root/virt/kvm/arm/vgic/vgic.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vgic_get_lpi
  2. vgic_get_irq
  3. vgic_irq_release
  4. __vgic_put_lpi_locked
  5. vgic_put_irq
  6. vgic_flush_pending_lpis
  7. vgic_irq_set_phys_pending
  8. vgic_get_phys_line_level
  9. vgic_irq_set_phys_active
  10. vgic_target_oracle
  11. vgic_irq_cmp
  12. vgic_sort_ap_list
  13. vgic_validate_injection
  14. vgic_queue_irq_unlock
  15. kvm_vgic_inject_irq
  16. kvm_vgic_map_irq
  17. kvm_vgic_unmap_irq
  18. kvm_vgic_map_phys_irq
  19. kvm_vgic_reset_mapped_irq
  20. kvm_vgic_unmap_phys_irq
  21. kvm_vgic_set_owner
  22. vgic_prune_ap_list
  23. vgic_fold_lr_state
  24. vgic_populate_lr
  25. vgic_clear_lr
  26. vgic_set_underflow
  27. compute_ap_list_depth
  28. vgic_flush_lr_state
  29. can_access_vgic_from_kernel
  30. vgic_save_state
  31. kvm_vgic_sync_hwstate
  32. vgic_restore_state
  33. kvm_vgic_flush_hwstate
  34. kvm_vgic_load
  35. kvm_vgic_put
  36. kvm_vgic_vmcr_sync
  37. kvm_vgic_vcpu_pending_irq
  38. vgic_kick_vcpus
  39. kvm_vgic_map_is_active

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2015, 2016 ARM Ltd.
   4  */
   5 
   6 #include <linux/interrupt.h>
   7 #include <linux/irq.h>
   8 #include <linux/kvm.h>
   9 #include <linux/kvm_host.h>
  10 #include <linux/list_sort.h>
  11 #include <linux/nospec.h>
  12 
  13 #include <asm/kvm_hyp.h>
  14 
  15 #include "vgic.h"
  16 
  17 #define CREATE_TRACE_POINTS
  18 #include "trace.h"
  19 
  20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
  21         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
  22 };
  23 
  24 /*
  25  * Locking order is always:
  26  * kvm->lock (mutex)
  27  *   its->cmd_lock (mutex)
  28  *     its->its_lock (mutex)
  29  *       vgic_cpu->ap_list_lock         must be taken with IRQs disabled
  30  *         kvm->lpi_list_lock           must be taken with IRQs disabled
  31  *           vgic_irq->irq_lock         must be taken with IRQs disabled
  32  *
  33  * As the ap_list_lock might be taken from the timer interrupt handler,
  34  * we have to disable IRQs before taking this lock and everything lower
  35  * than it.
  36  *
  37  * If you need to take multiple locks, always take the upper lock first,
  38  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
  39  * If you are already holding a lock and need to take a higher one, you
  40  * have to drop the lower ranking lock first and re-aquire it after having
  41  * taken the upper one.
  42  *
  43  * When taking more than one ap_list_lock at the same time, always take the
  44  * lowest numbered VCPU's ap_list_lock first, so:
  45  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
  46  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
  47  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
  48  *
  49  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
  50  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
  51  * spinlocks for any lock that may be taken while injecting an interrupt.
  52  */
  53 
  54 /*
  55  * Iterate over the VM's list of mapped LPIs to find the one with a
  56  * matching interrupt ID and return a reference to the IRQ structure.
  57  */
  58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
  59 {
  60         struct vgic_dist *dist = &kvm->arch.vgic;
  61         struct vgic_irq *irq = NULL;
  62         unsigned long flags;
  63 
  64         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
  65 
  66         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
  67                 if (irq->intid != intid)
  68                         continue;
  69 
  70                 /*
  71                  * This increases the refcount, the caller is expected to
  72                  * call vgic_put_irq() later once it's finished with the IRQ.
  73                  */
  74                 vgic_get_irq_kref(irq);
  75                 goto out_unlock;
  76         }
  77         irq = NULL;
  78 
  79 out_unlock:
  80         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
  81 
  82         return irq;
  83 }
  84 
  85 /*
  86  * This looks up the virtual interrupt ID to get the corresponding
  87  * struct vgic_irq. It also increases the refcount, so any caller is expected
  88  * to call vgic_put_irq() once it's finished with this IRQ.
  89  */
  90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
  91                               u32 intid)
  92 {
  93         /* SGIs and PPIs */
  94         if (intid <= VGIC_MAX_PRIVATE) {
  95                 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
  96                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
  97         }
  98 
  99         /* SPIs */
 100         if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
 101                 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
 102                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
 103         }
 104 
 105         /* LPIs */
 106         if (intid >= VGIC_MIN_LPI)
 107                 return vgic_get_lpi(kvm, intid);
 108 
 109         WARN(1, "Looking up struct vgic_irq for reserved INTID");
 110         return NULL;
 111 }
 112 
 113 /*
 114  * We can't do anything in here, because we lack the kvm pointer to
 115  * lock and remove the item from the lpi_list. So we keep this function
 116  * empty and use the return value of kref_put() to trigger the freeing.
 117  */
 118 static void vgic_irq_release(struct kref *ref)
 119 {
 120 }
 121 
 122 /*
 123  * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
 124  */
 125 void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
 126 {
 127         struct vgic_dist *dist = &kvm->arch.vgic;
 128 
 129         if (!kref_put(&irq->refcount, vgic_irq_release))
 130                 return;
 131 
 132         list_del(&irq->lpi_list);
 133         dist->lpi_list_count--;
 134 
 135         kfree(irq);
 136 }
 137 
 138 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
 139 {
 140         struct vgic_dist *dist = &kvm->arch.vgic;
 141         unsigned long flags;
 142 
 143         if (irq->intid < VGIC_MIN_LPI)
 144                 return;
 145 
 146         raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 147         __vgic_put_lpi_locked(kvm, irq);
 148         raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 149 }
 150 
 151 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
 152 {
 153         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 154         struct vgic_irq *irq, *tmp;
 155         unsigned long flags;
 156 
 157         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
 158 
 159         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
 160                 if (irq->intid >= VGIC_MIN_LPI) {
 161                         raw_spin_lock(&irq->irq_lock);
 162                         list_del(&irq->ap_list);
 163                         irq->vcpu = NULL;
 164                         raw_spin_unlock(&irq->irq_lock);
 165                         vgic_put_irq(vcpu->kvm, irq);
 166                 }
 167         }
 168 
 169         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
 170 }
 171 
 172 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
 173 {
 174         WARN_ON(irq_set_irqchip_state(irq->host_irq,
 175                                       IRQCHIP_STATE_PENDING,
 176                                       pending));
 177 }
 178 
 179 bool vgic_get_phys_line_level(struct vgic_irq *irq)
 180 {
 181         bool line_level;
 182 
 183         BUG_ON(!irq->hw);
 184 
 185         if (irq->get_input_level)
 186                 return irq->get_input_level(irq->intid);
 187 
 188         WARN_ON(irq_get_irqchip_state(irq->host_irq,
 189                                       IRQCHIP_STATE_PENDING,
 190                                       &line_level));
 191         return line_level;
 192 }
 193 
 194 /* Set/Clear the physical active state */
 195 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
 196 {
 197 
 198         BUG_ON(!irq->hw);
 199         WARN_ON(irq_set_irqchip_state(irq->host_irq,
 200                                       IRQCHIP_STATE_ACTIVE,
 201                                       active));
 202 }
 203 
 204 /**
 205  * kvm_vgic_target_oracle - compute the target vcpu for an irq
 206  *
 207  * @irq:        The irq to route. Must be already locked.
 208  *
 209  * Based on the current state of the interrupt (enabled, pending,
 210  * active, vcpu and target_vcpu), compute the next vcpu this should be
 211  * given to. Return NULL if this shouldn't be injected at all.
 212  *
 213  * Requires the IRQ lock to be held.
 214  */
 215 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
 216 {
 217         lockdep_assert_held(&irq->irq_lock);
 218 
 219         /* If the interrupt is active, it must stay on the current vcpu */
 220         if (irq->active)
 221                 return irq->vcpu ? : irq->target_vcpu;
 222 
 223         /*
 224          * If the IRQ is not active but enabled and pending, we should direct
 225          * it to its configured target VCPU.
 226          * If the distributor is disabled, pending interrupts shouldn't be
 227          * forwarded.
 228          */
 229         if (irq->enabled && irq_is_pending(irq)) {
 230                 if (unlikely(irq->target_vcpu &&
 231                              !irq->target_vcpu->kvm->arch.vgic.enabled))
 232                         return NULL;
 233 
 234                 return irq->target_vcpu;
 235         }
 236 
 237         /* If neither active nor pending and enabled, then this IRQ should not
 238          * be queued to any VCPU.
 239          */
 240         return NULL;
 241 }
 242 
 243 /*
 244  * The order of items in the ap_lists defines how we'll pack things in LRs as
 245  * well, the first items in the list being the first things populated in the
 246  * LRs.
 247  *
 248  * A hard rule is that active interrupts can never be pushed out of the LRs
 249  * (and therefore take priority) since we cannot reliably trap on deactivation
 250  * of IRQs and therefore they have to be present in the LRs.
 251  *
 252  * Otherwise things should be sorted by the priority field and the GIC
 253  * hardware support will take care of preemption of priority groups etc.
 254  *
 255  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
 256  * to sort "b" before "a".
 257  */
 258 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
 259 {
 260         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
 261         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
 262         bool penda, pendb;
 263         int ret;
 264 
 265         /*
 266          * list_sort may call this function with the same element when
 267          * the list is fairly long.
 268          */
 269         if (unlikely(irqa == irqb))
 270                 return 0;
 271 
 272         raw_spin_lock(&irqa->irq_lock);
 273         raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
 274 
 275         if (irqa->active || irqb->active) {
 276                 ret = (int)irqb->active - (int)irqa->active;
 277                 goto out;
 278         }
 279 
 280         penda = irqa->enabled && irq_is_pending(irqa);
 281         pendb = irqb->enabled && irq_is_pending(irqb);
 282 
 283         if (!penda || !pendb) {
 284                 ret = (int)pendb - (int)penda;
 285                 goto out;
 286         }
 287 
 288         /* Both pending and enabled, sort by priority */
 289         ret = irqa->priority - irqb->priority;
 290 out:
 291         raw_spin_unlock(&irqb->irq_lock);
 292         raw_spin_unlock(&irqa->irq_lock);
 293         return ret;
 294 }
 295 
 296 /* Must be called with the ap_list_lock held */
 297 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
 298 {
 299         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 300 
 301         lockdep_assert_held(&vgic_cpu->ap_list_lock);
 302 
 303         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
 304 }
 305 
 306 /*
 307  * Only valid injection if changing level for level-triggered IRQs or for a
 308  * rising edge, and in-kernel connected IRQ lines can only be controlled by
 309  * their owner.
 310  */
 311 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
 312 {
 313         if (irq->owner != owner)
 314                 return false;
 315 
 316         switch (irq->config) {
 317         case VGIC_CONFIG_LEVEL:
 318                 return irq->line_level != level;
 319         case VGIC_CONFIG_EDGE:
 320                 return level;
 321         }
 322 
 323         return false;
 324 }
 325 
 326 /*
 327  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
 328  * Do the queuing if necessary, taking the right locks in the right order.
 329  * Returns true when the IRQ was queued, false otherwise.
 330  *
 331  * Needs to be entered with the IRQ lock already held, but will return
 332  * with all locks dropped.
 333  */
 334 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
 335                            unsigned long flags)
 336 {
 337         struct kvm_vcpu *vcpu;
 338 
 339         lockdep_assert_held(&irq->irq_lock);
 340 
 341 retry:
 342         vcpu = vgic_target_oracle(irq);
 343         if (irq->vcpu || !vcpu) {
 344                 /*
 345                  * If this IRQ is already on a VCPU's ap_list, then it
 346                  * cannot be moved or modified and there is no more work for
 347                  * us to do.
 348                  *
 349                  * Otherwise, if the irq is not pending and enabled, it does
 350                  * not need to be inserted into an ap_list and there is also
 351                  * no more work for us to do.
 352                  */
 353                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 354 
 355                 /*
 356                  * We have to kick the VCPU here, because we could be
 357                  * queueing an edge-triggered interrupt for which we
 358                  * get no EOI maintenance interrupt. In that case,
 359                  * while the IRQ is already on the VCPU's AP list, the
 360                  * VCPU could have EOI'ed the original interrupt and
 361                  * won't see this one until it exits for some other
 362                  * reason.
 363                  */
 364                 if (vcpu) {
 365                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 366                         kvm_vcpu_kick(vcpu);
 367                 }
 368                 return false;
 369         }
 370 
 371         /*
 372          * We must unlock the irq lock to take the ap_list_lock where
 373          * we are going to insert this new pending interrupt.
 374          */
 375         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 376 
 377         /* someone can do stuff here, which we re-check below */
 378 
 379         raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
 380         raw_spin_lock(&irq->irq_lock);
 381 
 382         /*
 383          * Did something change behind our backs?
 384          *
 385          * There are two cases:
 386          * 1) The irq lost its pending state or was disabled behind our
 387          *    backs and/or it was queued to another VCPU's ap_list.
 388          * 2) Someone changed the affinity on this irq behind our
 389          *    backs and we are now holding the wrong ap_list_lock.
 390          *
 391          * In both cases, drop the locks and retry.
 392          */
 393 
 394         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
 395                 raw_spin_unlock(&irq->irq_lock);
 396                 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
 397                                            flags);
 398 
 399                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
 400                 goto retry;
 401         }
 402 
 403         /*
 404          * Grab a reference to the irq to reflect the fact that it is
 405          * now in the ap_list.
 406          */
 407         vgic_get_irq_kref(irq);
 408         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
 409         irq->vcpu = vcpu;
 410 
 411         raw_spin_unlock(&irq->irq_lock);
 412         raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
 413 
 414         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 415         kvm_vcpu_kick(vcpu);
 416 
 417         return true;
 418 }
 419 
 420 /**
 421  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 422  * @kvm:     The VM structure pointer
 423  * @cpuid:   The CPU for PPIs
 424  * @intid:   The INTID to inject a new state to.
 425  * @level:   Edge-triggered:  true:  to trigger the interrupt
 426  *                            false: to ignore the call
 427  *           Level-sensitive  true:  raise the input signal
 428  *                            false: lower the input signal
 429  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
 430  *           that the caller is allowed to inject this IRQ.  Userspace
 431  *           injections will have owner == NULL.
 432  *
 433  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
 434  * level-sensitive interrupts.  You can think of the level parameter as 1
 435  * being HIGH and 0 being LOW and all devices being active-HIGH.
 436  */
 437 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
 438                         bool level, void *owner)
 439 {
 440         struct kvm_vcpu *vcpu;
 441         struct vgic_irq *irq;
 442         unsigned long flags;
 443         int ret;
 444 
 445         trace_vgic_update_irq_pending(cpuid, intid, level);
 446 
 447         ret = vgic_lazy_init(kvm);
 448         if (ret)
 449                 return ret;
 450 
 451         vcpu = kvm_get_vcpu(kvm, cpuid);
 452         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
 453                 return -EINVAL;
 454 
 455         irq = vgic_get_irq(kvm, vcpu, intid);
 456         if (!irq)
 457                 return -EINVAL;
 458 
 459         raw_spin_lock_irqsave(&irq->irq_lock, flags);
 460 
 461         if (!vgic_validate_injection(irq, level, owner)) {
 462                 /* Nothing to see here, move along... */
 463                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 464                 vgic_put_irq(kvm, irq);
 465                 return 0;
 466         }
 467 
 468         if (irq->config == VGIC_CONFIG_LEVEL)
 469                 irq->line_level = level;
 470         else
 471                 irq->pending_latch = true;
 472 
 473         vgic_queue_irq_unlock(kvm, irq, flags);
 474         vgic_put_irq(kvm, irq);
 475 
 476         return 0;
 477 }
 478 
 479 /* @irq->irq_lock must be held */
 480 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
 481                             unsigned int host_irq,
 482                             bool (*get_input_level)(int vindid))
 483 {
 484         struct irq_desc *desc;
 485         struct irq_data *data;
 486 
 487         /*
 488          * Find the physical IRQ number corresponding to @host_irq
 489          */
 490         desc = irq_to_desc(host_irq);
 491         if (!desc) {
 492                 kvm_err("%s: no interrupt descriptor\n", __func__);
 493                 return -EINVAL;
 494         }
 495         data = irq_desc_get_irq_data(desc);
 496         while (data->parent_data)
 497                 data = data->parent_data;
 498 
 499         irq->hw = true;
 500         irq->host_irq = host_irq;
 501         irq->hwintid = data->hwirq;
 502         irq->get_input_level = get_input_level;
 503         return 0;
 504 }
 505 
 506 /* @irq->irq_lock must be held */
 507 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
 508 {
 509         irq->hw = false;
 510         irq->hwintid = 0;
 511         irq->get_input_level = NULL;
 512 }
 513 
 514 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
 515                           u32 vintid, bool (*get_input_level)(int vindid))
 516 {
 517         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 518         unsigned long flags;
 519         int ret;
 520 
 521         BUG_ON(!irq);
 522 
 523         raw_spin_lock_irqsave(&irq->irq_lock, flags);
 524         ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
 525         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 526         vgic_put_irq(vcpu->kvm, irq);
 527 
 528         return ret;
 529 }
 530 
 531 /**
 532  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
 533  * @vcpu: The VCPU pointer
 534  * @vintid: The INTID of the interrupt
 535  *
 536  * Reset the active and pending states of a mapped interrupt.  Kernel
 537  * subsystems injecting mapped interrupts should reset their interrupt lines
 538  * when we are doing a reset of the VM.
 539  */
 540 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
 541 {
 542         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 543         unsigned long flags;
 544 
 545         if (!irq->hw)
 546                 goto out;
 547 
 548         raw_spin_lock_irqsave(&irq->irq_lock, flags);
 549         irq->active = false;
 550         irq->pending_latch = false;
 551         irq->line_level = false;
 552         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 553 out:
 554         vgic_put_irq(vcpu->kvm, irq);
 555 }
 556 
 557 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
 558 {
 559         struct vgic_irq *irq;
 560         unsigned long flags;
 561 
 562         if (!vgic_initialized(vcpu->kvm))
 563                 return -EAGAIN;
 564 
 565         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 566         BUG_ON(!irq);
 567 
 568         raw_spin_lock_irqsave(&irq->irq_lock, flags);
 569         kvm_vgic_unmap_irq(irq);
 570         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 571         vgic_put_irq(vcpu->kvm, irq);
 572 
 573         return 0;
 574 }
 575 
 576 /**
 577  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
 578  *
 579  * @vcpu:   Pointer to the VCPU (used for PPIs)
 580  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
 581  * @owner:  Opaque pointer to the owner
 582  *
 583  * Returns 0 if intid is not already used by another in-kernel device and the
 584  * owner is set, otherwise returns an error code.
 585  */
 586 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
 587 {
 588         struct vgic_irq *irq;
 589         unsigned long flags;
 590         int ret = 0;
 591 
 592         if (!vgic_initialized(vcpu->kvm))
 593                 return -EAGAIN;
 594 
 595         /* SGIs and LPIs cannot be wired up to any device */
 596         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
 597                 return -EINVAL;
 598 
 599         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
 600         raw_spin_lock_irqsave(&irq->irq_lock, flags);
 601         if (irq->owner && irq->owner != owner)
 602                 ret = -EEXIST;
 603         else
 604                 irq->owner = owner;
 605         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 606 
 607         return ret;
 608 }
 609 
 610 /**
 611  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
 612  *
 613  * @vcpu: The VCPU pointer
 614  *
 615  * Go over the list of "interesting" interrupts, and prune those that we
 616  * won't have to consider in the near future.
 617  */
 618 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
 619 {
 620         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 621         struct vgic_irq *irq, *tmp;
 622 
 623         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
 624 
 625 retry:
 626         raw_spin_lock(&vgic_cpu->ap_list_lock);
 627 
 628         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
 629                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
 630                 bool target_vcpu_needs_kick = false;
 631 
 632                 raw_spin_lock(&irq->irq_lock);
 633 
 634                 BUG_ON(vcpu != irq->vcpu);
 635 
 636                 target_vcpu = vgic_target_oracle(irq);
 637 
 638                 if (!target_vcpu) {
 639                         /*
 640                          * We don't need to process this interrupt any
 641                          * further, move it off the list.
 642                          */
 643                         list_del(&irq->ap_list);
 644                         irq->vcpu = NULL;
 645                         raw_spin_unlock(&irq->irq_lock);
 646 
 647                         /*
 648                          * This vgic_put_irq call matches the
 649                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
 650                          * where we added the LPI to the ap_list. As
 651                          * we remove the irq from the list, we drop
 652                          * also drop the refcount.
 653                          */
 654                         vgic_put_irq(vcpu->kvm, irq);
 655                         continue;
 656                 }
 657 
 658                 if (target_vcpu == vcpu) {
 659                         /* We're on the right CPU */
 660                         raw_spin_unlock(&irq->irq_lock);
 661                         continue;
 662                 }
 663 
 664                 /* This interrupt looks like it has to be migrated. */
 665 
 666                 raw_spin_unlock(&irq->irq_lock);
 667                 raw_spin_unlock(&vgic_cpu->ap_list_lock);
 668 
 669                 /*
 670                  * Ensure locking order by always locking the smallest
 671                  * ID first.
 672                  */
 673                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
 674                         vcpuA = vcpu;
 675                         vcpuB = target_vcpu;
 676                 } else {
 677                         vcpuA = target_vcpu;
 678                         vcpuB = vcpu;
 679                 }
 680 
 681                 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
 682                 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
 683                                       SINGLE_DEPTH_NESTING);
 684                 raw_spin_lock(&irq->irq_lock);
 685 
 686                 /*
 687                  * If the affinity has been preserved, move the
 688                  * interrupt around. Otherwise, it means things have
 689                  * changed while the interrupt was unlocked, and we
 690                  * need to replay this.
 691                  *
 692                  * In all cases, we cannot trust the list not to have
 693                  * changed, so we restart from the beginning.
 694                  */
 695                 if (target_vcpu == vgic_target_oracle(irq)) {
 696                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
 697 
 698                         list_del(&irq->ap_list);
 699                         irq->vcpu = target_vcpu;
 700                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
 701                         target_vcpu_needs_kick = true;
 702                 }
 703 
 704                 raw_spin_unlock(&irq->irq_lock);
 705                 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
 706                 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
 707 
 708                 if (target_vcpu_needs_kick) {
 709                         kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
 710                         kvm_vcpu_kick(target_vcpu);
 711                 }
 712 
 713                 goto retry;
 714         }
 715 
 716         raw_spin_unlock(&vgic_cpu->ap_list_lock);
 717 }
 718 
 719 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
 720 {
 721         if (kvm_vgic_global_state.type == VGIC_V2)
 722                 vgic_v2_fold_lr_state(vcpu);
 723         else
 724                 vgic_v3_fold_lr_state(vcpu);
 725 }
 726 
 727 /* Requires the irq_lock to be held. */
 728 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
 729                                     struct vgic_irq *irq, int lr)
 730 {
 731         lockdep_assert_held(&irq->irq_lock);
 732 
 733         if (kvm_vgic_global_state.type == VGIC_V2)
 734                 vgic_v2_populate_lr(vcpu, irq, lr);
 735         else
 736                 vgic_v3_populate_lr(vcpu, irq, lr);
 737 }
 738 
 739 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
 740 {
 741         if (kvm_vgic_global_state.type == VGIC_V2)
 742                 vgic_v2_clear_lr(vcpu, lr);
 743         else
 744                 vgic_v3_clear_lr(vcpu, lr);
 745 }
 746 
 747 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
 748 {
 749         if (kvm_vgic_global_state.type == VGIC_V2)
 750                 vgic_v2_set_underflow(vcpu);
 751         else
 752                 vgic_v3_set_underflow(vcpu);
 753 }
 754 
 755 /* Requires the ap_list_lock to be held. */
 756 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
 757                                  bool *multi_sgi)
 758 {
 759         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 760         struct vgic_irq *irq;
 761         int count = 0;
 762 
 763         *multi_sgi = false;
 764 
 765         lockdep_assert_held(&vgic_cpu->ap_list_lock);
 766 
 767         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
 768                 int w;
 769 
 770                 raw_spin_lock(&irq->irq_lock);
 771                 /* GICv2 SGIs can count for more than one... */
 772                 w = vgic_irq_get_lr_count(irq);
 773                 raw_spin_unlock(&irq->irq_lock);
 774 
 775                 count += w;
 776                 *multi_sgi |= (w > 1);
 777         }
 778         return count;
 779 }
 780 
 781 /* Requires the VCPU's ap_list_lock to be held. */
 782 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
 783 {
 784         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 785         struct vgic_irq *irq;
 786         int count;
 787         bool multi_sgi;
 788         u8 prio = 0xff;
 789 
 790         lockdep_assert_held(&vgic_cpu->ap_list_lock);
 791 
 792         count = compute_ap_list_depth(vcpu, &multi_sgi);
 793         if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
 794                 vgic_sort_ap_list(vcpu);
 795 
 796         count = 0;
 797 
 798         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
 799                 raw_spin_lock(&irq->irq_lock);
 800 
 801                 /*
 802                  * If we have multi-SGIs in the pipeline, we need to
 803                  * guarantee that they are all seen before any IRQ of
 804                  * lower priority. In that case, we need to filter out
 805                  * these interrupts by exiting early. This is easy as
 806                  * the AP list has been sorted already.
 807                  */
 808                 if (multi_sgi && irq->priority > prio) {
 809                         _raw_spin_unlock(&irq->irq_lock);
 810                         break;
 811                 }
 812 
 813                 if (likely(vgic_target_oracle(irq) == vcpu)) {
 814                         vgic_populate_lr(vcpu, irq, count++);
 815 
 816                         if (irq->source)
 817                                 prio = irq->priority;
 818                 }
 819 
 820                 raw_spin_unlock(&irq->irq_lock);
 821 
 822                 if (count == kvm_vgic_global_state.nr_lr) {
 823                         if (!list_is_last(&irq->ap_list,
 824                                           &vgic_cpu->ap_list_head))
 825                                 vgic_set_underflow(vcpu);
 826                         break;
 827                 }
 828         }
 829 
 830         vcpu->arch.vgic_cpu.used_lrs = count;
 831 
 832         /* Nuke remaining LRs */
 833         for ( ; count < kvm_vgic_global_state.nr_lr; count++)
 834                 vgic_clear_lr(vcpu, count);
 835 }
 836 
 837 static inline bool can_access_vgic_from_kernel(void)
 838 {
 839         /*
 840          * GICv2 can always be accessed from the kernel because it is
 841          * memory-mapped, and VHE systems can access GICv3 EL2 system
 842          * registers.
 843          */
 844         return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
 845 }
 846 
 847 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
 848 {
 849         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
 850                 vgic_v2_save_state(vcpu);
 851         else
 852                 __vgic_v3_save_state(vcpu);
 853 }
 854 
 855 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
 856 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
 857 {
 858         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 859 
 860         WARN_ON(vgic_v4_sync_hwstate(vcpu));
 861 
 862         /* An empty ap_list_head implies used_lrs == 0 */
 863         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
 864                 return;
 865 
 866         if (can_access_vgic_from_kernel())
 867                 vgic_save_state(vcpu);
 868 
 869         if (vgic_cpu->used_lrs)
 870                 vgic_fold_lr_state(vcpu);
 871         vgic_prune_ap_list(vcpu);
 872 }
 873 
 874 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
 875 {
 876         if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
 877                 vgic_v2_restore_state(vcpu);
 878         else
 879                 __vgic_v3_restore_state(vcpu);
 880 }
 881 
 882 /* Flush our emulation state into the GIC hardware before entering the guest. */
 883 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
 884 {
 885         WARN_ON(vgic_v4_flush_hwstate(vcpu));
 886 
 887         /*
 888          * If there are no virtual interrupts active or pending for this
 889          * VCPU, then there is no work to do and we can bail out without
 890          * taking any lock.  There is a potential race with someone injecting
 891          * interrupts to the VCPU, but it is a benign race as the VCPU will
 892          * either observe the new interrupt before or after doing this check,
 893          * and introducing additional synchronization mechanism doesn't change
 894          * this.
 895          *
 896          * Note that we still need to go through the whole thing if anything
 897          * can be directly injected (GICv4).
 898          */
 899         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
 900             !vgic_supports_direct_msis(vcpu->kvm))
 901                 return;
 902 
 903         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
 904 
 905         if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
 906                 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
 907                 vgic_flush_lr_state(vcpu);
 908                 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
 909         }
 910 
 911         if (can_access_vgic_from_kernel())
 912                 vgic_restore_state(vcpu);
 913 }
 914 
 915 void kvm_vgic_load(struct kvm_vcpu *vcpu)
 916 {
 917         if (unlikely(!vgic_initialized(vcpu->kvm)))
 918                 return;
 919 
 920         if (kvm_vgic_global_state.type == VGIC_V2)
 921                 vgic_v2_load(vcpu);
 922         else
 923                 vgic_v3_load(vcpu);
 924 }
 925 
 926 void kvm_vgic_put(struct kvm_vcpu *vcpu)
 927 {
 928         if (unlikely(!vgic_initialized(vcpu->kvm)))
 929                 return;
 930 
 931         if (kvm_vgic_global_state.type == VGIC_V2)
 932                 vgic_v2_put(vcpu);
 933         else
 934                 vgic_v3_put(vcpu);
 935 }
 936 
 937 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
 938 {
 939         if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
 940                 return;
 941 
 942         if (kvm_vgic_global_state.type == VGIC_V2)
 943                 vgic_v2_vmcr_sync(vcpu);
 944         else
 945                 vgic_v3_vmcr_sync(vcpu);
 946 }
 947 
 948 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
 949 {
 950         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 951         struct vgic_irq *irq;
 952         bool pending = false;
 953         unsigned long flags;
 954         struct vgic_vmcr vmcr;
 955 
 956         if (!vcpu->kvm->arch.vgic.enabled)
 957                 return false;
 958 
 959         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
 960                 return true;
 961 
 962         vgic_get_vmcr(vcpu, &vmcr);
 963 
 964         raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
 965 
 966         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
 967                 raw_spin_lock(&irq->irq_lock);
 968                 pending = irq_is_pending(irq) && irq->enabled &&
 969                           !irq->active &&
 970                           irq->priority < vmcr.pmr;
 971                 raw_spin_unlock(&irq->irq_lock);
 972 
 973                 if (pending)
 974                         break;
 975         }
 976 
 977         raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
 978 
 979         return pending;
 980 }
 981 
 982 void vgic_kick_vcpus(struct kvm *kvm)
 983 {
 984         struct kvm_vcpu *vcpu;
 985         int c;
 986 
 987         /*
 988          * We've injected an interrupt, time to find out who deserves
 989          * a good kick...
 990          */
 991         kvm_for_each_vcpu(c, vcpu, kvm) {
 992                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
 993                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 994                         kvm_vcpu_kick(vcpu);
 995                 }
 996         }
 997 }
 998 
 999 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1000 {
1001         struct vgic_irq *irq;
1002         bool map_is_active;
1003         unsigned long flags;
1004 
1005         if (!vgic_initialized(vcpu->kvm))
1006                 return false;
1007 
1008         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1009         raw_spin_lock_irqsave(&irq->irq_lock, flags);
1010         map_is_active = irq->hw && irq->active;
1011         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1012         vgic_put_irq(vcpu->kvm, irq);
1013 
1014         return map_is_active;
1015 }

/* [<][>][^][v][top][bottom][index][help] */