 892  */
 893 static void link_time_slot(struct snd_dbri *dbri, int pipe,
 894                            int prevpipe, int nextpipe,
 895                            int length, int cycle)
 896 {
 897         s32 *cmd;
 898         int val;
 899 
 900         if (pipe < 0 || pipe > DBRI_MAX_PIPE
 901                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 902                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 903                 printk(KERN_ERR
 904                     "DBRI: link_time_slot called with illegal pipe number\n");
 905                 return;
 906         }
 907 
 908         if (dbri->pipes[pipe].sdp == 0
 909                         || dbri->pipes[prevpipe].sdp == 0
 910                         || dbri->pipes[nextpipe].sdp == 0) {
 911                 printk(KERN_ERR "DBRI: link_time_slot called "
 912                         "on uninitialized pipe\n");
 913                 return;
 914         }
 915 
 916         dbri->pipes[prevpipe].nextpipe = pipe;
 917         dbri->pipes[pipe].nextpipe = nextpipe;
 918         dbri->pipes[pipe].length = length;
 919 
 920         cmd = dbri_cmdlock(dbri, 4);
 921 
 922         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 923                 /* Deal with CHI special case:
 924                  * "If transmission on edges 0 or 1 is desired, then cycle n
 925                  *  (where n = # of bit times per frame...) must be used."
 926                  *                  - DBRI data sheet, page 11
 927                  */
 928                 if (prevpipe == 16 && cycle == 0)
 929                         cycle = dbri->chi_bpf;
 930 
 931                 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 932                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 933                 *(cmd++) = 0;
 934                 *(cmd++) =
 935                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 936         } else {
 937                 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 938                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 939                 *(cmd++) =
 940                     D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 941                 *(cmd++) = 0;
 942         }
 943         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 944 
 945         dbri_cmdsend(dbri, cmd, 4);
 946 }
 947 
 948 #if 0
 949 /*
 950  * Lock must be held before calling this.
 951  */
 952 static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 953                              enum in_or_out direction, int prevpipe,
 954                              int nextpipe)
 955 {
 956         s32 *cmd;
 957         int val;
 958 
 959         if (pipe < 0 || pipe > DBRI_MAX_PIPE
 960                         || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 961                         || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 962                 printk(KERN_ERR
 963                     "DBRI: unlink_time_slot called with illegal pipe number\n");
 964                 return;
 965         }
 966 
 967         cmd = dbri_cmdlock(dbri, 4);
 968 
 969         if (direction == PIPEinput) {
 970                 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 971                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 972                 *(cmd++) = D_TS_NEXT(nextpipe);
 973                 *(cmd++) = 0;
 974         } else {
 975                 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 976                 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 977                 *(cmd++) = 0;
 978                 *(cmd++) = D_TS_NEXT(nextpipe);
 979         }
 980         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 981 
 982         dbri_cmdsend(dbri, cmd, 4);
 983 }
 984 #endif
 985 
 986 /* xmit_fixed() / recv_fixed()
 987  *
 988  * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 989  * expected to change much, and which we don't need to buffer.
 990  * The DBRI only interrupts us when the data changes (receive pipes),
 991  * or only changes the data when this function is called (transmit pipes).
 992  * Only short pipes (numbers 16-31) can be used in fixed data mode.
 993  *
 994  * These function operate on a 32-bit field, no matter how large
 995  * the actual time slot is.  The interrupt handler takes care of bit
 996  * ordering and alignment.  An 8-bit time slot will always end up
 997  * in the low-order 8 bits, filled either MSB-first or LSB-first,
 998  * depending on the settings passed to setup_pipe().
 999  *
1000  * Lock must not be held before calling it.
1001  */
1002 static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
1003 {
1004         s32 *cmd;
1005         unsigned long flags;
1006 
1007         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1008                 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1009                 return;
1010         }
1011 
1012         if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1013                 printk(KERN_ERR "DBRI: xmit_fixed: "
1014                         "Uninitialized pipe %d\n", pipe);
1015                 return;
1016         }
1017 
1018         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1019                 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1020                 return;
1021         }
1022 
1023         if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1024                 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1025                         pipe);
1026                 return;
1027         }
1028 
1029         /* DBRI short pipes always transmit LSB first */
1030 
1031         if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1032                 data = reverse_bytes(data, dbri->pipes[pipe].length);
1033 
1034         cmd = dbri_cmdlock(dbri, 3);
1035 
1036         *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1037         *(cmd++) = data;
1038         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1039 
1040         spin_lock_irqsave(&dbri->lock, flags);
1041         dbri_cmdsend(dbri, cmd, 3);
1042         spin_unlock_irqrestore(&dbri->lock, flags);
1043         dbri_cmdwait(dbri);
1044 
1045 }
1046 
1047 static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1048 {
1049         if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1050                 printk(KERN_ERR "DBRI: recv_fixed called with "
1051                         "illegal pipe number\n");
1052                 return;
1053         }
1054 
1055         if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1056                 printk(KERN_ERR "DBRI: recv_fixed called on "
1057                         "non-fixed pipe %d\n", pipe);
1058                 return;
1059         }
1060 
1061         if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1062                 printk(KERN_ERR "DBRI: recv_fixed called on "
1063                         "transmit pipe %d\n", pipe);
1064                 return;
1065         }
1066 
1067         dbri->pipes[pipe].recv_fixed_ptr = ptr;
1068 }
1069 
1070 /* setup_descs()
1071  *
1072  * Setup transmit/receive data on a "long" pipe - i.e, one associated
1073  * with a DMA buffer.
1074  *
1075  * Only pipe numbers 0-15 can be used in this mode.
1076  *
1077  * This function takes a stream number pointing to a data buffer,
1078  * and work by building chains of descriptors which identify the
1079  * data buffers.  Buffers too large for a single descriptor will
1080  * be spread across multiple descriptors.
1081  *
1082  * All descriptors create a ring buffer.
1083  *
1084  * Lock must be held before calling this.
1085  */
1086 static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1087 {
1088         struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1089         u32 dvma_addr = (u32)dbri->dma_dvma;
1090         __u32 dvma_buffer;
1091         int desc;
1092         int len;
1093         int first_desc = -1;
1094         int last_desc = -1;
1095 
1096         if (info->pipe < 0 || info->pipe > 15) {
1097                 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1098                 return -2;
1099         }
1100 
1101         if (dbri->pipes[info->pipe].sdp == 0) {
1102                 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1103                        info->pipe);
1104                 return -2;
1105         }
1106 
1107         dvma_buffer = info->dvma_buffer;
1108         len = info->size;
1109 
1110         if (streamno == DBRI_PLAY) {
1111                 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1112                         printk(KERN_ERR "DBRI: setup_descs: "
1113                                 "Called on receive pipe %d\n", info->pipe);
1114                         return -2;
1115                 }
1116         } else {
1117                 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1118                         printk(KERN_ERR
1119                             "DBRI: setup_descs: Called on transmit pipe %d\n",
1120                              info->pipe);
1121                         return -2;
1122                 }
1123                 /* Should be able to queue multiple buffers
1124                  * to receive on a pipe
1125                  */
1126                 if (pipe_active(dbri, info->pipe)) {
1127                         printk(KERN_ERR "DBRI: recv_on_pipe: "
1128                                 "Called on active pipe %d\n", info->pipe);
1129                         return -2;
1130                 }
1131 
1132                 /* Make sure buffer size is multiple of four */
1133                 len &= ~3;
1134         }
1135 
1136         /* Free descriptors if pipe has any */
1137         desc = dbri->pipes[info->pipe].first_desc;
1138         if (desc >= 0)
1139                 do {
1140                         dbri->dma->desc[desc].ba = 0;
1141                         dbri->dma->desc[desc].nda = 0;
1142                         desc = dbri->next_desc[desc];
1143                 } while (desc != -1 &&
1144                          desc != dbri->pipes[info->pipe].first_desc);
1145 
1146         dbri->pipes[info->pipe].desc = -1;
1147         dbri->pipes[info->pipe].first_desc = -1;
1148 
1149         desc = 0;
1150         while (len > 0) {
1151                 int mylen;
1152 
1153                 for (; desc < DBRI_NO_DESCS; desc++) {
1154                         if (!dbri->dma->desc[desc].ba)
1155                                 break;
1156                 }
1157 
1158                 if (desc == DBRI_NO_DESCS) {
1159                         printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1160                         return -1;
1161                 }
1162 
1163                 if (len > DBRI_TD_MAXCNT)
1164                         mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1165                 else
1166                         mylen = len;
1167 
1168                 if (mylen > period)
1169                         mylen = period;
1170 
1171                 dbri->next_desc[desc] = -1;
1172                 dbri->dma->desc[desc].ba = dvma_buffer;
1173                 dbri->dma->desc[desc].nda = 0;
1174 
1175                 if (streamno == DBRI_PLAY) {
1176                         dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1177                         dbri->dma->desc[desc].word4 = 0;
1178                         dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1179                 } else {
1180                         dbri->dma->desc[desc].word1 = 0;
1181                         dbri->dma->desc[desc].word4 =
1182                             DBRI_RD_B | DBRI_RD_BCNT(mylen);
1183                 }
1184 
1185                 if (first_desc == -1)
1186                         first_desc = desc;
1187                 else {
1188                         dbri->next_desc[last_desc] = desc;
1189                         dbri->dma->desc[last_desc].nda =
1190                             dvma_addr + dbri_dma_off(desc, desc);
1191                 }
1192 
1193                 last_desc = desc;
1194                 dvma_buffer += mylen;
1195                 len -= mylen;
1196         }
1197 
1198         if (first_desc == -1 || last_desc == -1) {
1199                 printk(KERN_ERR "DBRI: setup_descs: "
1200                         " Not enough descriptors available\n");
1201                 return -1;
1202         }
1203 
1204         dbri->dma->desc[last_desc].nda =
1205             dvma_addr + dbri_dma_off(desc, first_desc);
1206         dbri->next_desc[last_desc] = first_desc;
1207         dbri->pipes[info->pipe].first_desc = first_desc;
1208         dbri->pipes[info->pipe].desc = first_desc;
1209 
1210 #ifdef DBRI_DEBUG
1211         for (desc = first_desc; desc != -1;) {
1212                 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1213                         desc,
1214                         dbri->dma->desc[desc].word1,
1215                         dbri->dma->desc[desc].ba,
1216                         dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1217                         desc = dbri->next_desc[desc];
1218                         if (desc == first_desc)
1219                                 break;
1220         }
1221 #endif
1222         return 0;
1223 }
1224 
1225 /*
1226 ****************************************************************************
1227 ************************** DBRI - CHI interface ****************************
1228 ****************************************************************************
1229 
1230 The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1231 multiplexed serial interface which the DBRI can operate in either master
1232 (give clock/frame sync) or slave (take clock/frame sync) mode.
1233 
1234 */
1235 
1236 enum master_or_slave { CHImaster, CHIslave };
1237 
1238 /*
1239  * Lock must not be held before calling it.
1240  */
1241 static void reset_chi(struct snd_dbri *dbri,
1242                       enum master_or_slave master_or_slave,
1243                       int bits_per_frame)
1244 {
1245         s32 *cmd;
1246         int val;
1247 
1248         /* Set CHI Anchor: Pipe 16 */
1249 
1250         cmd = dbri_cmdlock(dbri, 4);
1251         val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1252                 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1253         *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1254         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1255         *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1256         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1257         dbri_cmdsend(dbri, cmd, 4);
1258 
1259         dbri->pipes[16].sdp = 1;
1260         dbri->pipes[16].nextpipe = 16;
1261 
1262         cmd = dbri_cmdlock(dbri, 4);
1263 
1264         if (master_or_slave == CHIslave) {
1265                 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1266                  *
1267                  * CHICM  = 0 (slave mode, 8 kHz frame rate)
1268                  * IR     = give immediate CHI status interrupt
1269                  * EN     = give CHI status interrupt upon change
1270                  */
1271                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1272         } else {
1273                 /* Setup DBRI for CHI Master - generate clock, FS
1274                  *
1275                  * BPF                          =  bits per 8 kHz frame
1276                  * 12.288 MHz / CHICM_divisor   = clock rate
1277                  * FD = 1 - drive CHIFS on rising edge of CHICK
1278                  */
1279                 int clockrate = bits_per_frame * 8;
1280                 int divisor = 12288 / clockrate;
1281 
1282                 if (divisor > 255 || divisor * clockrate != 12288)
1283                         printk(KERN_ERR "DBRI: illegal bits_per_frame "
1284                                 "in setup_chi\n");
1285 
1286                 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1287                                     | D_CHI_BPF(bits_per_frame));
1288         }
1289 
1290         dbri->chi_bpf = bits_per_frame;
1291 
1292         /* CHI Data Mode
1293          *
1294          * RCE   =  0 - receive on falling edge of CHICK
1295          * XCE   =  1 - transmit on rising edge of CHICK
1296          * XEN   =  1 - enable transmitter
1297          * REN   =  1 - enable receiver
1298          */
1299 
1300         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1301         *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1302         *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1303 
1304         dbri_cmdsend(dbri, cmd, 4);
1305 }
1306 
1307 /*
1308 ****************************************************************************
1309 *********************** CS4215 audio codec management **********************
1310 ****************************************************************************
1311 
1312 In the standard SPARC audio configuration, the CS4215 codec is attached
1313 to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1314 
1315  * Lock must not be held before calling it.
1316 
1317 */
1318 static void cs4215_setup_pipes(struct snd_dbri *dbri)
1319 {
1320         unsigned long flags;
1321 
1322         spin_lock_irqsave(&dbri->lock, flags);
1323         /*
1324          * Data mode:
1325          * Pipe  4: Send timeslots 1-4 (audio data)
1326          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1327          * Pipe  6: Receive timeslots 1-4 (audio data)
1328          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1329          *          interrupt, and the rest of the data (slot 5 and 8) is
1330          *          not relevant for us (only for doublechecking).
1331          *
1332          * Control mode:
1333          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1334          * Pipe 18: Receive timeslot 1 (clb).
1335          * Pipe 19: Receive timeslot 7 (version).
1336          */
1337 
1338         setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1339         setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340         setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1341         setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342 
1343         setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1344         setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1345         setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1346         spin_unlock_irqrestore(&dbri->lock, flags);
1347 
1348         dbri_cmdwait(dbri);
1349 }
1350 
1351 static int cs4215_init_data(struct cs4215 *mm)
1352 {
1353         /*
1354          * No action, memory resetting only.
1355          *
1356          * Data Time Slot 5-8
1357          * Speaker,Line and Headphone enable. Gain set to the half.
1358          * Input is mike.
1359          */
1360         mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1361         mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1362         mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1363         mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1364 
1365         /*
1366          * Control Time Slot 1-4
1367          * 0: Default I/O voltage scale
1368          * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1369          * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1370          * 3: Tests disabled
1371          */
1372         mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1373         mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1374         mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1375         mm->ctrl[3] = 0;
1376 
1377         mm->status = 0;
1378         mm->version = 0xff;
1379         mm->precision = 8;      /* For ULAW */
1380         mm->channels = 1;
1381 
1382         return 0;
1383 }
1384 
1385 static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1386 {
1387         if (muted) {
1388                 dbri->mm.data[0] |= 63;
1389                 dbri->mm.data[1] |= 63;
1390                 dbri->mm.data[2] &= ~15;
1391                 dbri->mm.data[3] &= ~15;
1392         } else {
1393                 /* Start by setting the playback attenuation. */
1394                 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1395                 int left_gain = info->left_gain & 0x3f;
1396                 int right_gain = info->right_gain & 0x3f;
1397 
1398                 dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1399                 dbri->mm.data[1] &= ~0x3f;
1400                 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1401                 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1402 
1403                 /* Now set the recording gain. */
1404                 info = &dbri->stream_info[DBRI_REC];
1405                 left_gain = info->left_gain & 0xf;
1406                 right_gain = info->right_gain & 0xf;
1407                 dbri->mm.data[2] |= CS4215_LG(left_gain);
1408                 dbri->mm.data[3] |= CS4215_RG(right_gain);
1409         }
1410 
1411         xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1412 }
1413 
1414 /*
1415  * Set the CS4215 to data mode.
1416  */
1417 static void cs4215_open(struct snd_dbri *dbri)
1418 {
1419         int data_width;
1420         u32 tmp;
1421         unsigned long flags;
1422 
1423         dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1424                 dbri->mm.channels, dbri->mm.precision);
1425 
1426         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1427          * to make sure this takes.  This avoids clicking noises.
1428          */
1429 
1430         cs4215_setdata(dbri, 1);
1431         udelay(125);
1432 
1433         /*
1434          * Data mode:
1435          * Pipe  4: Send timeslots 1-4 (audio data)
1436          * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1437          * Pipe  6: Receive timeslots 1-4 (audio data)
1438          * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1439          *          interrupt, and the rest of the data (slot 5 and 8) is
1440          *          not relevant for us (only for doublechecking).
1441          *
1442          * Just like in control mode, the time slots are all offset by eight
1443          * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1444          * even if it's the CHI master.  Don't ask me...
1445          */
1446         spin_lock_irqsave(&dbri->lock, flags);
1447         tmp = sbus_readl(dbri->regs + REG0);
1448         tmp &= ~(D_C);          /* Disable CHI */
1449         sbus_writel(tmp, dbri->regs + REG0);
1450 
1451         /* Switch CS4215 to data mode - set PIO3 to 1 */
1452         sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1453                     (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1454 
1455         reset_chi(dbri, CHIslave, 128);
1456 
1457         /* Note: this next doesn't work for 8-bit stereo, because the two
1458          * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1459          * (See CS4215 datasheet Fig 15)
1460          *
1461          * DBRI non-contiguous mode would be required to make this work.
1462          */
1463         data_width = dbri->mm.channels * dbri->mm.precision;
1464 
1465         link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1466         link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1467         link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1468         link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1469 
1470         /* FIXME: enable CHI after _setdata? */
1471         tmp = sbus_readl(dbri->regs + REG0);
1472         tmp |= D_C;             /* Enable CHI */
1473         sbus_writel(tmp, dbri->regs + REG0);
1474         spin_unlock_irqrestore(&dbri->lock, flags);
1475 
1476         cs4215_setdata(dbri, 0);
1477 }
1478 
1479 /*
1480  * Send the control information (i.e. audio format)
1481  */
1482 static int cs4215_setctrl(struct snd_dbri *dbri)
1483 {
1484         int i, val;
1485         u32 tmp;
1486         unsigned long flags;
1487 
1488         /* FIXME - let the CPU do something useful during these delays */
1489 
1490         /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1491          * to make sure this takes.  This avoids clicking noises.
1492          */
1493         cs4215_setdata(dbri, 1);
1494         udelay(125);
1495 
1496         /*
1497          * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1498          * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1499          */
1500         val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1501         sbus_writel(val, dbri->regs + REG2);
1502         dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1503         udelay(34);
1504 
1505         /* In Control mode, the CS4215 is a slave device, so the DBRI must
1506          * operate as CHI master, supplying clocking and frame synchronization.
1507          *
1508          * In Data mode, however, the CS4215 must be CHI master to insure
1509          * that its data stream is synchronous with its codec.
1510          *
1511          * The upshot of all this?  We start by putting the DBRI into master
1512          * mode, program the CS4215 in Control mode, then switch the CS4215
1513          * into Data mode and put the DBRI into slave mode.  Various timing
1514          * requirements must be observed along the way.
1515          *
1516          * Oh, and one more thing, on a SPARCStation 20 (and maybe
1517          * others?), the addressing of the CS4215's time slots is
1518          * offset by eight bits, so we add eight to all the "cycle"
1519          * values in the Define Time Slot (DTS) commands.  This is
1520          * done in hardware by a TI 248 that delays the DBRI->4215
1521          * frame sync signal by eight clock cycles.  Anybody know why?
1522          */
1523         spin_lock_irqsave(&dbri->lock, flags);
1524         tmp = sbus_readl(dbri->regs + REG0);
1525         tmp &= ~D_C;            /* Disable CHI */
1526         sbus_writel(tmp, dbri->regs + REG0);
1527 
1528         reset_chi(dbri, CHImaster, 128);
1529 
1530         /*
1531          * Control mode:
1532          * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1533          * Pipe 18: Receive timeslot 1 (clb).
1534          * Pipe 19: Receive timeslot 7 (version).
1535          */
1536 
1537         link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1538         link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1539         link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1540         spin_unlock_irqrestore(&dbri->lock, flags);
1541 
1542         /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1543         dbri->mm.ctrl[0] &= ~CS4215_CLB;
1544         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1545 
1546         spin_lock_irqsave(&dbri->lock, flags);
1547         tmp = sbus_readl(dbri->regs + REG0);
1548         tmp |= D_C;             /* Enable CHI */
1549         sbus_writel(tmp, dbri->regs + REG0);
1550         spin_unlock_irqrestore(&dbri->lock, flags);
1551 
1552         for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1553                 msleep_interruptible(1);
1554 
1555         if (i == 0) {
1556                 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1557                         dbri->mm.status);
1558                 return -1;
1559         }
1560 
1561         /* Disable changes to our copy of the version number, as we are about
1562          * to leave control mode.
1563          */
1564         recv_fixed(dbri, 19, NULL);
1565 
1566         /* Terminate CS4215 control mode - data sheet says
1567          * "Set CLB=1 and send two more frames of valid control info"
1568          */
1569         dbri->mm.ctrl[0] |= CS4215_CLB;
1570         xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1571 
1572         /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1573         udelay(250);
1574 
1575         cs4215_setdata(dbri, 0);
1576 
1577         return 0;
1578 }
1579 
1580 /*
1581  * Setup the codec with the sampling rate, audio format and number of
1582  * channels.
1583  * As part of the process we resend the settings for the data
1584  * timeslots as well.
1585  */
1586 static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1587                           snd_pcm_format_t format, unsigned int channels)
1588 {
1589         int freq_idx;
1590         int ret = 0;
1591 
1592         /* Lookup index for this rate */
1593         for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1594                 if (CS4215_FREQ[freq_idx].freq == rate)
1595                         break;
1596         }
1597         if (CS4215_FREQ[freq_idx].freq != rate) {
1598                 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1599                 return -1;
1600         }
1601 
1602         switch (format) {
1603         case SNDRV_PCM_FORMAT_MU_LAW:
1604                 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1605                 dbri->mm.precision = 8;
1606                 break;
1607         case SNDRV_PCM_FORMAT_A_LAW:
1608                 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1609                 dbri->mm.precision = 8;
1610                 break;
1611         case SNDRV_PCM_FORMAT_U8:
1612                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1613                 dbri->mm.precision = 8;
1614                 break;
1615         case SNDRV_PCM_FORMAT_S16_BE:
1616                 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1617                 dbri->mm.precision = 16;
1618                 break;
1619         default:
1620                 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1621                 return -1;
1622         }
1623 
1624         /* Add rate parameters */
1625         dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1626         dbri->mm.ctrl[2] = CS4215_XCLK |
1627             CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1628 
1629         dbri->mm.channels = channels;
1630         if (channels == 2)
1631                 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1632 
1633         ret = cs4215_setctrl(dbri);
1634         if (ret == 0)
1635                 cs4215_open(dbri);      /* set codec to data mode */
1636 
1637         return ret;
1638 }
1639 
1640 /*
1641  *
1642  */
1643 static int cs4215_init(struct snd_dbri *dbri)
1644 {
1645         u32 reg2 = sbus_readl(dbri->regs + REG2);
1646         dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1647 
1648         /* Look for the cs4215 chips */
1649         if (reg2 & D_PIO2) {
1650                 dprintk(D_MM, "Onboard CS4215 detected\n");
1651                 dbri->mm.onboard = 1;
1652         }
1653         if (reg2 & D_PIO0) {
1654                 dprintk(D_MM, "Speakerbox detected\n");
1655                 dbri->mm.onboard = 0;
1656 
1657                 if (reg2 & D_PIO2) {
1658                         printk(KERN_INFO "DBRI: Using speakerbox / "
1659                                "ignoring onboard mmcodec.\n");
1660                         sbus_writel(D_ENPIO2, dbri->regs + REG2);
1661                 }
1662         }
1663 
1664         if (!(reg2 & (D_PIO0 | D_PIO2))) {
1665                 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1666                 return -EIO;
1667         }
1668 
1669         cs4215_setup_pipes(dbri);
1670         cs4215_init_data(&dbri->mm);
1671 
1672         /* Enable capture of the status & version timeslots. */
1673         recv_fixed(dbri, 18, &dbri->mm.status);
1674         recv_fixed(dbri, 19, &dbri->mm.version);
1675 
1676         dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1677         if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1678                 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1679                         dbri->mm.offset);
1680                 return -EIO;
1681         }
1682         dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1683 
1684         return 0;
1685 }
1686 
1687 /*
1688 ****************************************************************************
1689 *************************** DBRI interrupt handler *************************
1690 ****************************************************************************
1691 
1692 The DBRI communicates with the CPU mainly via a circular interrupt
1693 buffer.  When an interrupt is signaled, the CPU walks through the
1694 buffer and calls dbri_process_one_interrupt() for each interrupt word.
1695 Complicated interrupts are handled by dedicated functions (which
1696 appear first in this file).  Any pending interrupts can be serviced by
1697 calling dbri_process_interrupt_buffer(), which works even if the CPU's
1698 interrupts are disabled.
1699 
1700 */
1701 
1702 /* xmit_descs()
1703  *
1704  * Starts transmitting the current TD's for recording/playing.
1705  * For playback, ALSA has filled the DMA memory with new data (we hope).
1706  */
1707 static void xmit_descs(struct snd_dbri *dbri)
1708 {
1709         struct dbri_streaminfo *info;
1710         u32 dvma_addr;
1711         s32 *cmd;
1712         unsigned long flags;
1713         int first_td;
1714 
1715         if (dbri == NULL)
1716                 return;         /* Disabled */
1717 
1718         dvma_addr = (u32)dbri->dma_dvma;
1719         info = &dbri->stream_info[DBRI_REC];
1720         spin_lock_irqsave(&dbri->lock, flags);
1721 
1722         if (info->pipe >= 0) {
1723                 first_td = dbri->pipes[info->pipe].first_desc;
1724 
1725                 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1726 
1727                 /* Stream could be closed by the time we run. */
1728                 if (first_td >= 0) {
1729                         cmd = dbri_cmdlock(dbri, 2);
1730                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1731                                             dbri->pipes[info->pipe].sdp
1732                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1733                         *(cmd++) = dvma_addr +
1734                                    dbri_dma_off(desc, first_td);
1735                         dbri_cmdsend(dbri, cmd, 2);
1736 
1737                         /* Reset our admin of the pipe. */
1738                         dbri->pipes[info->pipe].desc = first_td;
1739                 }
1740         }
1741 
1742         info = &dbri->stream_info[DBRI_PLAY];
1743 
1744         if (info->pipe >= 0) {
1745                 first_td = dbri->pipes[info->pipe].first_desc;
1746 
1747                 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1748 
1749                 /* Stream could be closed by the time we run. */
1750                 if (first_td >= 0) {
1751                         cmd = dbri_cmdlock(dbri, 2);
1752                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1753                                             dbri->pipes[info->pipe].sdp
1754                                             | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1755                         *(cmd++) = dvma_addr +
1756                                    dbri_dma_off(desc, first_td);
1757                         dbri_cmdsend(dbri, cmd, 2);
1758 
1759                         /* Reset our admin of the pipe. */
1760                         dbri->pipes[info->pipe].desc = first_td;
1761                 }
1762         }
1763 
1764         spin_unlock_irqrestore(&dbri->lock, flags);
1765 }
1766 
1767 /* transmission_complete_intr()
1768  *
1769  * Called by main interrupt handler when DBRI signals transmission complete
1770  * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1771  *
1772  * Walks through the pipe's list of transmit buffer descriptors and marks
1773  * them as available. Stops when the first descriptor is found without
1774  * TBC (Transmit Buffer Complete) set, or we've run through them all.
1775  *
1776  * The DMA buffers are not released. They form a ring buffer and
1777  * they are filled by ALSA while others are transmitted by DMA.
1778  *
1779  */
1780 
1781 static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1782 {
1783         struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1784         int td = dbri->pipes[pipe].desc;
1785         int status;
1786 
1787         while (td >= 0) {
1788                 if (td >= DBRI_NO_DESCS) {
1789                         printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1790                         return;
1791                 }
1792 
1793                 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1794                 if (!(status & DBRI_TD_TBC))
1795                         break;
1796 
1797                 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1798 
1799                 dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1800                 info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1801 
1802                 td = dbri->next_desc[td];
1803                 dbri->pipes[pipe].desc = td;
1804         }
1805 
1806         /* Notify ALSA */
1807         spin_unlock(&dbri->lock);
1808         snd_pcm_period_elapsed(info->substream);
1809         spin_lock(&dbri->lock);
1810 }
1811 
1812 static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1813 {
1814         struct dbri_streaminfo *info;
1815         int rd = dbri->pipes[pipe].desc;
1816         s32 status;
1817 
1818         if (rd < 0 || rd >= DBRI_NO_DESCS) {
1819                 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1820                 return;
1821         }
1822 
1823         dbri->pipes[pipe].desc = dbri->next_desc[rd];
1824         status = dbri->dma->desc[rd].word1;
1825         dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1826 
1827         info = &dbri->stream_info[DBRI_REC];
1828         info->offset += DBRI_RD_CNT(status);
1829 
1830         /* FIXME: Check status */
1831 
1832         dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1833                 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1834 
1835         /* Notify ALSA */
1836         spin_unlock(&dbri->lock);
1837         snd_pcm_period_elapsed(info->substream);
1838         spin_lock(&dbri->lock);
1839 }
1840 
1841 static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1842 {
1843         int val = D_INTR_GETVAL(x);
1844         int channel = D_INTR_GETCHAN(x);
1845         int command = D_INTR_GETCMD(x);
1846         int code = D_INTR_GETCODE(x);
1847 #ifdef DBRI_DEBUG
1848         int rval = D_INTR_GETRVAL(x);
1849 #endif
1850 
1851         if (channel == D_INTR_CMD) {
1852                 dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1853                         cmds[command], val);
1854         } else {
1855                 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1856                         channel, code, rval);
1857         }
1858 
1859         switch (code) {
1860         case D_INTR_CMDI:
1861                 if (command != D_WAIT)
1862                         printk(KERN_ERR "DBRI: Command read interrupt\n");
1863                 break;
1864         case D_INTR_BRDY:
1865                 reception_complete_intr(dbri, channel);
1866                 break;
1867         case D_INTR_XCMP:
1868         case D_INTR_MINT:
1869                 transmission_complete_intr(dbri, channel);
1870                 break;
1871         case D_INTR_UNDR:
1872                 /* UNDR - Transmission underrun
1873                  * resend SDP command with clear pipe bit (C) set
1874                  */
1875                 {
1876         /* FIXME: do something useful in case of underrun */
1877                         printk(KERN_ERR "DBRI: Underrun error\n");
1878 #if 0
1879                         s32 *cmd;
1880                         int pipe = channel;
1881                         int td = dbri->pipes[pipe].desc;
1882 
1883                         dbri->dma->desc[td].word4 = 0;
1884                         cmd = dbri_cmdlock(dbri, NoGetLock);
1885                         *(cmd++) = DBRI_CMD(D_SDP, 0,
1886                                             dbri->pipes[pipe].sdp
1887                                             | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1888                         *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1889                         dbri_cmdsend(dbri, cmd);
1890 #endif
1891                 }
1892                 break;
1893         case D_INTR_FXDT:
1894                 /* FXDT - Fixed data change */
1895                 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1896                         val = reverse_bytes(val, dbri->pipes[channel].length);
1897 
1898                 if (dbri->pipes[channel].recv_fixed_ptr)
1899                         *(dbri->pipes[channel].recv_fixed_ptr) = val;
1900                 break;
1901         default:
1902                 if (channel != D_INTR_CMD)
1903                         printk(KERN_WARNING
1904                                "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1905         }
1906 }
1907 
1908 /* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1909  * buffer until it finds a zero word (indicating nothing more to do
1910  * right now).  Non-zero words require processing and are handed off
1911  * to dbri_process_one_interrupt AFTER advancing the pointer.
1912  */
1913 static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1914 {
1915         s32 x;
1916 
1917         while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1918                 dbri->dma->intr[dbri->dbri_irqp] = 0;
1919                 dbri->dbri_irqp++;
1920                 if (dbri->dbri_irqp == DBRI_INT_BLK)
1921                         dbri->dbri_irqp = 1;
1922 
1923                 dbri_process_one_interrupt(dbri, x);
1924         }
1925 }
1926 
1927 static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1928 {
1929         struct snd_dbri *dbri = dev_id;
1930         static int errcnt = 0;
1931         int x;
1932 
1933         if (dbri == NULL)
1934                 return IRQ_NONE;
1935         spin_lock(&dbri->lock);
1936 
1937         /*
1938          * Read it, so the interrupt goes away.
1939          */
1940         x = sbus_readl(dbri->regs + REG1);
1941 
1942         if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1943                 u32 tmp;
1944 
1945                 if (x & D_MRR)
1946                         printk(KERN_ERR
1947                                "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1948                                x);
1949                 if (x & D_MLE)
1950                         printk(KERN_ERR
1951                                "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1952                                x);
1953                 if (x & D_LBG)
1954                         printk(KERN_ERR
1955                                "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1956                 if (x & D_MBE)
1957                         printk(KERN_ERR
1958                                "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1959 
1960                 /* Some of these SBus errors cause the chip's SBus circuitry
1961                  * to be disabled, so just re-enable and try to keep going.
1962                  *
1963                  * The only one I've seen is MRR, which will be triggered
1964                  * if you let a transmit pipe underrun, then try to CDP it.
1965                  *
1966                  * If these things persist, we reset the chip.
1967                  */
1968                 if ((++errcnt) % 10 == 0) {
1969                         dprintk(D_INT, "Interrupt errors exceeded.\n");
1970                         dbri_reset(dbri);
1971                 } else {
1972                         tmp = sbus_readl(dbri->regs + REG0);
1973                         tmp &= ~(D_D);
1974                         sbus_writel(tmp, dbri->regs + REG0);
1975                 }
1976         }
1977 
1978         dbri_process_interrupt_buffer(dbri);
1979 
1980         spin_unlock(&dbri->lock);
1981 
1982         return IRQ_HANDLED;
1983 }
1984 
1985 /****************************************************************************
1986                 PCM Interface
1987 ****************************************************************************/
1988 static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1989         .info           = SNDRV_PCM_INFO_MMAP |
1990                           SNDRV_PCM_INFO_INTERLEAVED |
1991                           SNDRV_PCM_INFO_BLOCK_TRANSFER |
1992                           SNDRV_PCM_INFO_MMAP_VALID |
1993                           SNDRV_PCM_INFO_BATCH,
1994         .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1995                           SNDRV_PCM_FMTBIT_A_LAW |
1996                           SNDRV_PCM_FMTBIT_U8 |
1997                           SNDRV_PCM_FMTBIT_S16_BE,
1998         .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1999         .rate_min               = 5512,
2000         .rate_max               = 48000,
2001         .channels_min           = 1,
2002         .channels_max           = 2,
2003         .buffer_bytes_max       = 64 * 1024,
2004         .period_bytes_min       = 1,
2005         .period_bytes_max       = DBRI_TD_MAXCNT,
2006         .periods_min            = 1,
2007         .periods_max            = 1024,
2008 };
2009 
2010 static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2011                               struct snd_pcm_hw_rule *rule)
2012 {
2013         struct snd_interval *c = hw_param_interval(params,
2014                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2015         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2016         struct snd_mask fmt;
2017 
2018         snd_mask_any(&fmt);
2019         if (c->min > 1) {
2020                 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2021                 return snd_mask_refine(f, &fmt);
2022         }
2023         return 0;
2024 }
2025 
2026 static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2027                                 struct snd_pcm_hw_rule *rule)
2028 {
2029         struct snd_interval *c = hw_param_interval(params,
2030                                 SNDRV_PCM_HW_PARAM_CHANNELS);
2031         struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2032         struct snd_interval ch;
2033 
2034         snd_interval_any(&ch);
2035         if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2036                 ch.min = 1;
2037                 ch.max = 1;
2038                 ch.integer = 1;
2039                 return snd_interval_refine(c, &ch);
2040         }
2041         return 0;
2042 }
2043 
2044 static int snd_dbri_open(struct snd_pcm_substream *substream)
2045 {
2046         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2047         struct snd_pcm_runtime *runtime = substream->runtime;
2048         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2049         unsigned long flags;
2050 
2051         dprintk(D_USR, "open audio output.\n");
2052         runtime->hw = snd_dbri_pcm_hw;
2053 
2054         spin_lock_irqsave(&dbri->lock, flags);
2055         info->substream = substream;
2056         info->offset = 0;
2057         info->dvma_buffer = 0;
2058         info->pipe = -1;
2059         spin_unlock_irqrestore(&dbri->lock, flags);
2060 
2061         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2062                             snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2063                             -1);
2064         snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2065                             snd_hw_rule_channels, NULL,
2066                             SNDRV_PCM_HW_PARAM_CHANNELS,
2067                             -1);
2068 
2069         cs4215_open(dbri);
2070 
2071         return 0;
2072 }
2073 
2074 static int snd_dbri_close(struct snd_pcm_substream *substream)
2075 {
2076         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2077         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2078 
2079         dprintk(D_USR, "close audio output.\n");
2080         info->substream = NULL;
2081         info->offset = 0;
2082 
2083         return 0;
2084 }
2085 
2086 static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2087                               struct snd_pcm_hw_params *hw_params)
2088 {
2089         struct snd_pcm_runtime *runtime = substream->runtime;
2090         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2091         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2092         int direction;
2093         int ret;
2094 
2095         /* set sampling rate, audio format and number of channels */
2096         ret = cs4215_prepare(dbri, params_rate(hw_params),
2097                              params_format(hw_params),
2098                              params_channels(hw_params));
2099         if (ret != 0)
2100                 return ret;
2101 
2102         if ((ret = snd_pcm_lib_malloc_pages(substream,
2103                                 params_buffer_bytes(hw_params))) < 0) {
2104                 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2105                 return ret;
2106         }
2107 
2108         /* hw_params can get called multiple times. Only map the DMA once.
2109          */
2110         if (info->dvma_buffer == 0) {
2111                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2112                         direction = DMA_TO_DEVICE;
2113                 else
2114                         direction = DMA_FROM_DEVICE;
2115 
2116                 info->dvma_buffer =
2117                         dma_map_single(&dbri->op->dev,
2118                                        runtime->dma_area,
2119                                        params_buffer_bytes(hw_params),
2120                                        direction);
2121         }
2122 
2123         direction = params_buffer_bytes(hw_params);
2124         dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2125                 direction, info->dvma_buffer);
2126         return 0;
2127 }
2128 
2129 static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2130 {
2131         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2132         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2133         int direction;
2134 
2135         dprintk(D_USR, "hw_free.\n");
2136 
2137         /* hw_free can get called multiple times. Only unmap the DMA once.
2138          */
2139         if (info->dvma_buffer) {
2140                 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2141                         direction = DMA_TO_DEVICE;
2142                 else
2143                         direction = DMA_FROM_DEVICE;
2144 
2145                 dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2146                                  substream->runtime->buffer_size, direction);
2147                 info->dvma_buffer = 0;
2148         }
2149         if (info->pipe != -1) {
2150                 reset_pipe(dbri, info->pipe);
2151                 info->pipe = -1;
2152         }
2153 
2154         return snd_pcm_lib_free_pages(substream);
2155 }
2156 
2157 static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2158 {
2159         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2160         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2161         int ret;
2162 
2163         info->size = snd_pcm_lib_buffer_bytes(substream);
2164         if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2165                 info->pipe = 4; /* Send pipe */
2166         else
2167                 info->pipe = 6; /* Receive pipe */
2168 
2169         spin_lock_irq(&dbri->lock);
2170         info->offset = 0;
2171 
2172         /* Setup the all the transmit/receive descriptors to cover the
2173          * whole DMA buffer.
2174          */
2175         ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2176                           snd_pcm_lib_period_bytes(substream));
2177 
2178         spin_unlock_irq(&dbri->lock);
2179 
2180         dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2181         return ret;
2182 }
2183 
2184 static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2185 {
2186         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2187         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2188         int ret = 0;
2189 
2190         switch (cmd) {
2191         case SNDRV_PCM_TRIGGER_START:
2192                 dprintk(D_USR, "start audio, period is %d bytes\n",
2193                         (int)snd_pcm_lib_period_bytes(substream));
2194                 /* Re-submit the TDs. */
2195                 xmit_descs(dbri);
2196                 break;
2197         case SNDRV_PCM_TRIGGER_STOP:
2198                 dprintk(D_USR, "stop audio.\n");
2199                 reset_pipe(dbri, info->pipe);
2200                 break;
2201         default:
2202                 ret = -EINVAL;
2203         }
2204 
2205         return ret;
2206 }
2207 
2208 static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2209 {
2210         struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2211         struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2212         snd_pcm_uframes_t ret;
2213 
2214         ret = bytes_to_frames(substream->runtime, info->offset)
2215                 % substream->runtime->buffer_size;
2216         dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2217                 ret, substream->runtime->buffer_size);
2218         return ret;
2219 }
2220 
2221 static const struct snd_pcm_ops snd_dbri_ops = {
2222         .open = snd_dbri_open,
2223         .close = snd_dbri_close,
2224         .ioctl = snd_pcm_lib_ioctl,
2225         .hw_params = snd_dbri_hw_params,
2226         .hw_free = snd_dbri_hw_free,
2227         .prepare = snd_dbri_prepare,
2228         .trigger = snd_dbri_trigger,
2229         .pointer = snd_dbri_pointer,
2230 };
2231 
2232 static int snd_dbri_pcm(struct snd_card *card)
2233 {
2234         struct snd_pcm *pcm;
2235         int err;
2236 
2237         if ((err = snd_pcm_new(card,
2238                                /* ID */             "sun_dbri",
2239                                /* device */         0,
2240                                /* playback count */ 1,
2241                                /* capture count */  1, &pcm)) < 0)
2242                 return err;
2243 
2244         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2245         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2246 
2247         pcm->private_data = card->private_data;
2248         pcm->info_flags = 0;
2249         strcpy(pcm->name, card->shortname);
2250 
2251         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2252                                               snd_dma_continuous_data(GFP_KERNEL),
2253                                               64 * 1024, 64 * 1024);
2254         return 0;
2255 }
2256 
2257 /*****************************************************************************
2258                         Mixer interface
2259 *****************************************************************************/
2260 
2261 static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2262                                   struct snd_ctl_elem_info *uinfo)
2263 {
2264         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2265         uinfo->count = 2;
2266         uinfo->value.integer.min = 0;
2267         if (kcontrol->private_value == DBRI_PLAY)
2268                 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2269         else
2270                 uinfo->value.integer.max = DBRI_MAX_GAIN;
2271         return 0;
2272 }
2273 
2274 static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2275                                  struct snd_ctl_elem_value *ucontrol)
2276 {
2277         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2278         struct dbri_streaminfo *info;
2279 
2280         if (snd_BUG_ON(!dbri))
2281                 return -EINVAL;
2282         info = &dbri->stream_info[kcontrol->private_value];
2283 
2284         ucontrol->value.integer.value[0] = info->left_gain;
2285         ucontrol->value.integer.value[1] = info->right_gain;
2286         return 0;
2287 }
2288 
2289 static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2290                                  struct snd_ctl_elem_value *ucontrol)
2291 {
2292         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2293         struct dbri_streaminfo *info =
2294                                 &dbri->stream_info[kcontrol->private_value];
2295         unsigned int vol[2];
2296         int changed = 0;
2297 
2298         vol[0] = ucontrol->value.integer.value[0];
2299         vol[1] = ucontrol->value.integer.value[1];
2300         if (kcontrol->private_value == DBRI_PLAY) {
2301                 if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2302                         return -EINVAL;
2303         } else {
2304                 if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2305                         return -EINVAL;
2306         }
2307 
2308         if (info->left_gain != vol[0]) {
2309                 info->left_gain = vol[0];
2310                 changed = 1;
2311         }
2312         if (info->right_gain != vol[1]) {
2313                 info->right_gain = vol[1];
2314                 changed = 1;
2315         }
2316         if (changed) {
2317                 /* First mute outputs, and wait 1/8000 sec (125 us)
2318                  * to make sure this takes.  This avoids clicking noises.
2319                  */
2320                 cs4215_setdata(dbri, 1);
2321                 udelay(125);
2322                 cs4215_setdata(dbri, 0);
2323         }
2324         return changed;
2325 }
2326 
2327 static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2328                                   struct snd_ctl_elem_info *uinfo)
2329 {
2330         int mask = (kcontrol->private_value >> 16) & 0xff;
2331 
2332         uinfo->type = (mask == 1) ?
2333             SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2334         uinfo->count = 1;
2335         uinfo->value.integer.min = 0;
2336         uinfo->value.integer.max = mask;
2337         return 0;
2338 }
2339 
2340 static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2341                                  struct snd_ctl_elem_value *ucontrol)
2342 {
2343         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2344         int elem = kcontrol->private_value & 0xff;
2345         int shift = (kcontrol->private_value >> 8) & 0xff;
2346         int mask = (kcontrol->private_value >> 16) & 0xff;
2347         int invert = (kcontrol->private_value >> 24) & 1;
2348 
2349         if (snd_BUG_ON(!dbri))
2350                 return -EINVAL;
2351 
2352         if (elem < 4)
2353                 ucontrol->value.integer.value[0] =
2354                     (dbri->mm.data[elem] >> shift) & mask;
2355         else
2356                 ucontrol->value.integer.value[0] =
2357                     (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2358 
2359         if (invert == 1)
2360                 ucontrol->value.integer.value[0] =
2361                     mask - ucontrol->value.integer.value[0];
2362         return 0;
2363 }
2364 
2365 static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2366                                  struct snd_ctl_elem_value *ucontrol)
2367 {
2368         struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2369         int elem = kcontrol->private_value & 0xff;
2370         int shift = (kcontrol->private_value >> 8) & 0xff;
2371         int mask = (kcontrol->private_value >> 16) & 0xff;
2372         int invert = (kcontrol->private_value >> 24) & 1;
2373         int changed = 0;
2374         unsigned short val;
2375 
2376         if (snd_BUG_ON(!dbri))
2377                 return -EINVAL;
2378 
2379         val = (ucontrol->value.integer.value[0] & mask);
2380         if (invert == 1)
2381                 val = mask - val;
2382         val <<= shift;
2383 
2384         if (elem < 4) {
2385                 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2386                                        ~(mask << shift)) | val;
2387                 changed = (val != dbri->mm.data[elem]);
2388         } else {
2389                 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2390                                            ~(mask << shift)) | val;
2391                 changed = (val != dbri->mm.ctrl[elem - 4]);
2392         }
2393 
2394         dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2395                 "mixer-value=%ld, mm-value=0x%x\n",
2396                 mask, changed, ucontrol->value.integer.value[0],
2397                 dbri->mm.data[elem & 3]);
2398 
2399         if (changed) {
2400                 /* First mute outputs, and wait 1/8000 sec (125 us)
2401                  * to make sure this takes.  This avoids clicking noises.
2402                  */
2403                 cs4215_setdata(dbri, 1);
2404                 udelay(125);
2405                 cs4215_setdata(dbri, 0);
2406         }
2407         return changed;
2408 }
2409 
2410 /* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2411    timeslots. Shift is the bit offset in the timeslot, mask defines the
2412    number of bits. invert is a boolean for use with attenuation.
2413  */
2414 #define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2415 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2416   .info = snd_cs4215_info_single,                               \
2417   .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2418   .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2419                         ((invert) << 24) },
2420 
2421 static struct snd_kcontrol_new dbri_controls[] = {
2422         {
2423          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2424          .name  = "Playback Volume",
2425          .info  = snd_cs4215_info_volume,
2426          .get   = snd_cs4215_get_volume,
2427          .put   = snd_cs4215_put_volume,
2428          .private_value = DBRI_PLAY,
2429          },
2430         CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2431         CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2432         CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2433         {
2434          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2435          .name  = "Capture Volume",
2436          .info  = snd_cs4215_info_volume,
2437          .get   = snd_cs4215_get_volume,
2438          .put   = snd_cs4215_put_volume,
2439          .private_value = DBRI_REC,
2440          },
2441         /* FIXME: mic/line switch */
2442         CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2443         CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2444         CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2445         CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2446 };
2447 
2448 static int snd_dbri_mixer(struct snd_card *card)
2449 {
2450         int idx, err;
2451         struct snd_dbri *dbri;
2452 
2453         if (snd_BUG_ON(!card || !card->private_data))
2454                 return -EINVAL;
2455         dbri = card->private_data;
2456 
2457         strcpy(card->mixername, card->shortname);
2458 
2459         for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2460                 err = snd_ctl_add(card,
2461                                 snd_ctl_new1(&dbri_controls[idx], dbri));
2462                 if (err < 0)
2463                         return err;
2464         }
2465 
2466         for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2467                 dbri->stream_info[idx].left_gain = 0;
2468                 dbri->stream_info[idx].right_gain = 0;
2469         }
2470 
2471         return 0;
2472 }
2473 
2474 /****************************************************************************
2475                         /proc interface
2476 ****************************************************************************/
2477 static void dbri_regs_read(struct snd_info_entry *entry,
2478                            struct snd_info_buffer *buffer)
2479 {
2480         struct snd_dbri *dbri = entry->private_data;
2481 
2482         snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2483         snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2484         snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2485         snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2486 }
2487 
2488 #ifdef DBRI_DEBUG
2489 static void dbri_debug_read(struct snd_info_entry *entry,
2490                             struct snd_info_buffer *buffer)
2491 {
2492         struct snd_dbri *dbri = entry->private_data;
2493         int pipe;
2494         snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2495 
2496         for (pipe = 0; pipe < 32; pipe++) {
2497                 if (pipe_active(dbri, pipe)) {
2498                         struct dbri_pipe *pptr = &dbri->pipes[pipe];
2499                         snd_iprintf(buffer,
2500                                     "Pipe %d: %s SDP=0x%x desc=%d, "
2501                                     "len=%d next %d\n",
2502                                     pipe,
2503                                    (pptr->sdp & D_SDP_TO_SER) ? "output" :
2504                                                                  "input",
2505                                     pptr->sdp, pptr->desc,
2506                                     pptr->length, pptr->nextpipe);
2507                 }
2508         }
2509 }
2510 #endif
2511 
2512 static void snd_dbri_proc(struct snd_card *card)
2513 {
2514         struct snd_dbri *dbri = card->private_data;
2515 
2516         snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2517 #ifdef DBRI_DEBUG
2518         snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2519 #endif
2520 }
2521 
2522 /*
2523 ****************************************************************************
2524 **************************** Initialization ********************************
2525 ****************************************************************************
2526 */
2527 static void snd_dbri_free(struct snd_dbri *dbri);
2528 
2529 static int snd_dbri_create(struct snd_card *card,
2530                            struct platform_device *op,
2531                            int irq, int dev)
2532 {
2533         struct snd_dbri *dbri = card->private_data;
2534         int err;
2535 
2536         spin_lock_init(&dbri->lock);
2537         dbri->op = op;
2538         dbri->irq = irq;
2539 
2540         dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2541                                        &dbri->dma_dvma, GFP_KERNEL);
2542         if (!dbri->dma)
2543                 return -ENOMEM;
2544 
2545         dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2546                 dbri->dma, dbri->dma_dvma);
2547 
2548         /* Map the registers into memory. */
2549         dbri->regs_size = resource_size(&op->resource[0]);
2550         dbri->regs = of_ioremap(&op->resource[0], 0,
2551                                 dbri->regs_size, "DBRI Registers");
2552         if (!dbri->regs) {
2553                 printk(KERN_ERR "DBRI: could not allocate registers\n");
2554                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2555                                   (void *)dbri->dma, dbri->dma_dvma);
2556                 return -EIO;
2557         }
2558 
2559         err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2560                           "DBRI audio", dbri);
2561         if (err) {
2562                 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2563                 of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2564                 dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2565                                   (void *)dbri->dma, dbri->dma_dvma);
2566                 return err;
2567         }
2568 
2569         /* Do low level initialization of the DBRI and CS4215 chips */
2570         dbri_initialize(dbri);
2571         err = cs4215_init(dbri);
2572         if (err) {
2573                 snd_dbri_free(dbri);
2574                 return err;
2575         }
2576 
2577         return 0;
2578 }
2579 
2580 static void snd_dbri_free(struct snd_dbri *dbri)
2581 {
2582         dprintk(D_GEN, "snd_dbri_free\n");
2583         dbri_reset(dbri);
2584 
2585         if (dbri->irq)
2586                 free_irq(dbri->irq, dbri);
2587 
2588         if (dbri->regs)
2589                 of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2590 
2591         if (dbri->dma)
2592                 dma_free_coherent(&dbri->op->dev,
2593                                   sizeof(struct dbri_dma),
2594                                   (void *)dbri->dma, dbri->dma_dvma);
2595 }
2596 
2597 static int dbri_probe(struct platform_device *op)
2598 {
2599         struct snd_dbri *dbri;
2600         struct resource *rp;
2601         struct snd_card *card;
2602         static int dev = 0;
2603         int irq;
2604         int err;
2605 
2606         if (dev >= SNDRV_CARDS)
2607                 return -ENODEV;
2608         if (!enable[dev]) {
2609                 dev++;
2610                 return -ENOENT;
2611         }
2612 
2613         irq = op->archdata.irqs[0];
2614         if (irq <= 0) {
2615                 printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2616                 return -ENODEV;
2617         }
2618 
2619         err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2620                            sizeof(struct snd_dbri), &card);
2621         if (err < 0)
2622                 return err;
2623 
2624         strcpy(card->driver, "DBRI");
2625         strcpy(card->shortname, "Sun DBRI");
2626         rp = &op->resource[0];
2627         sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2628                 card->shortname,
2629                 rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2630 
2631         err = snd_dbri_create(card, op, irq, dev);
2632         if (err < 0) {
2633                 snd_card_free(card);
2634                 return err;
2635         }
2636 
2637         dbri = card->private_data;
2638         err = snd_dbri_pcm(card);
2639         if (err < 0)
2640                 goto _err;
2641 
2642         err = snd_dbri_mixer(card);
2643         if (err < 0)
2644                 goto _err;
2645 
2646         /* /proc file handling */
2647         snd_dbri_proc(card);
2648         dev_set_drvdata(&op->dev, card);
2649 
2650         err = snd_card_register(card);
2651         if (err < 0)
2652                 goto _err;
2653 
2654         printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2655                dev, dbri->regs,
2656                dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2657         dev++;
2658 
2659         return 0;
2660 
2661 _err:
2662         snd_dbri_free(dbri);
2663         snd_card_free(card);
2664         return err;
2665 }
2666 
2667 static int dbri_remove(struct platform_device *op)
2668 {
2669         struct snd_card *card = dev_get_drvdata(&op->dev);
2670 
2671         snd_dbri_free(card->private_data);
2672         snd_card_free(card);
2673 
2674         return 0;
2675 }
2676 
2677 static const struct of_device_id dbri_match[] = {
2678         {
2679                 .name = "SUNW,DBRIe",
2680         },
2681         {
2682                 .name = "SUNW,DBRIf",
2683         },
2684         {},
2685 };
2686 
2687 MODULE_DEVICE_TABLE(of, dbri_match);
2688 
2689 static struct platform_driver dbri_sbus_driver = {
2690         .driver = {
2691                 .name = "dbri",
2692                 .of_match_table = dbri_match,
2693         },
2694         .probe          = dbri_probe,
2695         .remove         = dbri_remove,
2696 };
2697 
2698 module_platform_driver(dbri_sbus_driver);

/* [<][>][^][v][top][bottom][index][help] */