root/virt/kvm/kvm_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. kvm_no_compat_ioctl
  2. kvm_no_compat_open
  3. kvm_arch_mmu_notifier_invalidate_range
  4. kvm_is_zone_device_pfn
  5. kvm_is_reserved_pfn
  6. vcpu_load
  7. vcpu_put
  8. kvm_request_needs_ipi
  9. ack_flush
  10. kvm_kick_many_cpus
  11. kvm_make_vcpus_request_mask
  12. kvm_make_all_cpus_request
  13. kvm_flush_remote_tlbs
  14. kvm_reload_remote_mmus
  15. kvm_vcpu_init
  16. kvm_vcpu_uninit
  17. mmu_notifier_to_kvm
  18. kvm_mmu_notifier_invalidate_range
  19. kvm_mmu_notifier_change_pte
  20. kvm_mmu_notifier_invalidate_range_start
  21. kvm_mmu_notifier_invalidate_range_end
  22. kvm_mmu_notifier_clear_flush_young
  23. kvm_mmu_notifier_clear_young
  24. kvm_mmu_notifier_test_young
  25. kvm_mmu_notifier_release
  26. kvm_init_mmu_notifier
  27. kvm_init_mmu_notifier
  28. kvm_alloc_memslots
  29. kvm_destroy_dirty_bitmap
  30. kvm_free_memslot
  31. kvm_free_memslots
  32. kvm_destroy_vm_debugfs
  33. kvm_create_vm_debugfs
  34. kvm_arch_post_init_vm
  35. kvm_arch_pre_destroy_vm
  36. kvm_create_vm
  37. kvm_destroy_devices
  38. kvm_destroy_vm
  39. kvm_get_kvm
  40. kvm_put_kvm
  41. kvm_vm_release
  42. kvm_create_dirty_bitmap
  43. update_memslots
  44. check_memory_region_flags
  45. install_new_memslots
  46. __kvm_set_memory_region
  47. kvm_set_memory_region
  48. kvm_vm_ioctl_set_memory_region
  49. kvm_get_dirty_log
  50. kvm_get_dirty_log_protect
  51. kvm_clear_dirty_log_protect
  52. kvm_largepages_enabled
  53. kvm_disable_largepages
  54. gfn_to_memslot
  55. kvm_vcpu_gfn_to_memslot
  56. kvm_is_visible_gfn
  57. kvm_host_page_size
  58. memslot_is_readonly
  59. __gfn_to_hva_many
  60. gfn_to_hva_many
  61. gfn_to_hva_memslot
  62. gfn_to_hva
  63. kvm_vcpu_gfn_to_hva
  64. gfn_to_hva_memslot_prot
  65. gfn_to_hva_prot
  66. kvm_vcpu_gfn_to_hva_prot
  67. check_user_page_hwpoison
  68. hva_to_pfn_fast
  69. hva_to_pfn_slow
  70. vma_is_valid
  71. hva_to_pfn_remapped
  72. hva_to_pfn
  73. __gfn_to_pfn_memslot
  74. gfn_to_pfn_prot
  75. gfn_to_pfn_memslot
  76. gfn_to_pfn_memslot_atomic
  77. gfn_to_pfn_atomic
  78. kvm_vcpu_gfn_to_pfn_atomic
  79. gfn_to_pfn
  80. kvm_vcpu_gfn_to_pfn
  81. gfn_to_page_many_atomic
  82. kvm_pfn_to_page
  83. gfn_to_page
  84. kvm_release_pfn
  85. kvm_cache_gfn_to_pfn
  86. __kvm_map_gfn
  87. kvm_map_gfn
  88. kvm_vcpu_map
  89. __kvm_unmap_gfn
  90. kvm_unmap_gfn
  91. kvm_vcpu_unmap
  92. kvm_vcpu_gfn_to_page
  93. kvm_release_page_clean
  94. kvm_release_pfn_clean
  95. kvm_release_page_dirty
  96. kvm_release_pfn_dirty
  97. kvm_set_pfn_dirty
  98. kvm_set_pfn_accessed
  99. kvm_get_pfn
  100. next_segment
  101. __kvm_read_guest_page
  102. kvm_read_guest_page
  103. kvm_vcpu_read_guest_page
  104. kvm_read_guest
  105. kvm_vcpu_read_guest
  106. __kvm_read_guest_atomic
  107. kvm_read_guest_atomic
  108. kvm_vcpu_read_guest_atomic
  109. __kvm_write_guest_page
  110. kvm_write_guest_page
  111. kvm_vcpu_write_guest_page
  112. kvm_write_guest
  113. kvm_vcpu_write_guest
  114. __kvm_gfn_to_hva_cache_init
  115. kvm_gfn_to_hva_cache_init
  116. kvm_write_guest_offset_cached
  117. kvm_write_guest_cached
  118. kvm_read_guest_cached
  119. kvm_clear_guest_page
  120. kvm_clear_guest
  121. mark_page_dirty_in_slot
  122. mark_page_dirty
  123. kvm_vcpu_mark_page_dirty
  124. kvm_sigset_activate
  125. kvm_sigset_deactivate
  126. grow_halt_poll_ns
  127. shrink_halt_poll_ns
  128. kvm_vcpu_check_block
  129. kvm_vcpu_block
  130. kvm_vcpu_wake_up
  131. kvm_vcpu_kick
  132. kvm_vcpu_yield_to
  133. kvm_vcpu_eligible_for_directed_yield
  134. kvm_arch_dy_runnable
  135. vcpu_dy_runnable
  136. kvm_vcpu_on_spin
  137. kvm_vcpu_fault
  138. kvm_vcpu_mmap
  139. kvm_vcpu_release
  140. create_vcpu_fd
  141. kvm_create_vcpu_debugfs
  142. kvm_vm_ioctl_create_vcpu
  143. kvm_vcpu_ioctl_set_sigmask
  144. kvm_vcpu_ioctl
  145. kvm_vcpu_compat_ioctl
  146. kvm_device_mmap
  147. kvm_device_ioctl_attr
  148. kvm_device_ioctl
  149. kvm_device_release
  150. kvm_device_from_filp
  151. kvm_register_device_ops
  152. kvm_unregister_device_ops
  153. kvm_ioctl_create_device
  154. kvm_vm_ioctl_check_extension_generic
  155. kvm_vm_ioctl_enable_cap
  156. kvm_vm_ioctl_enable_cap_generic
  157. kvm_vm_ioctl
  158. kvm_vm_compat_ioctl
  159. kvm_dev_ioctl_create_vm
  160. kvm_dev_ioctl
  161. hardware_enable_nolock
  162. kvm_starting_cpu
  163. hardware_disable_nolock
  164. kvm_dying_cpu
  165. hardware_disable_all_nolock
  166. hardware_disable_all
  167. hardware_enable_all
  168. kvm_reboot
  169. kvm_io_bus_destroy
  170. kvm_io_bus_cmp
  171. kvm_io_bus_sort_cmp
  172. kvm_io_bus_get_first_dev
  173. __kvm_io_bus_write
  174. kvm_io_bus_write
  175. kvm_io_bus_write_cookie
  176. __kvm_io_bus_read
  177. kvm_io_bus_read
  178. kvm_io_bus_register_dev
  179. kvm_io_bus_unregister_dev
  180. kvm_io_bus_get_dev
  181. kvm_debugfs_open
  182. kvm_debugfs_release
  183. vm_stat_get_per_vm
  184. vm_stat_clear_per_vm
  185. vm_stat_get_per_vm_open
  186. vcpu_stat_get_per_vm
  187. vcpu_stat_clear_per_vm
  188. vcpu_stat_get_per_vm_open
  189. vm_stat_get
  190. vm_stat_clear
  191. vcpu_stat_get
  192. vcpu_stat_clear
  193. kvm_uevent_notify_change
  194. kvm_init_debug
  195. kvm_suspend
  196. kvm_resume
  197. preempt_notifier_to_vcpu
  198. kvm_sched_in
  199. kvm_sched_out
  200. check_processor_compat
  201. kvm_init
  202. kvm_exit
  203. kvm_vm_worker_thread
  204. kvm_vm_create_worker_thread

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Kernel-based Virtual Machine driver for Linux
   4  *
   5  * This module enables machines with Intel VT-x extensions to run virtual
   6  * machines without emulation or binary translation.
   7  *
   8  * Copyright (C) 2006 Qumranet, Inc.
   9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10  *
  11  * Authors:
  12  *   Avi Kivity   <avi@qumranet.com>
  13  *   Yaniv Kamay  <yaniv@qumranet.com>
  14  */
  15 
  16 #include <kvm/iodev.h>
  17 
  18 #include <linux/kvm_host.h>
  19 #include <linux/kvm.h>
  20 #include <linux/module.h>
  21 #include <linux/errno.h>
  22 #include <linux/percpu.h>
  23 #include <linux/mm.h>
  24 #include <linux/miscdevice.h>
  25 #include <linux/vmalloc.h>
  26 #include <linux/reboot.h>
  27 #include <linux/debugfs.h>
  28 #include <linux/highmem.h>
  29 #include <linux/file.h>
  30 #include <linux/syscore_ops.h>
  31 #include <linux/cpu.h>
  32 #include <linux/sched/signal.h>
  33 #include <linux/sched/mm.h>
  34 #include <linux/sched/stat.h>
  35 #include <linux/cpumask.h>
  36 #include <linux/smp.h>
  37 #include <linux/anon_inodes.h>
  38 #include <linux/profile.h>
  39 #include <linux/kvm_para.h>
  40 #include <linux/pagemap.h>
  41 #include <linux/mman.h>
  42 #include <linux/swap.h>
  43 #include <linux/bitops.h>
  44 #include <linux/spinlock.h>
  45 #include <linux/compat.h>
  46 #include <linux/srcu.h>
  47 #include <linux/hugetlb.h>
  48 #include <linux/slab.h>
  49 #include <linux/sort.h>
  50 #include <linux/bsearch.h>
  51 #include <linux/io.h>
  52 #include <linux/lockdep.h>
  53 #include <linux/kthread.h>
  54 
  55 #include <asm/processor.h>
  56 #include <asm/ioctl.h>
  57 #include <linux/uaccess.h>
  58 #include <asm/pgtable.h>
  59 
  60 #include "coalesced_mmio.h"
  61 #include "async_pf.h"
  62 #include "vfio.h"
  63 
  64 #define CREATE_TRACE_POINTS
  65 #include <trace/events/kvm.h>
  66 
  67 /* Worst case buffer size needed for holding an integer. */
  68 #define ITOA_MAX_LEN 12
  69 
  70 MODULE_AUTHOR("Qumranet");
  71 MODULE_LICENSE("GPL");
  72 
  73 /* Architectures should define their poll value according to the halt latency */
  74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  75 module_param(halt_poll_ns, uint, 0644);
  76 EXPORT_SYMBOL_GPL(halt_poll_ns);
  77 
  78 /* Default doubles per-vcpu halt_poll_ns. */
  79 unsigned int halt_poll_ns_grow = 2;
  80 module_param(halt_poll_ns_grow, uint, 0644);
  81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  82 
  83 /* The start value to grow halt_poll_ns from */
  84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  85 module_param(halt_poll_ns_grow_start, uint, 0644);
  86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  87 
  88 /* Default resets per-vcpu halt_poll_ns . */
  89 unsigned int halt_poll_ns_shrink;
  90 module_param(halt_poll_ns_shrink, uint, 0644);
  91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  92 
  93 /*
  94  * Ordering of locks:
  95  *
  96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  97  */
  98 
  99 DEFINE_MUTEX(kvm_lock);
 100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 101 LIST_HEAD(vm_list);
 102 
 103 static cpumask_var_t cpus_hardware_enabled;
 104 static int kvm_usage_count;
 105 static atomic_t hardware_enable_failed;
 106 
 107 struct kmem_cache *kvm_vcpu_cache;
 108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 109 
 110 static __read_mostly struct preempt_ops kvm_preempt_ops;
 111 
 112 struct dentry *kvm_debugfs_dir;
 113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 114 
 115 static int kvm_debugfs_num_entries;
 116 static const struct file_operations *stat_fops_per_vm[];
 117 
 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 119                            unsigned long arg);
 120 #ifdef CONFIG_KVM_COMPAT
 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 122                                   unsigned long arg);
 123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
 124 #else
 125 /*
 126  * For architectures that don't implement a compat infrastructure,
 127  * adopt a double line of defense:
 128  * - Prevent a compat task from opening /dev/kvm
 129  * - If the open has been done by a 64bit task, and the KVM fd
 130  *   passed to a compat task, let the ioctls fail.
 131  */
 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 133                                 unsigned long arg) { return -EINVAL; }
 134 
 135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
 136 {
 137         return is_compat_task() ? -ENODEV : 0;
 138 }
 139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
 140                         .open           = kvm_no_compat_open
 141 #endif
 142 static int hardware_enable_all(void);
 143 static void hardware_disable_all(void);
 144 
 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 146 
 147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 148 
 149 __visible bool kvm_rebooting;
 150 EXPORT_SYMBOL_GPL(kvm_rebooting);
 151 
 152 static bool largepages_enabled = true;
 153 
 154 #define KVM_EVENT_CREATE_VM 0
 155 #define KVM_EVENT_DESTROY_VM 1
 156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 157 static unsigned long long kvm_createvm_count;
 158 static unsigned long long kvm_active_vms;
 159 
 160 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 161                                                    unsigned long start, unsigned long end)
 162 {
 163 }
 164 
 165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 166 {
 167         /*
 168          * The metadata used by is_zone_device_page() to determine whether or
 169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
 171          * page_count() is zero to help detect bad usage of this helper.
 172          */
 173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 174                 return false;
 175 
 176         return is_zone_device_page(pfn_to_page(pfn));
 177 }
 178 
 179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 180 {
 181         /*
 182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 183          * perspective they are "normal" pages, albeit with slightly different
 184          * usage rules.
 185          */
 186         if (pfn_valid(pfn))
 187                 return PageReserved(pfn_to_page(pfn)) &&
 188                        !kvm_is_zone_device_pfn(pfn);
 189 
 190         return true;
 191 }
 192 
 193 /*
 194  * Switches to specified vcpu, until a matching vcpu_put()
 195  */
 196 void vcpu_load(struct kvm_vcpu *vcpu)
 197 {
 198         int cpu = get_cpu();
 199         preempt_notifier_register(&vcpu->preempt_notifier);
 200         kvm_arch_vcpu_load(vcpu, cpu);
 201         put_cpu();
 202 }
 203 EXPORT_SYMBOL_GPL(vcpu_load);
 204 
 205 void vcpu_put(struct kvm_vcpu *vcpu)
 206 {
 207         preempt_disable();
 208         kvm_arch_vcpu_put(vcpu);
 209         preempt_notifier_unregister(&vcpu->preempt_notifier);
 210         preempt_enable();
 211 }
 212 EXPORT_SYMBOL_GPL(vcpu_put);
 213 
 214 /* TODO: merge with kvm_arch_vcpu_should_kick */
 215 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 216 {
 217         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 218 
 219         /*
 220          * We need to wait for the VCPU to reenable interrupts and get out of
 221          * READING_SHADOW_PAGE_TABLES mode.
 222          */
 223         if (req & KVM_REQUEST_WAIT)
 224                 return mode != OUTSIDE_GUEST_MODE;
 225 
 226         /*
 227          * Need to kick a running VCPU, but otherwise there is nothing to do.
 228          */
 229         return mode == IN_GUEST_MODE;
 230 }
 231 
 232 static void ack_flush(void *_completed)
 233 {
 234 }
 235 
 236 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 237 {
 238         if (unlikely(!cpus))
 239                 cpus = cpu_online_mask;
 240 
 241         if (cpumask_empty(cpus))
 242                 return false;
 243 
 244         smp_call_function_many(cpus, ack_flush, NULL, wait);
 245         return true;
 246 }
 247 
 248 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 249                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 250 {
 251         int i, cpu, me;
 252         struct kvm_vcpu *vcpu;
 253         bool called;
 254 
 255         me = get_cpu();
 256 
 257         kvm_for_each_vcpu(i, vcpu, kvm) {
 258                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
 259                         continue;
 260 
 261                 kvm_make_request(req, vcpu);
 262                 cpu = vcpu->cpu;
 263 
 264                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 265                         continue;
 266 
 267                 if (tmp != NULL && cpu != -1 && cpu != me &&
 268                     kvm_request_needs_ipi(vcpu, req))
 269                         __cpumask_set_cpu(cpu, tmp);
 270         }
 271 
 272         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 273         put_cpu();
 274 
 275         return called;
 276 }
 277 
 278 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 279 {
 280         cpumask_var_t cpus;
 281         bool called;
 282 
 283         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 284 
 285         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
 286 
 287         free_cpumask_var(cpus);
 288         return called;
 289 }
 290 
 291 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 292 void kvm_flush_remote_tlbs(struct kvm *kvm)
 293 {
 294         /*
 295          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 296          * kvm_make_all_cpus_request.
 297          */
 298         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 299 
 300         /*
 301          * We want to publish modifications to the page tables before reading
 302          * mode. Pairs with a memory barrier in arch-specific code.
 303          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 304          * and smp_mb in walk_shadow_page_lockless_begin/end.
 305          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 306          *
 307          * There is already an smp_mb__after_atomic() before
 308          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 309          * barrier here.
 310          */
 311         if (!kvm_arch_flush_remote_tlb(kvm)
 312             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 313                 ++kvm->stat.remote_tlb_flush;
 314         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 315 }
 316 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 317 #endif
 318 
 319 void kvm_reload_remote_mmus(struct kvm *kvm)
 320 {
 321         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 322 }
 323 
 324 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 325 {
 326         struct page *page;
 327         int r;
 328 
 329         mutex_init(&vcpu->mutex);
 330         vcpu->cpu = -1;
 331         vcpu->kvm = kvm;
 332         vcpu->vcpu_id = id;
 333         vcpu->pid = NULL;
 334         init_swait_queue_head(&vcpu->wq);
 335         kvm_async_pf_vcpu_init(vcpu);
 336 
 337         vcpu->pre_pcpu = -1;
 338         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 339 
 340         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 341         if (!page) {
 342                 r = -ENOMEM;
 343                 goto fail;
 344         }
 345         vcpu->run = page_address(page);
 346 
 347         kvm_vcpu_set_in_spin_loop(vcpu, false);
 348         kvm_vcpu_set_dy_eligible(vcpu, false);
 349         vcpu->preempted = false;
 350         vcpu->ready = false;
 351 
 352         r = kvm_arch_vcpu_init(vcpu);
 353         if (r < 0)
 354                 goto fail_free_run;
 355         return 0;
 356 
 357 fail_free_run:
 358         free_page((unsigned long)vcpu->run);
 359 fail:
 360         return r;
 361 }
 362 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 363 
 364 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 365 {
 366         /*
 367          * no need for rcu_read_lock as VCPU_RUN is the only place that
 368          * will change the vcpu->pid pointer and on uninit all file
 369          * descriptors are already gone.
 370          */
 371         put_pid(rcu_dereference_protected(vcpu->pid, 1));
 372         kvm_arch_vcpu_uninit(vcpu);
 373         free_page((unsigned long)vcpu->run);
 374 }
 375 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 376 
 377 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 378 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 379 {
 380         return container_of(mn, struct kvm, mmu_notifier);
 381 }
 382 
 383 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 384                                               struct mm_struct *mm,
 385                                               unsigned long start, unsigned long end)
 386 {
 387         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 388         int idx;
 389 
 390         idx = srcu_read_lock(&kvm->srcu);
 391         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 392         srcu_read_unlock(&kvm->srcu, idx);
 393 }
 394 
 395 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 396                                         struct mm_struct *mm,
 397                                         unsigned long address,
 398                                         pte_t pte)
 399 {
 400         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 401         int idx;
 402 
 403         idx = srcu_read_lock(&kvm->srcu);
 404         spin_lock(&kvm->mmu_lock);
 405         kvm->mmu_notifier_seq++;
 406 
 407         if (kvm_set_spte_hva(kvm, address, pte))
 408                 kvm_flush_remote_tlbs(kvm);
 409 
 410         spin_unlock(&kvm->mmu_lock);
 411         srcu_read_unlock(&kvm->srcu, idx);
 412 }
 413 
 414 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 415                                         const struct mmu_notifier_range *range)
 416 {
 417         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 418         int need_tlb_flush = 0, idx;
 419 
 420         idx = srcu_read_lock(&kvm->srcu);
 421         spin_lock(&kvm->mmu_lock);
 422         /*
 423          * The count increase must become visible at unlock time as no
 424          * spte can be established without taking the mmu_lock and
 425          * count is also read inside the mmu_lock critical section.
 426          */
 427         kvm->mmu_notifier_count++;
 428         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
 429         need_tlb_flush |= kvm->tlbs_dirty;
 430         /* we've to flush the tlb before the pages can be freed */
 431         if (need_tlb_flush)
 432                 kvm_flush_remote_tlbs(kvm);
 433 
 434         spin_unlock(&kvm->mmu_lock);
 435         srcu_read_unlock(&kvm->srcu, idx);
 436 
 437         return 0;
 438 }
 439 
 440 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 441                                         const struct mmu_notifier_range *range)
 442 {
 443         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 444 
 445         spin_lock(&kvm->mmu_lock);
 446         /*
 447          * This sequence increase will notify the kvm page fault that
 448          * the page that is going to be mapped in the spte could have
 449          * been freed.
 450          */
 451         kvm->mmu_notifier_seq++;
 452         smp_wmb();
 453         /*
 454          * The above sequence increase must be visible before the
 455          * below count decrease, which is ensured by the smp_wmb above
 456          * in conjunction with the smp_rmb in mmu_notifier_retry().
 457          */
 458         kvm->mmu_notifier_count--;
 459         spin_unlock(&kvm->mmu_lock);
 460 
 461         BUG_ON(kvm->mmu_notifier_count < 0);
 462 }
 463 
 464 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 465                                               struct mm_struct *mm,
 466                                               unsigned long start,
 467                                               unsigned long end)
 468 {
 469         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 470         int young, idx;
 471 
 472         idx = srcu_read_lock(&kvm->srcu);
 473         spin_lock(&kvm->mmu_lock);
 474 
 475         young = kvm_age_hva(kvm, start, end);
 476         if (young)
 477                 kvm_flush_remote_tlbs(kvm);
 478 
 479         spin_unlock(&kvm->mmu_lock);
 480         srcu_read_unlock(&kvm->srcu, idx);
 481 
 482         return young;
 483 }
 484 
 485 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 486                                         struct mm_struct *mm,
 487                                         unsigned long start,
 488                                         unsigned long end)
 489 {
 490         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 491         int young, idx;
 492 
 493         idx = srcu_read_lock(&kvm->srcu);
 494         spin_lock(&kvm->mmu_lock);
 495         /*
 496          * Even though we do not flush TLB, this will still adversely
 497          * affect performance on pre-Haswell Intel EPT, where there is
 498          * no EPT Access Bit to clear so that we have to tear down EPT
 499          * tables instead. If we find this unacceptable, we can always
 500          * add a parameter to kvm_age_hva so that it effectively doesn't
 501          * do anything on clear_young.
 502          *
 503          * Also note that currently we never issue secondary TLB flushes
 504          * from clear_young, leaving this job up to the regular system
 505          * cadence. If we find this inaccurate, we might come up with a
 506          * more sophisticated heuristic later.
 507          */
 508         young = kvm_age_hva(kvm, start, end);
 509         spin_unlock(&kvm->mmu_lock);
 510         srcu_read_unlock(&kvm->srcu, idx);
 511 
 512         return young;
 513 }
 514 
 515 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 516                                        struct mm_struct *mm,
 517                                        unsigned long address)
 518 {
 519         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 520         int young, idx;
 521 
 522         idx = srcu_read_lock(&kvm->srcu);
 523         spin_lock(&kvm->mmu_lock);
 524         young = kvm_test_age_hva(kvm, address);
 525         spin_unlock(&kvm->mmu_lock);
 526         srcu_read_unlock(&kvm->srcu, idx);
 527 
 528         return young;
 529 }
 530 
 531 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 532                                      struct mm_struct *mm)
 533 {
 534         struct kvm *kvm = mmu_notifier_to_kvm(mn);
 535         int idx;
 536 
 537         idx = srcu_read_lock(&kvm->srcu);
 538         kvm_arch_flush_shadow_all(kvm);
 539         srcu_read_unlock(&kvm->srcu, idx);
 540 }
 541 
 542 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 543         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
 544         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 545         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 546         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 547         .clear_young            = kvm_mmu_notifier_clear_young,
 548         .test_young             = kvm_mmu_notifier_test_young,
 549         .change_pte             = kvm_mmu_notifier_change_pte,
 550         .release                = kvm_mmu_notifier_release,
 551 };
 552 
 553 static int kvm_init_mmu_notifier(struct kvm *kvm)
 554 {
 555         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 556         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 557 }
 558 
 559 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 560 
 561 static int kvm_init_mmu_notifier(struct kvm *kvm)
 562 {
 563         return 0;
 564 }
 565 
 566 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 567 
 568 static struct kvm_memslots *kvm_alloc_memslots(void)
 569 {
 570         int i;
 571         struct kvm_memslots *slots;
 572 
 573         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 574         if (!slots)
 575                 return NULL;
 576 
 577         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 578                 slots->id_to_index[i] = slots->memslots[i].id = i;
 579 
 580         return slots;
 581 }
 582 
 583 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 584 {
 585         if (!memslot->dirty_bitmap)
 586                 return;
 587 
 588         kvfree(memslot->dirty_bitmap);
 589         memslot->dirty_bitmap = NULL;
 590 }
 591 
 592 /*
 593  * Free any memory in @free but not in @dont.
 594  */
 595 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 596                               struct kvm_memory_slot *dont)
 597 {
 598         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 599                 kvm_destroy_dirty_bitmap(free);
 600 
 601         kvm_arch_free_memslot(kvm, free, dont);
 602 
 603         free->npages = 0;
 604 }
 605 
 606 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 607 {
 608         struct kvm_memory_slot *memslot;
 609 
 610         if (!slots)
 611                 return;
 612 
 613         kvm_for_each_memslot(memslot, slots)
 614                 kvm_free_memslot(kvm, memslot, NULL);
 615 
 616         kvfree(slots);
 617 }
 618 
 619 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 620 {
 621         int i;
 622 
 623         if (!kvm->debugfs_dentry)
 624                 return;
 625 
 626         debugfs_remove_recursive(kvm->debugfs_dentry);
 627 
 628         if (kvm->debugfs_stat_data) {
 629                 for (i = 0; i < kvm_debugfs_num_entries; i++)
 630                         kfree(kvm->debugfs_stat_data[i]);
 631                 kfree(kvm->debugfs_stat_data);
 632         }
 633 }
 634 
 635 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 636 {
 637         char dir_name[ITOA_MAX_LEN * 2];
 638         struct kvm_stat_data *stat_data;
 639         struct kvm_stats_debugfs_item *p;
 640 
 641         if (!debugfs_initialized())
 642                 return 0;
 643 
 644         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 645         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 646 
 647         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 648                                          sizeof(*kvm->debugfs_stat_data),
 649                                          GFP_KERNEL_ACCOUNT);
 650         if (!kvm->debugfs_stat_data)
 651                 return -ENOMEM;
 652 
 653         for (p = debugfs_entries; p->name; p++) {
 654                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 655                 if (!stat_data)
 656                         return -ENOMEM;
 657 
 658                 stat_data->kvm = kvm;
 659                 stat_data->offset = p->offset;
 660                 stat_data->mode = p->mode ? p->mode : 0644;
 661                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 662                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
 663                                     stat_data, stat_fops_per_vm[p->kind]);
 664         }
 665         return 0;
 666 }
 667 
 668 /*
 669  * Called after the VM is otherwise initialized, but just before adding it to
 670  * the vm_list.
 671  */
 672 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 673 {
 674         return 0;
 675 }
 676 
 677 /*
 678  * Called just after removing the VM from the vm_list, but before doing any
 679  * other destruction.
 680  */
 681 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 682 {
 683 }
 684 
 685 static struct kvm *kvm_create_vm(unsigned long type)
 686 {
 687         struct kvm *kvm = kvm_arch_alloc_vm();
 688         int r = -ENOMEM;
 689         int i;
 690 
 691         if (!kvm)
 692                 return ERR_PTR(-ENOMEM);
 693 
 694         spin_lock_init(&kvm->mmu_lock);
 695         mmgrab(current->mm);
 696         kvm->mm = current->mm;
 697         kvm_eventfd_init(kvm);
 698         mutex_init(&kvm->lock);
 699         mutex_init(&kvm->irq_lock);
 700         mutex_init(&kvm->slots_lock);
 701         INIT_LIST_HEAD(&kvm->devices);
 702 
 703         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 704 
 705         if (init_srcu_struct(&kvm->srcu))
 706                 goto out_err_no_srcu;
 707         if (init_srcu_struct(&kvm->irq_srcu))
 708                 goto out_err_no_irq_srcu;
 709 
 710         refcount_set(&kvm->users_count, 1);
 711         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 712                 struct kvm_memslots *slots = kvm_alloc_memslots();
 713 
 714                 if (!slots)
 715                         goto out_err_no_arch_destroy_vm;
 716                 /* Generations must be different for each address space. */
 717                 slots->generation = i;
 718                 rcu_assign_pointer(kvm->memslots[i], slots);
 719         }
 720 
 721         for (i = 0; i < KVM_NR_BUSES; i++) {
 722                 rcu_assign_pointer(kvm->buses[i],
 723                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 724                 if (!kvm->buses[i])
 725                         goto out_err_no_arch_destroy_vm;
 726         }
 727 
 728         r = kvm_arch_init_vm(kvm, type);
 729         if (r)
 730                 goto out_err_no_arch_destroy_vm;
 731 
 732         r = hardware_enable_all();
 733         if (r)
 734                 goto out_err_no_disable;
 735 
 736 #ifdef CONFIG_HAVE_KVM_IRQFD
 737         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 738 #endif
 739 
 740         r = kvm_init_mmu_notifier(kvm);
 741         if (r)
 742                 goto out_err_no_mmu_notifier;
 743 
 744         r = kvm_arch_post_init_vm(kvm);
 745         if (r)
 746                 goto out_err;
 747 
 748         mutex_lock(&kvm_lock);
 749         list_add(&kvm->vm_list, &vm_list);
 750         mutex_unlock(&kvm_lock);
 751 
 752         preempt_notifier_inc();
 753 
 754         return kvm;
 755 
 756 out_err:
 757 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 758         if (kvm->mmu_notifier.ops)
 759                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
 760 #endif
 761 out_err_no_mmu_notifier:
 762         hardware_disable_all();
 763 out_err_no_disable:
 764         kvm_arch_destroy_vm(kvm);
 765 out_err_no_arch_destroy_vm:
 766         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
 767         for (i = 0; i < KVM_NR_BUSES; i++)
 768                 kfree(kvm_get_bus(kvm, i));
 769         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 770                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 771         cleanup_srcu_struct(&kvm->irq_srcu);
 772 out_err_no_irq_srcu:
 773         cleanup_srcu_struct(&kvm->srcu);
 774 out_err_no_srcu:
 775         kvm_arch_free_vm(kvm);
 776         mmdrop(current->mm);
 777         return ERR_PTR(r);
 778 }
 779 
 780 static void kvm_destroy_devices(struct kvm *kvm)
 781 {
 782         struct kvm_device *dev, *tmp;
 783 
 784         /*
 785          * We do not need to take the kvm->lock here, because nobody else
 786          * has a reference to the struct kvm at this point and therefore
 787          * cannot access the devices list anyhow.
 788          */
 789         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 790                 list_del(&dev->vm_node);
 791                 dev->ops->destroy(dev);
 792         }
 793 }
 794 
 795 static void kvm_destroy_vm(struct kvm *kvm)
 796 {
 797         int i;
 798         struct mm_struct *mm = kvm->mm;
 799 
 800         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 801         kvm_destroy_vm_debugfs(kvm);
 802         kvm_arch_sync_events(kvm);
 803         mutex_lock(&kvm_lock);
 804         list_del(&kvm->vm_list);
 805         mutex_unlock(&kvm_lock);
 806         kvm_arch_pre_destroy_vm(kvm);
 807 
 808         kvm_free_irq_routing(kvm);
 809         for (i = 0; i < KVM_NR_BUSES; i++) {
 810                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 811 
 812                 if (bus)
 813                         kvm_io_bus_destroy(bus);
 814                 kvm->buses[i] = NULL;
 815         }
 816         kvm_coalesced_mmio_free(kvm);
 817 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 818         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 819 #else
 820         kvm_arch_flush_shadow_all(kvm);
 821 #endif
 822         kvm_arch_destroy_vm(kvm);
 823         kvm_destroy_devices(kvm);
 824         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 825                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 826         cleanup_srcu_struct(&kvm->irq_srcu);
 827         cleanup_srcu_struct(&kvm->srcu);
 828         kvm_arch_free_vm(kvm);
 829         preempt_notifier_dec();
 830         hardware_disable_all();
 831         mmdrop(mm);
 832 }
 833 
 834 void kvm_get_kvm(struct kvm *kvm)
 835 {
 836         refcount_inc(&kvm->users_count);
 837 }
 838 EXPORT_SYMBOL_GPL(kvm_get_kvm);
 839 
 840 void kvm_put_kvm(struct kvm *kvm)
 841 {
 842         if (refcount_dec_and_test(&kvm->users_count))
 843                 kvm_destroy_vm(kvm);
 844 }
 845 EXPORT_SYMBOL_GPL(kvm_put_kvm);
 846 
 847 
 848 static int kvm_vm_release(struct inode *inode, struct file *filp)
 849 {
 850         struct kvm *kvm = filp->private_data;
 851 
 852         kvm_irqfd_release(kvm);
 853 
 854         kvm_put_kvm(kvm);
 855         return 0;
 856 }
 857 
 858 /*
 859  * Allocation size is twice as large as the actual dirty bitmap size.
 860  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 861  */
 862 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 863 {
 864         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 865 
 866         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 867         if (!memslot->dirty_bitmap)
 868                 return -ENOMEM;
 869 
 870         return 0;
 871 }
 872 
 873 /*
 874  * Insert memslot and re-sort memslots based on their GFN,
 875  * so binary search could be used to lookup GFN.
 876  * Sorting algorithm takes advantage of having initially
 877  * sorted array and known changed memslot position.
 878  */
 879 static void update_memslots(struct kvm_memslots *slots,
 880                             struct kvm_memory_slot *new,
 881                             enum kvm_mr_change change)
 882 {
 883         int id = new->id;
 884         int i = slots->id_to_index[id];
 885         struct kvm_memory_slot *mslots = slots->memslots;
 886 
 887         WARN_ON(mslots[i].id != id);
 888         switch (change) {
 889         case KVM_MR_CREATE:
 890                 slots->used_slots++;
 891                 WARN_ON(mslots[i].npages || !new->npages);
 892                 break;
 893         case KVM_MR_DELETE:
 894                 slots->used_slots--;
 895                 WARN_ON(new->npages || !mslots[i].npages);
 896                 break;
 897         default:
 898                 break;
 899         }
 900 
 901         while (i < KVM_MEM_SLOTS_NUM - 1 &&
 902                new->base_gfn <= mslots[i + 1].base_gfn) {
 903                 if (!mslots[i + 1].npages)
 904                         break;
 905                 mslots[i] = mslots[i + 1];
 906                 slots->id_to_index[mslots[i].id] = i;
 907                 i++;
 908         }
 909 
 910         /*
 911          * The ">=" is needed when creating a slot with base_gfn == 0,
 912          * so that it moves before all those with base_gfn == npages == 0.
 913          *
 914          * On the other hand, if new->npages is zero, the above loop has
 915          * already left i pointing to the beginning of the empty part of
 916          * mslots, and the ">=" would move the hole backwards in this
 917          * case---which is wrong.  So skip the loop when deleting a slot.
 918          */
 919         if (new->npages) {
 920                 while (i > 0 &&
 921                        new->base_gfn >= mslots[i - 1].base_gfn) {
 922                         mslots[i] = mslots[i - 1];
 923                         slots->id_to_index[mslots[i].id] = i;
 924                         i--;
 925                 }
 926         } else
 927                 WARN_ON_ONCE(i != slots->used_slots);
 928 
 929         mslots[i] = *new;
 930         slots->id_to_index[mslots[i].id] = i;
 931 }
 932 
 933 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 934 {
 935         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 936 
 937 #ifdef __KVM_HAVE_READONLY_MEM
 938         valid_flags |= KVM_MEM_READONLY;
 939 #endif
 940 
 941         if (mem->flags & ~valid_flags)
 942                 return -EINVAL;
 943 
 944         return 0;
 945 }
 946 
 947 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 948                 int as_id, struct kvm_memslots *slots)
 949 {
 950         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 951         u64 gen = old_memslots->generation;
 952 
 953         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
 954         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 955 
 956         rcu_assign_pointer(kvm->memslots[as_id], slots);
 957         synchronize_srcu_expedited(&kvm->srcu);
 958 
 959         /*
 960          * Increment the new memslot generation a second time, dropping the
 961          * update in-progress flag and incrementing then generation based on
 962          * the number of address spaces.  This provides a unique and easily
 963          * identifiable generation number while the memslots are in flux.
 964          */
 965         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 966 
 967         /*
 968          * Generations must be unique even across address spaces.  We do not need
 969          * a global counter for that, instead the generation space is evenly split
 970          * across address spaces.  For example, with two address spaces, address
 971          * space 0 will use generations 0, 2, 4, ... while address space 1 will
 972          * use generations 1, 3, 5, ...
 973          */
 974         gen += KVM_ADDRESS_SPACE_NUM;
 975 
 976         kvm_arch_memslots_updated(kvm, gen);
 977 
 978         slots->generation = gen;
 979 
 980         return old_memslots;
 981 }
 982 
 983 /*
 984  * Allocate some memory and give it an address in the guest physical address
 985  * space.
 986  *
 987  * Discontiguous memory is allowed, mostly for framebuffers.
 988  *
 989  * Must be called holding kvm->slots_lock for write.
 990  */
 991 int __kvm_set_memory_region(struct kvm *kvm,
 992                             const struct kvm_userspace_memory_region *mem)
 993 {
 994         int r;
 995         gfn_t base_gfn;
 996         unsigned long npages;
 997         struct kvm_memory_slot *slot;
 998         struct kvm_memory_slot old, new;
 999         struct kvm_memslots *slots = NULL, *old_memslots;
1000         int as_id, id;
1001         enum kvm_mr_change change;
1002 
1003         r = check_memory_region_flags(mem);
1004         if (r)
1005                 goto out;
1006 
1007         r = -EINVAL;
1008         as_id = mem->slot >> 16;
1009         id = (u16)mem->slot;
1010 
1011         /* General sanity checks */
1012         if (mem->memory_size & (PAGE_SIZE - 1))
1013                 goto out;
1014         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1015                 goto out;
1016         /* We can read the guest memory with __xxx_user() later on. */
1017         if ((id < KVM_USER_MEM_SLOTS) &&
1018             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1019              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1020                         mem->memory_size)))
1021                 goto out;
1022         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1023                 goto out;
1024         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1025                 goto out;
1026 
1027         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1028         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1029         npages = mem->memory_size >> PAGE_SHIFT;
1030 
1031         if (npages > KVM_MEM_MAX_NR_PAGES)
1032                 goto out;
1033 
1034         new = old = *slot;
1035 
1036         new.id = id;
1037         new.base_gfn = base_gfn;
1038         new.npages = npages;
1039         new.flags = mem->flags;
1040 
1041         if (npages) {
1042                 if (!old.npages)
1043                         change = KVM_MR_CREATE;
1044                 else { /* Modify an existing slot. */
1045                         if ((mem->userspace_addr != old.userspace_addr) ||
1046                             (npages != old.npages) ||
1047                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1048                                 goto out;
1049 
1050                         if (base_gfn != old.base_gfn)
1051                                 change = KVM_MR_MOVE;
1052                         else if (new.flags != old.flags)
1053                                 change = KVM_MR_FLAGS_ONLY;
1054                         else { /* Nothing to change. */
1055                                 r = 0;
1056                                 goto out;
1057                         }
1058                 }
1059         } else {
1060                 if (!old.npages)
1061                         goto out;
1062 
1063                 change = KVM_MR_DELETE;
1064                 new.base_gfn = 0;
1065                 new.flags = 0;
1066         }
1067 
1068         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1069                 /* Check for overlaps */
1070                 r = -EEXIST;
1071                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1072                         if (slot->id == id)
1073                                 continue;
1074                         if (!((base_gfn + npages <= slot->base_gfn) ||
1075                               (base_gfn >= slot->base_gfn + slot->npages)))
1076                                 goto out;
1077                 }
1078         }
1079 
1080         /* Free page dirty bitmap if unneeded */
1081         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1082                 new.dirty_bitmap = NULL;
1083 
1084         r = -ENOMEM;
1085         if (change == KVM_MR_CREATE) {
1086                 new.userspace_addr = mem->userspace_addr;
1087 
1088                 if (kvm_arch_create_memslot(kvm, &new, npages))
1089                         goto out_free;
1090         }
1091 
1092         /* Allocate page dirty bitmap if needed */
1093         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1094                 if (kvm_create_dirty_bitmap(&new) < 0)
1095                         goto out_free;
1096         }
1097 
1098         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1099         if (!slots)
1100                 goto out_free;
1101         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1102 
1103         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1104                 slot = id_to_memslot(slots, id);
1105                 slot->flags |= KVM_MEMSLOT_INVALID;
1106 
1107                 old_memslots = install_new_memslots(kvm, as_id, slots);
1108 
1109                 /* From this point no new shadow pages pointing to a deleted,
1110                  * or moved, memslot will be created.
1111                  *
1112                  * validation of sp->gfn happens in:
1113                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1114                  *      - kvm_is_visible_gfn (mmu_check_roots)
1115                  */
1116                 kvm_arch_flush_shadow_memslot(kvm, slot);
1117 
1118                 /*
1119                  * We can re-use the old_memslots from above, the only difference
1120                  * from the currently installed memslots is the invalid flag.  This
1121                  * will get overwritten by update_memslots anyway.
1122                  */
1123                 slots = old_memslots;
1124         }
1125 
1126         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1127         if (r)
1128                 goto out_slots;
1129 
1130         /* actual memory is freed via old in kvm_free_memslot below */
1131         if (change == KVM_MR_DELETE) {
1132                 new.dirty_bitmap = NULL;
1133                 memset(&new.arch, 0, sizeof(new.arch));
1134         }
1135 
1136         update_memslots(slots, &new, change);
1137         old_memslots = install_new_memslots(kvm, as_id, slots);
1138 
1139         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1140 
1141         kvm_free_memslot(kvm, &old, &new);
1142         kvfree(old_memslots);
1143         return 0;
1144 
1145 out_slots:
1146         kvfree(slots);
1147 out_free:
1148         kvm_free_memslot(kvm, &new, &old);
1149 out:
1150         return r;
1151 }
1152 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1153 
1154 int kvm_set_memory_region(struct kvm *kvm,
1155                           const struct kvm_userspace_memory_region *mem)
1156 {
1157         int r;
1158 
1159         mutex_lock(&kvm->slots_lock);
1160         r = __kvm_set_memory_region(kvm, mem);
1161         mutex_unlock(&kvm->slots_lock);
1162         return r;
1163 }
1164 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1165 
1166 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1167                                           struct kvm_userspace_memory_region *mem)
1168 {
1169         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1170                 return -EINVAL;
1171 
1172         return kvm_set_memory_region(kvm, mem);
1173 }
1174 
1175 int kvm_get_dirty_log(struct kvm *kvm,
1176                         struct kvm_dirty_log *log, int *is_dirty)
1177 {
1178         struct kvm_memslots *slots;
1179         struct kvm_memory_slot *memslot;
1180         int i, as_id, id;
1181         unsigned long n;
1182         unsigned long any = 0;
1183 
1184         as_id = log->slot >> 16;
1185         id = (u16)log->slot;
1186         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1187                 return -EINVAL;
1188 
1189         slots = __kvm_memslots(kvm, as_id);
1190         memslot = id_to_memslot(slots, id);
1191         if (!memslot->dirty_bitmap)
1192                 return -ENOENT;
1193 
1194         n = kvm_dirty_bitmap_bytes(memslot);
1195 
1196         for (i = 0; !any && i < n/sizeof(long); ++i)
1197                 any = memslot->dirty_bitmap[i];
1198 
1199         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1200                 return -EFAULT;
1201 
1202         if (any)
1203                 *is_dirty = 1;
1204         return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1207 
1208 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1209 /**
1210  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1211  *      and reenable dirty page tracking for the corresponding pages.
1212  * @kvm:        pointer to kvm instance
1213  * @log:        slot id and address to which we copy the log
1214  * @flush:      true if TLB flush is needed by caller
1215  *
1216  * We need to keep it in mind that VCPU threads can write to the bitmap
1217  * concurrently. So, to avoid losing track of dirty pages we keep the
1218  * following order:
1219  *
1220  *    1. Take a snapshot of the bit and clear it if needed.
1221  *    2. Write protect the corresponding page.
1222  *    3. Copy the snapshot to the userspace.
1223  *    4. Upon return caller flushes TLB's if needed.
1224  *
1225  * Between 2 and 4, the guest may write to the page using the remaining TLB
1226  * entry.  This is not a problem because the page is reported dirty using
1227  * the snapshot taken before and step 4 ensures that writes done after
1228  * exiting to userspace will be logged for the next call.
1229  *
1230  */
1231 int kvm_get_dirty_log_protect(struct kvm *kvm,
1232                         struct kvm_dirty_log *log, bool *flush)
1233 {
1234         struct kvm_memslots *slots;
1235         struct kvm_memory_slot *memslot;
1236         int i, as_id, id;
1237         unsigned long n;
1238         unsigned long *dirty_bitmap;
1239         unsigned long *dirty_bitmap_buffer;
1240 
1241         as_id = log->slot >> 16;
1242         id = (u16)log->slot;
1243         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1244                 return -EINVAL;
1245 
1246         slots = __kvm_memslots(kvm, as_id);
1247         memslot = id_to_memslot(slots, id);
1248 
1249         dirty_bitmap = memslot->dirty_bitmap;
1250         if (!dirty_bitmap)
1251                 return -ENOENT;
1252 
1253         n = kvm_dirty_bitmap_bytes(memslot);
1254         *flush = false;
1255         if (kvm->manual_dirty_log_protect) {
1256                 /*
1257                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1258                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1259                  * is some code duplication between this function and
1260                  * kvm_get_dirty_log, but hopefully all architecture
1261                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1262                  * can be eliminated.
1263                  */
1264                 dirty_bitmap_buffer = dirty_bitmap;
1265         } else {
1266                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1267                 memset(dirty_bitmap_buffer, 0, n);
1268 
1269                 spin_lock(&kvm->mmu_lock);
1270                 for (i = 0; i < n / sizeof(long); i++) {
1271                         unsigned long mask;
1272                         gfn_t offset;
1273 
1274                         if (!dirty_bitmap[i])
1275                                 continue;
1276 
1277                         *flush = true;
1278                         mask = xchg(&dirty_bitmap[i], 0);
1279                         dirty_bitmap_buffer[i] = mask;
1280 
1281                         offset = i * BITS_PER_LONG;
1282                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1283                                                                 offset, mask);
1284                 }
1285                 spin_unlock(&kvm->mmu_lock);
1286         }
1287 
1288         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1289                 return -EFAULT;
1290         return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1293 
1294 /**
1295  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1296  *      and reenable dirty page tracking for the corresponding pages.
1297  * @kvm:        pointer to kvm instance
1298  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1299  * @flush:      true if TLB flush is needed by caller
1300  */
1301 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1302                                 struct kvm_clear_dirty_log *log, bool *flush)
1303 {
1304         struct kvm_memslots *slots;
1305         struct kvm_memory_slot *memslot;
1306         int as_id, id;
1307         gfn_t offset;
1308         unsigned long i, n;
1309         unsigned long *dirty_bitmap;
1310         unsigned long *dirty_bitmap_buffer;
1311 
1312         as_id = log->slot >> 16;
1313         id = (u16)log->slot;
1314         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1315                 return -EINVAL;
1316 
1317         if (log->first_page & 63)
1318                 return -EINVAL;
1319 
1320         slots = __kvm_memslots(kvm, as_id);
1321         memslot = id_to_memslot(slots, id);
1322 
1323         dirty_bitmap = memslot->dirty_bitmap;
1324         if (!dirty_bitmap)
1325                 return -ENOENT;
1326 
1327         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1328 
1329         if (log->first_page > memslot->npages ||
1330             log->num_pages > memslot->npages - log->first_page ||
1331             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1332             return -EINVAL;
1333 
1334         *flush = false;
1335         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1336         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1337                 return -EFAULT;
1338 
1339         spin_lock(&kvm->mmu_lock);
1340         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1341                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1342              i++, offset += BITS_PER_LONG) {
1343                 unsigned long mask = *dirty_bitmap_buffer++;
1344                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1345                 if (!mask)
1346                         continue;
1347 
1348                 mask &= atomic_long_fetch_andnot(mask, p);
1349 
1350                 /*
1351                  * mask contains the bits that really have been cleared.  This
1352                  * never includes any bits beyond the length of the memslot (if
1353                  * the length is not aligned to 64 pages), therefore it is not
1354                  * a problem if userspace sets them in log->dirty_bitmap.
1355                 */
1356                 if (mask) {
1357                         *flush = true;
1358                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1359                                                                 offset, mask);
1360                 }
1361         }
1362         spin_unlock(&kvm->mmu_lock);
1363 
1364         return 0;
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1367 #endif
1368 
1369 bool kvm_largepages_enabled(void)
1370 {
1371         return largepages_enabled;
1372 }
1373 
1374 void kvm_disable_largepages(void)
1375 {
1376         largepages_enabled = false;
1377 }
1378 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1379 
1380 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1381 {
1382         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1383 }
1384 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1385 
1386 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1387 {
1388         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1389 }
1390 
1391 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1392 {
1393         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1394 
1395         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1396               memslot->flags & KVM_MEMSLOT_INVALID)
1397                 return false;
1398 
1399         return true;
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1402 
1403 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1404 {
1405         struct vm_area_struct *vma;
1406         unsigned long addr, size;
1407 
1408         size = PAGE_SIZE;
1409 
1410         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1411         if (kvm_is_error_hva(addr))
1412                 return PAGE_SIZE;
1413 
1414         down_read(&current->mm->mmap_sem);
1415         vma = find_vma(current->mm, addr);
1416         if (!vma)
1417                 goto out;
1418 
1419         size = vma_kernel_pagesize(vma);
1420 
1421 out:
1422         up_read(&current->mm->mmap_sem);
1423 
1424         return size;
1425 }
1426 
1427 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1428 {
1429         return slot->flags & KVM_MEM_READONLY;
1430 }
1431 
1432 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1433                                        gfn_t *nr_pages, bool write)
1434 {
1435         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1436                 return KVM_HVA_ERR_BAD;
1437 
1438         if (memslot_is_readonly(slot) && write)
1439                 return KVM_HVA_ERR_RO_BAD;
1440 
1441         if (nr_pages)
1442                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1443 
1444         return __gfn_to_hva_memslot(slot, gfn);
1445 }
1446 
1447 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1448                                      gfn_t *nr_pages)
1449 {
1450         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1451 }
1452 
1453 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1454                                         gfn_t gfn)
1455 {
1456         return gfn_to_hva_many(slot, gfn, NULL);
1457 }
1458 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1459 
1460 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1461 {
1462         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(gfn_to_hva);
1465 
1466 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1467 {
1468         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1469 }
1470 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1471 
1472 /*
1473  * Return the hva of a @gfn and the R/W attribute if possible.
1474  *
1475  * @slot: the kvm_memory_slot which contains @gfn
1476  * @gfn: the gfn to be translated
1477  * @writable: used to return the read/write attribute of the @slot if the hva
1478  * is valid and @writable is not NULL
1479  */
1480 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1481                                       gfn_t gfn, bool *writable)
1482 {
1483         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1484 
1485         if (!kvm_is_error_hva(hva) && writable)
1486                 *writable = !memslot_is_readonly(slot);
1487 
1488         return hva;
1489 }
1490 
1491 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1492 {
1493         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1494 
1495         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1496 }
1497 
1498 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1499 {
1500         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1501 
1502         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1503 }
1504 
1505 static inline int check_user_page_hwpoison(unsigned long addr)
1506 {
1507         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1508 
1509         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1510         return rc == -EHWPOISON;
1511 }
1512 
1513 /*
1514  * The fast path to get the writable pfn which will be stored in @pfn,
1515  * true indicates success, otherwise false is returned.  It's also the
1516  * only part that runs if we can are in atomic context.
1517  */
1518 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1519                             bool *writable, kvm_pfn_t *pfn)
1520 {
1521         struct page *page[1];
1522         int npages;
1523 
1524         /*
1525          * Fast pin a writable pfn only if it is a write fault request
1526          * or the caller allows to map a writable pfn for a read fault
1527          * request.
1528          */
1529         if (!(write_fault || writable))
1530                 return false;
1531 
1532         npages = __get_user_pages_fast(addr, 1, 1, page);
1533         if (npages == 1) {
1534                 *pfn = page_to_pfn(page[0]);
1535 
1536                 if (writable)
1537                         *writable = true;
1538                 return true;
1539         }
1540 
1541         return false;
1542 }
1543 
1544 /*
1545  * The slow path to get the pfn of the specified host virtual address,
1546  * 1 indicates success, -errno is returned if error is detected.
1547  */
1548 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1549                            bool *writable, kvm_pfn_t *pfn)
1550 {
1551         unsigned int flags = FOLL_HWPOISON;
1552         struct page *page;
1553         int npages = 0;
1554 
1555         might_sleep();
1556 
1557         if (writable)
1558                 *writable = write_fault;
1559 
1560         if (write_fault)
1561                 flags |= FOLL_WRITE;
1562         if (async)
1563                 flags |= FOLL_NOWAIT;
1564 
1565         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1566         if (npages != 1)
1567                 return npages;
1568 
1569         /* map read fault as writable if possible */
1570         if (unlikely(!write_fault) && writable) {
1571                 struct page *wpage;
1572 
1573                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1574                         *writable = true;
1575                         put_page(page);
1576                         page = wpage;
1577                 }
1578         }
1579         *pfn = page_to_pfn(page);
1580         return npages;
1581 }
1582 
1583 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1584 {
1585         if (unlikely(!(vma->vm_flags & VM_READ)))
1586                 return false;
1587 
1588         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1589                 return false;
1590 
1591         return true;
1592 }
1593 
1594 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1595                                unsigned long addr, bool *async,
1596                                bool write_fault, bool *writable,
1597                                kvm_pfn_t *p_pfn)
1598 {
1599         unsigned long pfn;
1600         int r;
1601 
1602         r = follow_pfn(vma, addr, &pfn);
1603         if (r) {
1604                 /*
1605                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1606                  * not call the fault handler, so do it here.
1607                  */
1608                 bool unlocked = false;
1609                 r = fixup_user_fault(current, current->mm, addr,
1610                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1611                                      &unlocked);
1612                 if (unlocked)
1613                         return -EAGAIN;
1614                 if (r)
1615                         return r;
1616 
1617                 r = follow_pfn(vma, addr, &pfn);
1618                 if (r)
1619                         return r;
1620 
1621         }
1622 
1623         if (writable)
1624                 *writable = true;
1625 
1626         /*
1627          * Get a reference here because callers of *hva_to_pfn* and
1628          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1629          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1630          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1631          * simply do nothing for reserved pfns.
1632          *
1633          * Whoever called remap_pfn_range is also going to call e.g.
1634          * unmap_mapping_range before the underlying pages are freed,
1635          * causing a call to our MMU notifier.
1636          */ 
1637         kvm_get_pfn(pfn);
1638 
1639         *p_pfn = pfn;
1640         return 0;
1641 }
1642 
1643 /*
1644  * Pin guest page in memory and return its pfn.
1645  * @addr: host virtual address which maps memory to the guest
1646  * @atomic: whether this function can sleep
1647  * @async: whether this function need to wait IO complete if the
1648  *         host page is not in the memory
1649  * @write_fault: whether we should get a writable host page
1650  * @writable: whether it allows to map a writable host page for !@write_fault
1651  *
1652  * The function will map a writable host page for these two cases:
1653  * 1): @write_fault = true
1654  * 2): @write_fault = false && @writable, @writable will tell the caller
1655  *     whether the mapping is writable.
1656  */
1657 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1658                         bool write_fault, bool *writable)
1659 {
1660         struct vm_area_struct *vma;
1661         kvm_pfn_t pfn = 0;
1662         int npages, r;
1663 
1664         /* we can do it either atomically or asynchronously, not both */
1665         BUG_ON(atomic && async);
1666 
1667         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1668                 return pfn;
1669 
1670         if (atomic)
1671                 return KVM_PFN_ERR_FAULT;
1672 
1673         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1674         if (npages == 1)
1675                 return pfn;
1676 
1677         down_read(&current->mm->mmap_sem);
1678         if (npages == -EHWPOISON ||
1679               (!async && check_user_page_hwpoison(addr))) {
1680                 pfn = KVM_PFN_ERR_HWPOISON;
1681                 goto exit;
1682         }
1683 
1684 retry:
1685         vma = find_vma_intersection(current->mm, addr, addr + 1);
1686 
1687         if (vma == NULL)
1688                 pfn = KVM_PFN_ERR_FAULT;
1689         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1690                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1691                 if (r == -EAGAIN)
1692                         goto retry;
1693                 if (r < 0)
1694                         pfn = KVM_PFN_ERR_FAULT;
1695         } else {
1696                 if (async && vma_is_valid(vma, write_fault))
1697                         *async = true;
1698                 pfn = KVM_PFN_ERR_FAULT;
1699         }
1700 exit:
1701         up_read(&current->mm->mmap_sem);
1702         return pfn;
1703 }
1704 
1705 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1706                                bool atomic, bool *async, bool write_fault,
1707                                bool *writable)
1708 {
1709         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1710 
1711         if (addr == KVM_HVA_ERR_RO_BAD) {
1712                 if (writable)
1713                         *writable = false;
1714                 return KVM_PFN_ERR_RO_FAULT;
1715         }
1716 
1717         if (kvm_is_error_hva(addr)) {
1718                 if (writable)
1719                         *writable = false;
1720                 return KVM_PFN_NOSLOT;
1721         }
1722 
1723         /* Do not map writable pfn in the readonly memslot. */
1724         if (writable && memslot_is_readonly(slot)) {
1725                 *writable = false;
1726                 writable = NULL;
1727         }
1728 
1729         return hva_to_pfn(addr, atomic, async, write_fault,
1730                           writable);
1731 }
1732 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1733 
1734 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1735                       bool *writable)
1736 {
1737         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1738                                     write_fault, writable);
1739 }
1740 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1741 
1742 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1743 {
1744         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1747 
1748 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1749 {
1750         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1753 
1754 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1755 {
1756         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1759 
1760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1761 {
1762         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1765 
1766 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1767 {
1768         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1771 
1772 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1773 {
1774         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1775 }
1776 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1777 
1778 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1779                             struct page **pages, int nr_pages)
1780 {
1781         unsigned long addr;
1782         gfn_t entry = 0;
1783 
1784         addr = gfn_to_hva_many(slot, gfn, &entry);
1785         if (kvm_is_error_hva(addr))
1786                 return -1;
1787 
1788         if (entry < nr_pages)
1789                 return 0;
1790 
1791         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1792 }
1793 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1794 
1795 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1796 {
1797         if (is_error_noslot_pfn(pfn))
1798                 return KVM_ERR_PTR_BAD_PAGE;
1799 
1800         if (kvm_is_reserved_pfn(pfn)) {
1801                 WARN_ON(1);
1802                 return KVM_ERR_PTR_BAD_PAGE;
1803         }
1804 
1805         return pfn_to_page(pfn);
1806 }
1807 
1808 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1809 {
1810         kvm_pfn_t pfn;
1811 
1812         pfn = gfn_to_pfn(kvm, gfn);
1813 
1814         return kvm_pfn_to_page(pfn);
1815 }
1816 EXPORT_SYMBOL_GPL(gfn_to_page);
1817 
1818 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1819 {
1820         if (pfn == 0)
1821                 return;
1822 
1823         if (cache)
1824                 cache->pfn = cache->gfn = 0;
1825 
1826         if (dirty)
1827                 kvm_release_pfn_dirty(pfn);
1828         else
1829                 kvm_release_pfn_clean(pfn);
1830 }
1831 
1832 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1833                                  struct gfn_to_pfn_cache *cache, u64 gen)
1834 {
1835         kvm_release_pfn(cache->pfn, cache->dirty, cache);
1836 
1837         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1838         cache->gfn = gfn;
1839         cache->dirty = false;
1840         cache->generation = gen;
1841 }
1842 
1843 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1844                          struct kvm_host_map *map,
1845                          struct gfn_to_pfn_cache *cache,
1846                          bool atomic)
1847 {
1848         kvm_pfn_t pfn;
1849         void *hva = NULL;
1850         struct page *page = KVM_UNMAPPED_PAGE;
1851         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1852         u64 gen = slots->generation;
1853 
1854         if (!map)
1855                 return -EINVAL;
1856 
1857         if (cache) {
1858                 if (!cache->pfn || cache->gfn != gfn ||
1859                         cache->generation != gen) {
1860                         if (atomic)
1861                                 return -EAGAIN;
1862                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1863                 }
1864                 pfn = cache->pfn;
1865         } else {
1866                 if (atomic)
1867                         return -EAGAIN;
1868                 pfn = gfn_to_pfn_memslot(slot, gfn);
1869         }
1870         if (is_error_noslot_pfn(pfn))
1871                 return -EINVAL;
1872 
1873         if (pfn_valid(pfn)) {
1874                 page = pfn_to_page(pfn);
1875                 if (atomic)
1876                         hva = kmap_atomic(page);
1877                 else
1878                         hva = kmap(page);
1879 #ifdef CONFIG_HAS_IOMEM
1880         } else if (!atomic) {
1881                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1882         } else {
1883                 return -EINVAL;
1884 #endif
1885         }
1886 
1887         if (!hva)
1888                 return -EFAULT;
1889 
1890         map->page = page;
1891         map->hva = hva;
1892         map->pfn = pfn;
1893         map->gfn = gfn;
1894 
1895         return 0;
1896 }
1897 
1898 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1899                 struct gfn_to_pfn_cache *cache, bool atomic)
1900 {
1901         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1902                         cache, atomic);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1905 
1906 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1907 {
1908         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1909                 NULL, false);
1910 }
1911 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1912 
1913 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1914                         struct kvm_host_map *map,
1915                         struct gfn_to_pfn_cache *cache,
1916                         bool dirty, bool atomic)
1917 {
1918         if (!map)
1919                 return;
1920 
1921         if (!map->hva)
1922                 return;
1923 
1924         if (map->page != KVM_UNMAPPED_PAGE) {
1925                 if (atomic)
1926                         kunmap_atomic(map->hva);
1927                 else
1928                         kunmap(map->page);
1929         }
1930 #ifdef CONFIG_HAS_IOMEM
1931         else if (!atomic)
1932                 memunmap(map->hva);
1933         else
1934                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
1935 #endif
1936 
1937         if (dirty)
1938                 mark_page_dirty_in_slot(memslot, map->gfn);
1939 
1940         if (cache)
1941                 cache->dirty |= dirty;
1942         else
1943                 kvm_release_pfn(map->pfn, dirty, NULL);
1944 
1945         map->hva = NULL;
1946         map->page = NULL;
1947 }
1948 
1949 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1950                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1951 {
1952         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1953                         cache, dirty, atomic);
1954         return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1957 
1958 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1959 {
1960         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1961                         dirty, false);
1962 }
1963 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1964 
1965 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1966 {
1967         kvm_pfn_t pfn;
1968 
1969         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1970 
1971         return kvm_pfn_to_page(pfn);
1972 }
1973 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1974 
1975 void kvm_release_page_clean(struct page *page)
1976 {
1977         WARN_ON(is_error_page(page));
1978 
1979         kvm_release_pfn_clean(page_to_pfn(page));
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1982 
1983 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1984 {
1985         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1986                 put_page(pfn_to_page(pfn));
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1989 
1990 void kvm_release_page_dirty(struct page *page)
1991 {
1992         WARN_ON(is_error_page(page));
1993 
1994         kvm_release_pfn_dirty(page_to_pfn(page));
1995 }
1996 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1997 
1998 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1999 {
2000         kvm_set_pfn_dirty(pfn);
2001         kvm_release_pfn_clean(pfn);
2002 }
2003 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2004 
2005 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2006 {
2007         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
2008                 struct page *page = pfn_to_page(pfn);
2009 
2010                 SetPageDirty(page);
2011         }
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2014 
2015 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2016 {
2017         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2018                 mark_page_accessed(pfn_to_page(pfn));
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2021 
2022 void kvm_get_pfn(kvm_pfn_t pfn)
2023 {
2024         if (!kvm_is_reserved_pfn(pfn))
2025                 get_page(pfn_to_page(pfn));
2026 }
2027 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2028 
2029 static int next_segment(unsigned long len, int offset)
2030 {
2031         if (len > PAGE_SIZE - offset)
2032                 return PAGE_SIZE - offset;
2033         else
2034                 return len;
2035 }
2036 
2037 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2038                                  void *data, int offset, int len)
2039 {
2040         int r;
2041         unsigned long addr;
2042 
2043         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2044         if (kvm_is_error_hva(addr))
2045                 return -EFAULT;
2046         r = __copy_from_user(data, (void __user *)addr + offset, len);
2047         if (r)
2048                 return -EFAULT;
2049         return 0;
2050 }
2051 
2052 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2053                         int len)
2054 {
2055         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2056 
2057         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2058 }
2059 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2060 
2061 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2062                              int offset, int len)
2063 {
2064         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2065 
2066         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2069 
2070 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2071 {
2072         gfn_t gfn = gpa >> PAGE_SHIFT;
2073         int seg;
2074         int offset = offset_in_page(gpa);
2075         int ret;
2076 
2077         while ((seg = next_segment(len, offset)) != 0) {
2078                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2079                 if (ret < 0)
2080                         return ret;
2081                 offset = 0;
2082                 len -= seg;
2083                 data += seg;
2084                 ++gfn;
2085         }
2086         return 0;
2087 }
2088 EXPORT_SYMBOL_GPL(kvm_read_guest);
2089 
2090 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2091 {
2092         gfn_t gfn = gpa >> PAGE_SHIFT;
2093         int seg;
2094         int offset = offset_in_page(gpa);
2095         int ret;
2096 
2097         while ((seg = next_segment(len, offset)) != 0) {
2098                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2099                 if (ret < 0)
2100                         return ret;
2101                 offset = 0;
2102                 len -= seg;
2103                 data += seg;
2104                 ++gfn;
2105         }
2106         return 0;
2107 }
2108 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2109 
2110 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2111                                    void *data, int offset, unsigned long len)
2112 {
2113         int r;
2114         unsigned long addr;
2115 
2116         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2117         if (kvm_is_error_hva(addr))
2118                 return -EFAULT;
2119         pagefault_disable();
2120         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2121         pagefault_enable();
2122         if (r)
2123                 return -EFAULT;
2124         return 0;
2125 }
2126 
2127 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2128                           unsigned long len)
2129 {
2130         gfn_t gfn = gpa >> PAGE_SHIFT;
2131         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2132         int offset = offset_in_page(gpa);
2133 
2134         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2135 }
2136 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2137 
2138 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2139                                void *data, unsigned long len)
2140 {
2141         gfn_t gfn = gpa >> PAGE_SHIFT;
2142         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2143         int offset = offset_in_page(gpa);
2144 
2145         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2146 }
2147 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2148 
2149 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2150                                   const void *data, int offset, int len)
2151 {
2152         int r;
2153         unsigned long addr;
2154 
2155         addr = gfn_to_hva_memslot(memslot, gfn);
2156         if (kvm_is_error_hva(addr))
2157                 return -EFAULT;
2158         r = __copy_to_user((void __user *)addr + offset, data, len);
2159         if (r)
2160                 return -EFAULT;
2161         mark_page_dirty_in_slot(memslot, gfn);
2162         return 0;
2163 }
2164 
2165 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2166                          const void *data, int offset, int len)
2167 {
2168         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2169 
2170         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2171 }
2172 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2173 
2174 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2175                               const void *data, int offset, int len)
2176 {
2177         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2178 
2179         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2180 }
2181 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2182 
2183 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2184                     unsigned long len)
2185 {
2186         gfn_t gfn = gpa >> PAGE_SHIFT;
2187         int seg;
2188         int offset = offset_in_page(gpa);
2189         int ret;
2190 
2191         while ((seg = next_segment(len, offset)) != 0) {
2192                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2193                 if (ret < 0)
2194                         return ret;
2195                 offset = 0;
2196                 len -= seg;
2197                 data += seg;
2198                 ++gfn;
2199         }
2200         return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(kvm_write_guest);
2203 
2204 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2205                          unsigned long len)
2206 {
2207         gfn_t gfn = gpa >> PAGE_SHIFT;
2208         int seg;
2209         int offset = offset_in_page(gpa);
2210         int ret;
2211 
2212         while ((seg = next_segment(len, offset)) != 0) {
2213                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2214                 if (ret < 0)
2215                         return ret;
2216                 offset = 0;
2217                 len -= seg;
2218                 data += seg;
2219                 ++gfn;
2220         }
2221         return 0;
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2224 
2225 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2226                                        struct gfn_to_hva_cache *ghc,
2227                                        gpa_t gpa, unsigned long len)
2228 {
2229         int offset = offset_in_page(gpa);
2230         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2231         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2232         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2233         gfn_t nr_pages_avail;
2234         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2235 
2236         ghc->gpa = gpa;
2237         ghc->generation = slots->generation;
2238         ghc->len = len;
2239         ghc->hva = KVM_HVA_ERR_BAD;
2240 
2241         /*
2242          * If the requested region crosses two memslots, we still
2243          * verify that the entire region is valid here.
2244          */
2245         while (!r && start_gfn <= end_gfn) {
2246                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2247                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2248                                            &nr_pages_avail);
2249                 if (kvm_is_error_hva(ghc->hva))
2250                         r = -EFAULT;
2251                 start_gfn += nr_pages_avail;
2252         }
2253 
2254         /* Use the slow path for cross page reads and writes. */
2255         if (!r && nr_pages_needed == 1)
2256                 ghc->hva += offset;
2257         else
2258                 ghc->memslot = NULL;
2259 
2260         return r;
2261 }
2262 
2263 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2264                               gpa_t gpa, unsigned long len)
2265 {
2266         struct kvm_memslots *slots = kvm_memslots(kvm);
2267         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2270 
2271 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2272                                   void *data, unsigned int offset,
2273                                   unsigned long len)
2274 {
2275         struct kvm_memslots *slots = kvm_memslots(kvm);
2276         int r;
2277         gpa_t gpa = ghc->gpa + offset;
2278 
2279         BUG_ON(len + offset > ghc->len);
2280 
2281         if (slots->generation != ghc->generation)
2282                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2283 
2284         if (kvm_is_error_hva(ghc->hva))
2285                 return -EFAULT;
2286 
2287         if (unlikely(!ghc->memslot))
2288                 return kvm_write_guest(kvm, gpa, data, len);
2289 
2290         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2291         if (r)
2292                 return -EFAULT;
2293         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2294 
2295         return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2298 
2299 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2300                            void *data, unsigned long len)
2301 {
2302         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2303 }
2304 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2305 
2306 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2307                            void *data, unsigned long len)
2308 {
2309         struct kvm_memslots *slots = kvm_memslots(kvm);
2310         int r;
2311 
2312         BUG_ON(len > ghc->len);
2313 
2314         if (slots->generation != ghc->generation)
2315                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2316 
2317         if (kvm_is_error_hva(ghc->hva))
2318                 return -EFAULT;
2319 
2320         if (unlikely(!ghc->memslot))
2321                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2322 
2323         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2324         if (r)
2325                 return -EFAULT;
2326 
2327         return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2330 
2331 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2332 {
2333         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2334 
2335         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2336 }
2337 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2338 
2339 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2340 {
2341         gfn_t gfn = gpa >> PAGE_SHIFT;
2342         int seg;
2343         int offset = offset_in_page(gpa);
2344         int ret;
2345 
2346         while ((seg = next_segment(len, offset)) != 0) {
2347                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2348                 if (ret < 0)
2349                         return ret;
2350                 offset = 0;
2351                 len -= seg;
2352                 ++gfn;
2353         }
2354         return 0;
2355 }
2356 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2357 
2358 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2359                                     gfn_t gfn)
2360 {
2361         if (memslot && memslot->dirty_bitmap) {
2362                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2363 
2364                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2365         }
2366 }
2367 
2368 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2369 {
2370         struct kvm_memory_slot *memslot;
2371 
2372         memslot = gfn_to_memslot(kvm, gfn);
2373         mark_page_dirty_in_slot(memslot, gfn);
2374 }
2375 EXPORT_SYMBOL_GPL(mark_page_dirty);
2376 
2377 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2378 {
2379         struct kvm_memory_slot *memslot;
2380 
2381         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2382         mark_page_dirty_in_slot(memslot, gfn);
2383 }
2384 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2385 
2386 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2387 {
2388         if (!vcpu->sigset_active)
2389                 return;
2390 
2391         /*
2392          * This does a lockless modification of ->real_blocked, which is fine
2393          * because, only current can change ->real_blocked and all readers of
2394          * ->real_blocked don't care as long ->real_blocked is always a subset
2395          * of ->blocked.
2396          */
2397         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2398 }
2399 
2400 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2401 {
2402         if (!vcpu->sigset_active)
2403                 return;
2404 
2405         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2406         sigemptyset(&current->real_blocked);
2407 }
2408 
2409 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2410 {
2411         unsigned int old, val, grow, grow_start;
2412 
2413         old = val = vcpu->halt_poll_ns;
2414         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2415         grow = READ_ONCE(halt_poll_ns_grow);
2416         if (!grow)
2417                 goto out;
2418 
2419         val *= grow;
2420         if (val < grow_start)
2421                 val = grow_start;
2422 
2423         if (val > halt_poll_ns)
2424                 val = halt_poll_ns;
2425 
2426         vcpu->halt_poll_ns = val;
2427 out:
2428         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2429 }
2430 
2431 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2432 {
2433         unsigned int old, val, shrink;
2434 
2435         old = val = vcpu->halt_poll_ns;
2436         shrink = READ_ONCE(halt_poll_ns_shrink);
2437         if (shrink == 0)
2438                 val = 0;
2439         else
2440                 val /= shrink;
2441 
2442         vcpu->halt_poll_ns = val;
2443         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2444 }
2445 
2446 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2447 {
2448         int ret = -EINTR;
2449         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2450 
2451         if (kvm_arch_vcpu_runnable(vcpu)) {
2452                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2453                 goto out;
2454         }
2455         if (kvm_cpu_has_pending_timer(vcpu))
2456                 goto out;
2457         if (signal_pending(current))
2458                 goto out;
2459 
2460         ret = 0;
2461 out:
2462         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2463         return ret;
2464 }
2465 
2466 /*
2467  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2468  */
2469 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2470 {
2471         ktime_t start, cur;
2472         DECLARE_SWAITQUEUE(wait);
2473         bool waited = false;
2474         u64 block_ns;
2475 
2476         kvm_arch_vcpu_blocking(vcpu);
2477 
2478         start = cur = ktime_get();
2479         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2480                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2481 
2482                 ++vcpu->stat.halt_attempted_poll;
2483                 do {
2484                         /*
2485                          * This sets KVM_REQ_UNHALT if an interrupt
2486                          * arrives.
2487                          */
2488                         if (kvm_vcpu_check_block(vcpu) < 0) {
2489                                 ++vcpu->stat.halt_successful_poll;
2490                                 if (!vcpu_valid_wakeup(vcpu))
2491                                         ++vcpu->stat.halt_poll_invalid;
2492                                 goto out;
2493                         }
2494                         cur = ktime_get();
2495                 } while (single_task_running() && ktime_before(cur, stop));
2496         }
2497 
2498         for (;;) {
2499                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2500 
2501                 if (kvm_vcpu_check_block(vcpu) < 0)
2502                         break;
2503 
2504                 waited = true;
2505                 schedule();
2506         }
2507 
2508         finish_swait(&vcpu->wq, &wait);
2509         cur = ktime_get();
2510 out:
2511         kvm_arch_vcpu_unblocking(vcpu);
2512         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2513 
2514         if (!kvm_arch_no_poll(vcpu)) {
2515                 if (!vcpu_valid_wakeup(vcpu)) {
2516                         shrink_halt_poll_ns(vcpu);
2517                 } else if (halt_poll_ns) {
2518                         if (block_ns <= vcpu->halt_poll_ns)
2519                                 ;
2520                         /* we had a long block, shrink polling */
2521                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2522                                 shrink_halt_poll_ns(vcpu);
2523                         /* we had a short halt and our poll time is too small */
2524                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2525                                 block_ns < halt_poll_ns)
2526                                 grow_halt_poll_ns(vcpu);
2527                 } else {
2528                         vcpu->halt_poll_ns = 0;
2529                 }
2530         }
2531 
2532         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2533         kvm_arch_vcpu_block_finish(vcpu);
2534 }
2535 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2536 
2537 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2538 {
2539         struct swait_queue_head *wqp;
2540 
2541         wqp = kvm_arch_vcpu_wq(vcpu);
2542         if (swq_has_sleeper(wqp)) {
2543                 swake_up_one(wqp);
2544                 WRITE_ONCE(vcpu->ready, true);
2545                 ++vcpu->stat.halt_wakeup;
2546                 return true;
2547         }
2548 
2549         return false;
2550 }
2551 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2552 
2553 #ifndef CONFIG_S390
2554 /*
2555  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2556  */
2557 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2558 {
2559         int me;
2560         int cpu = vcpu->cpu;
2561 
2562         if (kvm_vcpu_wake_up(vcpu))
2563                 return;
2564 
2565         me = get_cpu();
2566         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2567                 if (kvm_arch_vcpu_should_kick(vcpu))
2568                         smp_send_reschedule(cpu);
2569         put_cpu();
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2572 #endif /* !CONFIG_S390 */
2573 
2574 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2575 {
2576         struct pid *pid;
2577         struct task_struct *task = NULL;
2578         int ret = 0;
2579 
2580         rcu_read_lock();
2581         pid = rcu_dereference(target->pid);
2582         if (pid)
2583                 task = get_pid_task(pid, PIDTYPE_PID);
2584         rcu_read_unlock();
2585         if (!task)
2586                 return ret;
2587         ret = yield_to(task, 1);
2588         put_task_struct(task);
2589 
2590         return ret;
2591 }
2592 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2593 
2594 /*
2595  * Helper that checks whether a VCPU is eligible for directed yield.
2596  * Most eligible candidate to yield is decided by following heuristics:
2597  *
2598  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2599  *  (preempted lock holder), indicated by @in_spin_loop.
2600  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2601  *
2602  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2603  *  chance last time (mostly it has become eligible now since we have probably
2604  *  yielded to lockholder in last iteration. This is done by toggling
2605  *  @dy_eligible each time a VCPU checked for eligibility.)
2606  *
2607  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2608  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2609  *  burning. Giving priority for a potential lock-holder increases lock
2610  *  progress.
2611  *
2612  *  Since algorithm is based on heuristics, accessing another VCPU data without
2613  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2614  *  and continue with next VCPU and so on.
2615  */
2616 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2617 {
2618 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2619         bool eligible;
2620 
2621         eligible = !vcpu->spin_loop.in_spin_loop ||
2622                     vcpu->spin_loop.dy_eligible;
2623 
2624         if (vcpu->spin_loop.in_spin_loop)
2625                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2626 
2627         return eligible;
2628 #else
2629         return true;
2630 #endif
2631 }
2632 
2633 /*
2634  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2635  * a vcpu_load/vcpu_put pair.  However, for most architectures
2636  * kvm_arch_vcpu_runnable does not require vcpu_load.
2637  */
2638 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2639 {
2640         return kvm_arch_vcpu_runnable(vcpu);
2641 }
2642 
2643 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2644 {
2645         if (kvm_arch_dy_runnable(vcpu))
2646                 return true;
2647 
2648 #ifdef CONFIG_KVM_ASYNC_PF
2649         if (!list_empty_careful(&vcpu->async_pf.done))
2650                 return true;
2651 #endif
2652 
2653         return false;
2654 }
2655 
2656 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2657 {
2658         struct kvm *kvm = me->kvm;
2659         struct kvm_vcpu *vcpu;
2660         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2661         int yielded = 0;
2662         int try = 3;
2663         int pass;
2664         int i;
2665 
2666         kvm_vcpu_set_in_spin_loop(me, true);
2667         /*
2668          * We boost the priority of a VCPU that is runnable but not
2669          * currently running, because it got preempted by something
2670          * else and called schedule in __vcpu_run.  Hopefully that
2671          * VCPU is holding the lock that we need and will release it.
2672          * We approximate round-robin by starting at the last boosted VCPU.
2673          */
2674         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2675                 kvm_for_each_vcpu(i, vcpu, kvm) {
2676                         if (!pass && i <= last_boosted_vcpu) {
2677                                 i = last_boosted_vcpu;
2678                                 continue;
2679                         } else if (pass && i > last_boosted_vcpu)
2680                                 break;
2681                         if (!READ_ONCE(vcpu->ready))
2682                                 continue;
2683                         if (vcpu == me)
2684                                 continue;
2685                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2686                                 continue;
2687                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2688                                 !kvm_arch_vcpu_in_kernel(vcpu))
2689                                 continue;
2690                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2691                                 continue;
2692 
2693                         yielded = kvm_vcpu_yield_to(vcpu);
2694                         if (yielded > 0) {
2695                                 kvm->last_boosted_vcpu = i;
2696                                 break;
2697                         } else if (yielded < 0) {
2698                                 try--;
2699                                 if (!try)
2700                                         break;
2701                         }
2702                 }
2703         }
2704         kvm_vcpu_set_in_spin_loop(me, false);
2705 
2706         /* Ensure vcpu is not eligible during next spinloop */
2707         kvm_vcpu_set_dy_eligible(me, false);
2708 }
2709 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2710 
2711 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2712 {
2713         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2714         struct page *page;
2715 
2716         if (vmf->pgoff == 0)
2717                 page = virt_to_page(vcpu->run);
2718 #ifdef CONFIG_X86
2719         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2720                 page = virt_to_page(vcpu->arch.pio_data);
2721 #endif
2722 #ifdef CONFIG_KVM_MMIO
2723         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2724                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2725 #endif
2726         else
2727                 return kvm_arch_vcpu_fault(vcpu, vmf);
2728         get_page(page);
2729         vmf->page = page;
2730         return 0;
2731 }
2732 
2733 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2734         .fault = kvm_vcpu_fault,
2735 };
2736 
2737 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2738 {
2739         vma->vm_ops = &kvm_vcpu_vm_ops;
2740         return 0;
2741 }
2742 
2743 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2744 {
2745         struct kvm_vcpu *vcpu = filp->private_data;
2746 
2747         debugfs_remove_recursive(vcpu->debugfs_dentry);
2748         kvm_put_kvm(vcpu->kvm);
2749         return 0;
2750 }
2751 
2752 static struct file_operations kvm_vcpu_fops = {
2753         .release        = kvm_vcpu_release,
2754         .unlocked_ioctl = kvm_vcpu_ioctl,
2755         .mmap           = kvm_vcpu_mmap,
2756         .llseek         = noop_llseek,
2757         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2758 };
2759 
2760 /*
2761  * Allocates an inode for the vcpu.
2762  */
2763 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2764 {
2765         char name[8 + 1 + ITOA_MAX_LEN + 1];
2766 
2767         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2768         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2769 }
2770 
2771 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2772 {
2773 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2774         char dir_name[ITOA_MAX_LEN * 2];
2775 
2776         if (!debugfs_initialized())
2777                 return;
2778 
2779         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2780         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2781                                                   vcpu->kvm->debugfs_dentry);
2782 
2783         kvm_arch_create_vcpu_debugfs(vcpu);
2784 #endif
2785 }
2786 
2787 /*
2788  * Creates some virtual cpus.  Good luck creating more than one.
2789  */
2790 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2791 {
2792         int r;
2793         struct kvm_vcpu *vcpu;
2794 
2795         if (id >= KVM_MAX_VCPU_ID)
2796                 return -EINVAL;
2797 
2798         mutex_lock(&kvm->lock);
2799         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2800                 mutex_unlock(&kvm->lock);
2801                 return -EINVAL;
2802         }
2803 
2804         kvm->created_vcpus++;
2805         mutex_unlock(&kvm->lock);
2806 
2807         vcpu = kvm_arch_vcpu_create(kvm, id);
2808         if (IS_ERR(vcpu)) {
2809                 r = PTR_ERR(vcpu);
2810                 goto vcpu_decrement;
2811         }
2812 
2813         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2814 
2815         r = kvm_arch_vcpu_setup(vcpu);
2816         if (r)
2817                 goto vcpu_destroy;
2818 
2819         kvm_create_vcpu_debugfs(vcpu);
2820 
2821         mutex_lock(&kvm->lock);
2822         if (kvm_get_vcpu_by_id(kvm, id)) {
2823                 r = -EEXIST;
2824                 goto unlock_vcpu_destroy;
2825         }
2826 
2827         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2828 
2829         /* Now it's all set up, let userspace reach it */
2830         kvm_get_kvm(kvm);
2831         r = create_vcpu_fd(vcpu);
2832         if (r < 0) {
2833                 kvm_put_kvm(kvm);
2834                 goto unlock_vcpu_destroy;
2835         }
2836 
2837         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2838 
2839         /*
2840          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2841          * before kvm->online_vcpu's incremented value.
2842          */
2843         smp_wmb();
2844         atomic_inc(&kvm->online_vcpus);
2845 
2846         mutex_unlock(&kvm->lock);
2847         kvm_arch_vcpu_postcreate(vcpu);
2848         return r;
2849 
2850 unlock_vcpu_destroy:
2851         mutex_unlock(&kvm->lock);
2852         debugfs_remove_recursive(vcpu->debugfs_dentry);
2853 vcpu_destroy:
2854         kvm_arch_vcpu_destroy(vcpu);
2855 vcpu_decrement:
2856         mutex_lock(&kvm->lock);
2857         kvm->created_vcpus--;
2858         mutex_unlock(&kvm->lock);
2859         return r;
2860 }
2861 
2862 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2863 {
2864         if (sigset) {
2865                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2866                 vcpu->sigset_active = 1;
2867                 vcpu->sigset = *sigset;
2868         } else
2869                 vcpu->sigset_active = 0;
2870         return 0;
2871 }
2872 
2873 static long kvm_vcpu_ioctl(struct file *filp,
2874                            unsigned int ioctl, unsigned long arg)
2875 {
2876         struct kvm_vcpu *vcpu = filp->private_data;
2877         void __user *argp = (void __user *)arg;
2878         int r;
2879         struct kvm_fpu *fpu = NULL;
2880         struct kvm_sregs *kvm_sregs = NULL;
2881 
2882         if (vcpu->kvm->mm != current->mm)
2883                 return -EIO;
2884 
2885         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2886                 return -EINVAL;
2887 
2888         /*
2889          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2890          * execution; mutex_lock() would break them.
2891          */
2892         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2893         if (r != -ENOIOCTLCMD)
2894                 return r;
2895 
2896         if (mutex_lock_killable(&vcpu->mutex))
2897                 return -EINTR;
2898         switch (ioctl) {
2899         case KVM_RUN: {
2900                 struct pid *oldpid;
2901                 r = -EINVAL;
2902                 if (arg)
2903                         goto out;
2904                 oldpid = rcu_access_pointer(vcpu->pid);
2905                 if (unlikely(oldpid != task_pid(current))) {
2906                         /* The thread running this VCPU changed. */
2907                         struct pid *newpid;
2908 
2909                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2910                         if (r)
2911                                 break;
2912 
2913                         newpid = get_task_pid(current, PIDTYPE_PID);
2914                         rcu_assign_pointer(vcpu->pid, newpid);
2915                         if (oldpid)
2916                                 synchronize_rcu();
2917                         put_pid(oldpid);
2918                 }
2919                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2920                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2921                 break;
2922         }
2923         case KVM_GET_REGS: {
2924                 struct kvm_regs *kvm_regs;
2925 
2926                 r = -ENOMEM;
2927                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2928                 if (!kvm_regs)
2929                         goto out;
2930                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2931                 if (r)
2932                         goto out_free1;
2933                 r = -EFAULT;
2934                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2935                         goto out_free1;
2936                 r = 0;
2937 out_free1:
2938                 kfree(kvm_regs);
2939                 break;
2940         }
2941         case KVM_SET_REGS: {
2942                 struct kvm_regs *kvm_regs;
2943 
2944                 r = -ENOMEM;
2945                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2946                 if (IS_ERR(kvm_regs)) {
2947                         r = PTR_ERR(kvm_regs);
2948                         goto out;
2949                 }
2950                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2951                 kfree(kvm_regs);
2952                 break;
2953         }
2954         case KVM_GET_SREGS: {
2955                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2956                                     GFP_KERNEL_ACCOUNT);
2957                 r = -ENOMEM;
2958                 if (!kvm_sregs)
2959                         goto out;
2960                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2961                 if (r)
2962                         goto out;
2963                 r = -EFAULT;
2964                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2965                         goto out;
2966                 r = 0;
2967                 break;
2968         }
2969         case KVM_SET_SREGS: {
2970                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2971                 if (IS_ERR(kvm_sregs)) {
2972                         r = PTR_ERR(kvm_sregs);
2973                         kvm_sregs = NULL;
2974                         goto out;
2975                 }
2976                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2977                 break;
2978         }
2979         case KVM_GET_MP_STATE: {
2980                 struct kvm_mp_state mp_state;
2981 
2982                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2983                 if (r)
2984                         goto out;
2985                 r = -EFAULT;
2986                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2987                         goto out;
2988                 r = 0;
2989                 break;
2990         }
2991         case KVM_SET_MP_STATE: {
2992                 struct kvm_mp_state mp_state;
2993 
2994                 r = -EFAULT;
2995                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2996                         goto out;
2997                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2998                 break;
2999         }
3000         case KVM_TRANSLATE: {
3001                 struct kvm_translation tr;
3002 
3003                 r = -EFAULT;
3004                 if (copy_from_user(&tr, argp, sizeof(tr)))
3005                         goto out;
3006                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3007                 if (r)
3008                         goto out;
3009                 r = -EFAULT;
3010                 if (copy_to_user(argp, &tr, sizeof(tr)))
3011                         goto out;
3012                 r = 0;
3013                 break;
3014         }
3015         case KVM_SET_GUEST_DEBUG: {
3016                 struct kvm_guest_debug dbg;
3017 
3018                 r = -EFAULT;
3019                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3020                         goto out;
3021                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3022                 break;
3023         }
3024         case KVM_SET_SIGNAL_MASK: {
3025                 struct kvm_signal_mask __user *sigmask_arg = argp;
3026                 struct kvm_signal_mask kvm_sigmask;
3027                 sigset_t sigset, *p;
3028 
3029                 p = NULL;
3030                 if (argp) {
3031                         r = -EFAULT;
3032                         if (copy_from_user(&kvm_sigmask, argp,
3033                                            sizeof(kvm_sigmask)))
3034                                 goto out;
3035                         r = -EINVAL;
3036                         if (kvm_sigmask.len != sizeof(sigset))
3037                                 goto out;
3038                         r = -EFAULT;
3039                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3040                                            sizeof(sigset)))
3041                                 goto out;
3042                         p = &sigset;
3043                 }
3044                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3045                 break;
3046         }
3047         case KVM_GET_FPU: {
3048                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3049                 r = -ENOMEM;
3050                 if (!fpu)
3051                         goto out;
3052                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3053                 if (r)
3054                         goto out;
3055                 r = -EFAULT;
3056                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3057                         goto out;
3058                 r = 0;
3059                 break;
3060         }
3061         case KVM_SET_FPU: {
3062                 fpu = memdup_user(argp, sizeof(*fpu));
3063                 if (IS_ERR(fpu)) {
3064                         r = PTR_ERR(fpu);
3065                         fpu = NULL;
3066                         goto out;
3067                 }
3068                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3069                 break;
3070         }
3071         default:
3072                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3073         }
3074 out:
3075         mutex_unlock(&vcpu->mutex);
3076         kfree(fpu);
3077         kfree(kvm_sregs);
3078         return r;
3079 }
3080 
3081 #ifdef CONFIG_KVM_COMPAT
3082 static long kvm_vcpu_compat_ioctl(struct file *filp,
3083                                   unsigned int ioctl, unsigned long arg)
3084 {
3085         struct kvm_vcpu *vcpu = filp->private_data;
3086         void __user *argp = compat_ptr(arg);
3087         int r;
3088 
3089         if (vcpu->kvm->mm != current->mm)
3090                 return -EIO;
3091 
3092         switch (ioctl) {
3093         case KVM_SET_SIGNAL_MASK: {
3094                 struct kvm_signal_mask __user *sigmask_arg = argp;
3095                 struct kvm_signal_mask kvm_sigmask;
3096                 sigset_t sigset;
3097 
3098                 if (argp) {
3099                         r = -EFAULT;
3100                         if (copy_from_user(&kvm_sigmask, argp,
3101                                            sizeof(kvm_sigmask)))
3102                                 goto out;
3103                         r = -EINVAL;
3104                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3105                                 goto out;
3106                         r = -EFAULT;
3107                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3108                                 goto out;
3109                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3110                 } else
3111                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3112                 break;
3113         }
3114         default:
3115                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3116         }
3117 
3118 out:
3119         return r;
3120 }
3121 #endif
3122 
3123 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3124 {
3125         struct kvm_device *dev = filp->private_data;
3126 
3127         if (dev->ops->mmap)
3128                 return dev->ops->mmap(dev, vma);
3129 
3130         return -ENODEV;
3131 }
3132 
3133 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3134                                  int (*accessor)(struct kvm_device *dev,
3135                                                  struct kvm_device_attr *attr),
3136                                  unsigned long arg)
3137 {
3138         struct kvm_device_attr attr;
3139 
3140         if (!accessor)
3141                 return -EPERM;
3142 
3143         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3144                 return -EFAULT;
3145 
3146         return accessor(dev, &attr);
3147 }
3148 
3149 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3150                              unsigned long arg)
3151 {
3152         struct kvm_device *dev = filp->private_data;
3153 
3154         if (dev->kvm->mm != current->mm)
3155                 return -EIO;
3156 
3157         switch (ioctl) {
3158         case KVM_SET_DEVICE_ATTR:
3159                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3160         case KVM_GET_DEVICE_ATTR:
3161                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3162         case KVM_HAS_DEVICE_ATTR:
3163                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3164         default:
3165                 if (dev->ops->ioctl)
3166                         return dev->ops->ioctl(dev, ioctl, arg);
3167 
3168                 return -ENOTTY;
3169         }
3170 }
3171 
3172 static int kvm_device_release(struct inode *inode, struct file *filp)
3173 {
3174         struct kvm_device *dev = filp->private_data;
3175         struct kvm *kvm = dev->kvm;
3176 
3177         if (dev->ops->release) {
3178                 mutex_lock(&kvm->lock);
3179                 list_del(&dev->vm_node);
3180                 dev->ops->release(dev);
3181                 mutex_unlock(&kvm->lock);
3182         }
3183 
3184         kvm_put_kvm(kvm);
3185         return 0;
3186 }
3187 
3188 static const struct file_operations kvm_device_fops = {
3189         .unlocked_ioctl = kvm_device_ioctl,
3190         .release = kvm_device_release,
3191         KVM_COMPAT(kvm_device_ioctl),
3192         .mmap = kvm_device_mmap,
3193 };
3194 
3195 struct kvm_device *kvm_device_from_filp(struct file *filp)
3196 {
3197         if (filp->f_op != &kvm_device_fops)
3198                 return NULL;
3199 
3200         return filp->private_data;
3201 }
3202 
3203 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3204 #ifdef CONFIG_KVM_MPIC
3205         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3206         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3207 #endif
3208 };
3209 
3210 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3211 {
3212         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3213                 return -ENOSPC;
3214 
3215         if (kvm_device_ops_table[type] != NULL)
3216                 return -EEXIST;
3217 
3218         kvm_device_ops_table[type] = ops;
3219         return 0;
3220 }
3221 
3222 void kvm_unregister_device_ops(u32 type)
3223 {
3224         if (kvm_device_ops_table[type] != NULL)
3225                 kvm_device_ops_table[type] = NULL;
3226 }
3227 
3228 static int kvm_ioctl_create_device(struct kvm *kvm,
3229                                    struct kvm_create_device *cd)
3230 {
3231         struct kvm_device_ops *ops = NULL;
3232         struct kvm_device *dev;
3233         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3234         int type;
3235         int ret;
3236 
3237         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3238                 return -ENODEV;
3239 
3240         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3241         ops = kvm_device_ops_table[type];
3242         if (ops == NULL)
3243                 return -ENODEV;
3244 
3245         if (test)
3246                 return 0;
3247 
3248         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3249         if (!dev)
3250                 return -ENOMEM;
3251 
3252         dev->ops = ops;
3253         dev->kvm = kvm;
3254 
3255         mutex_lock(&kvm->lock);
3256         ret = ops->create(dev, type);
3257         if (ret < 0) {
3258                 mutex_unlock(&kvm->lock);
3259                 kfree(dev);
3260                 return ret;
3261         }
3262         list_add(&dev->vm_node, &kvm->devices);
3263         mutex_unlock(&kvm->lock);
3264 
3265         if (ops->init)
3266                 ops->init(dev);
3267 
3268         kvm_get_kvm(kvm);
3269         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3270         if (ret < 0) {
3271                 kvm_put_kvm(kvm);
3272                 mutex_lock(&kvm->lock);
3273                 list_del(&dev->vm_node);
3274                 mutex_unlock(&kvm->lock);
3275                 ops->destroy(dev);
3276                 return ret;
3277         }
3278 
3279         cd->fd = ret;
3280         return 0;
3281 }
3282 
3283 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3284 {
3285         switch (arg) {
3286         case KVM_CAP_USER_MEMORY:
3287         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3288         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3289         case KVM_CAP_INTERNAL_ERROR_DATA:
3290 #ifdef CONFIG_HAVE_KVM_MSI
3291         case KVM_CAP_SIGNAL_MSI:
3292 #endif
3293 #ifdef CONFIG_HAVE_KVM_IRQFD
3294         case KVM_CAP_IRQFD:
3295         case KVM_CAP_IRQFD_RESAMPLE:
3296 #endif
3297         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3298         case KVM_CAP_CHECK_EXTENSION_VM:
3299         case KVM_CAP_ENABLE_CAP_VM:
3300 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3301         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3302 #endif
3303                 return 1;
3304 #ifdef CONFIG_KVM_MMIO
3305         case KVM_CAP_COALESCED_MMIO:
3306                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3307         case KVM_CAP_COALESCED_PIO:
3308                 return 1;
3309 #endif
3310 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3311         case KVM_CAP_IRQ_ROUTING:
3312                 return KVM_MAX_IRQ_ROUTES;
3313 #endif
3314 #if KVM_ADDRESS_SPACE_NUM > 1
3315         case KVM_CAP_MULTI_ADDRESS_SPACE:
3316                 return KVM_ADDRESS_SPACE_NUM;
3317 #endif
3318         case KVM_CAP_NR_MEMSLOTS:
3319                 return KVM_USER_MEM_SLOTS;
3320         default:
3321                 break;
3322         }
3323         return kvm_vm_ioctl_check_extension(kvm, arg);
3324 }
3325 
3326 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3327                                                   struct kvm_enable_cap *cap)
3328 {
3329         return -EINVAL;
3330 }
3331 
3332 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3333                                            struct kvm_enable_cap *cap)
3334 {
3335         switch (cap->cap) {
3336 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3337         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3338                 if (cap->flags || (cap->args[0] & ~1))
3339                         return -EINVAL;
3340                 kvm->manual_dirty_log_protect = cap->args[0];
3341                 return 0;
3342 #endif
3343         default:
3344                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3345         }
3346 }
3347 
3348 static long kvm_vm_ioctl(struct file *filp,
3349                            unsigned int ioctl, unsigned long arg)
3350 {
3351         struct kvm *kvm = filp->private_data;
3352         void __user *argp = (void __user *)arg;
3353         int r;
3354 
3355         if (kvm->mm != current->mm)
3356                 return -EIO;
3357         switch (ioctl) {
3358         case KVM_CREATE_VCPU:
3359                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3360                 break;
3361         case KVM_ENABLE_CAP: {
3362                 struct kvm_enable_cap cap;
3363 
3364                 r = -EFAULT;
3365                 if (copy_from_user(&cap, argp, sizeof(cap)))
3366                         goto out;
3367                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3368                 break;
3369         }
3370         case KVM_SET_USER_MEMORY_REGION: {
3371                 struct kvm_userspace_memory_region kvm_userspace_mem;
3372 
3373                 r = -EFAULT;
3374                 if (copy_from_user(&kvm_userspace_mem, argp,
3375                                                 sizeof(kvm_userspace_mem)))
3376                         goto out;
3377 
3378                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3379                 break;
3380         }
3381         case KVM_GET_DIRTY_LOG: {
3382                 struct kvm_dirty_log log;
3383 
3384                 r = -EFAULT;
3385                 if (copy_from_user(&log, argp, sizeof(log)))
3386                         goto out;
3387                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3388                 break;
3389         }
3390 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3391         case KVM_CLEAR_DIRTY_LOG: {
3392                 struct kvm_clear_dirty_log log;
3393 
3394                 r = -EFAULT;
3395                 if (copy_from_user(&log, argp, sizeof(log)))
3396                         goto out;
3397                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3398                 break;
3399         }
3400 #endif
3401 #ifdef CONFIG_KVM_MMIO
3402         case KVM_REGISTER_COALESCED_MMIO: {
3403                 struct kvm_coalesced_mmio_zone zone;
3404 
3405                 r = -EFAULT;
3406                 if (copy_from_user(&zone, argp, sizeof(zone)))
3407                         goto out;
3408                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3409                 break;
3410         }
3411         case KVM_UNREGISTER_COALESCED_MMIO: {
3412                 struct kvm_coalesced_mmio_zone zone;
3413 
3414                 r = -EFAULT;
3415                 if (copy_from_user(&zone, argp, sizeof(zone)))
3416                         goto out;
3417                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3418                 break;
3419         }
3420 #endif
3421         case KVM_IRQFD: {
3422                 struct kvm_irqfd data;
3423 
3424                 r = -EFAULT;
3425                 if (copy_from_user(&data, argp, sizeof(data)))
3426                         goto out;
3427                 r = kvm_irqfd(kvm, &data);
3428                 break;
3429         }
3430         case KVM_IOEVENTFD: {
3431                 struct kvm_ioeventfd data;
3432 
3433                 r = -EFAULT;
3434                 if (copy_from_user(&data, argp, sizeof(data)))
3435                         goto out;
3436                 r = kvm_ioeventfd(kvm, &data);
3437                 break;
3438         }
3439 #ifdef CONFIG_HAVE_KVM_MSI
3440         case KVM_SIGNAL_MSI: {
3441                 struct kvm_msi msi;
3442 
3443                 r = -EFAULT;
3444                 if (copy_from_user(&msi, argp, sizeof(msi)))
3445                         goto out;
3446                 r = kvm_send_userspace_msi(kvm, &msi);
3447                 break;
3448         }
3449 #endif
3450 #ifdef __KVM_HAVE_IRQ_LINE
3451         case KVM_IRQ_LINE_STATUS:
3452         case KVM_IRQ_LINE: {
3453                 struct kvm_irq_level irq_event;
3454 
3455                 r = -EFAULT;
3456                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3457                         goto out;
3458 
3459                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3460                                         ioctl == KVM_IRQ_LINE_STATUS);
3461                 if (r)
3462                         goto out;
3463 
3464                 r = -EFAULT;
3465                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3466                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3467                                 goto out;
3468                 }
3469 
3470                 r = 0;
3471                 break;
3472         }
3473 #endif
3474 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3475         case KVM_SET_GSI_ROUTING: {
3476                 struct kvm_irq_routing routing;
3477                 struct kvm_irq_routing __user *urouting;
3478                 struct kvm_irq_routing_entry *entries = NULL;
3479 
3480                 r = -EFAULT;
3481                 if (copy_from_user(&routing, argp, sizeof(routing)))
3482                         goto out;
3483                 r = -EINVAL;
3484                 if (!kvm_arch_can_set_irq_routing(kvm))
3485                         goto out;
3486                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3487                         goto out;
3488                 if (routing.flags)
3489                         goto out;
3490                 if (routing.nr) {
3491                         r = -ENOMEM;
3492                         entries = vmalloc(array_size(sizeof(*entries),
3493                                                      routing.nr));
3494                         if (!entries)
3495                                 goto out;
3496                         r = -EFAULT;
3497                         urouting = argp;
3498                         if (copy_from_user(entries, urouting->entries,
3499                                            routing.nr * sizeof(*entries)))
3500                                 goto out_free_irq_routing;
3501                 }
3502                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3503                                         routing.flags);
3504 out_free_irq_routing:
3505                 vfree(entries);
3506                 break;
3507         }
3508 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3509         case KVM_CREATE_DEVICE: {
3510                 struct kvm_create_device cd;
3511 
3512                 r = -EFAULT;
3513                 if (copy_from_user(&cd, argp, sizeof(cd)))
3514                         goto out;
3515 
3516                 r = kvm_ioctl_create_device(kvm, &cd);
3517                 if (r)
3518                         goto out;
3519 
3520                 r = -EFAULT;
3521                 if (copy_to_user(argp, &cd, sizeof(cd)))
3522                         goto out;
3523 
3524                 r = 0;
3525                 break;
3526         }
3527         case KVM_CHECK_EXTENSION:
3528                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3529                 break;
3530         default:
3531                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3532         }
3533 out:
3534         return r;
3535 }
3536 
3537 #ifdef CONFIG_KVM_COMPAT
3538 struct compat_kvm_dirty_log {
3539         __u32 slot;
3540         __u32 padding1;
3541         union {
3542                 compat_uptr_t dirty_bitmap; /* one bit per page */
3543                 __u64 padding2;
3544         };
3545 };
3546 
3547 static long kvm_vm_compat_ioctl(struct file *filp,
3548                            unsigned int ioctl, unsigned long arg)
3549 {
3550         struct kvm *kvm = filp->private_data;
3551         int r;
3552 
3553         if (kvm->mm != current->mm)
3554                 return -EIO;
3555         switch (ioctl) {
3556         case KVM_GET_DIRTY_LOG: {
3557                 struct compat_kvm_dirty_log compat_log;
3558                 struct kvm_dirty_log log;
3559 
3560                 if (copy_from_user(&compat_log, (void __user *)arg,
3561                                    sizeof(compat_log)))
3562                         return -EFAULT;
3563                 log.slot         = compat_log.slot;
3564                 log.padding1     = compat_log.padding1;
3565                 log.padding2     = compat_log.padding2;
3566                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3567 
3568                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3569                 break;
3570         }
3571         default:
3572                 r = kvm_vm_ioctl(filp, ioctl, arg);
3573         }
3574         return r;
3575 }
3576 #endif
3577 
3578 static struct file_operations kvm_vm_fops = {
3579         .release        = kvm_vm_release,
3580         .unlocked_ioctl = kvm_vm_ioctl,
3581         .llseek         = noop_llseek,
3582         KVM_COMPAT(kvm_vm_compat_ioctl),
3583 };
3584 
3585 static int kvm_dev_ioctl_create_vm(unsigned long type)
3586 {
3587         int r;
3588         struct kvm *kvm;
3589         struct file *file;
3590 
3591         kvm = kvm_create_vm(type);
3592         if (IS_ERR(kvm))
3593                 return PTR_ERR(kvm);
3594 #ifdef CONFIG_KVM_MMIO
3595         r = kvm_coalesced_mmio_init(kvm);
3596         if (r < 0)
3597                 goto put_kvm;
3598 #endif
3599         r = get_unused_fd_flags(O_CLOEXEC);
3600         if (r < 0)
3601                 goto put_kvm;
3602 
3603         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3604         if (IS_ERR(file)) {
3605                 put_unused_fd(r);
3606                 r = PTR_ERR(file);
3607                 goto put_kvm;
3608         }
3609 
3610         /*
3611          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3612          * already set, with ->release() being kvm_vm_release().  In error
3613          * cases it will be called by the final fput(file) and will take
3614          * care of doing kvm_put_kvm(kvm).
3615          */
3616         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3617                 put_unused_fd(r);
3618                 fput(file);
3619                 return -ENOMEM;
3620         }
3621         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3622 
3623         fd_install(r, file);
3624         return r;
3625 
3626 put_kvm:
3627         kvm_put_kvm(kvm);
3628         return r;
3629 }
3630 
3631 static long kvm_dev_ioctl(struct file *filp,
3632                           unsigned int ioctl, unsigned long arg)
3633 {
3634         long r = -EINVAL;
3635 
3636         switch (ioctl) {
3637         case KVM_GET_API_VERSION:
3638                 if (arg)
3639                         goto out;
3640                 r = KVM_API_VERSION;
3641                 break;
3642         case KVM_CREATE_VM:
3643                 r = kvm_dev_ioctl_create_vm(arg);
3644                 break;
3645         case KVM_CHECK_EXTENSION:
3646                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3647                 break;
3648         case KVM_GET_VCPU_MMAP_SIZE:
3649                 if (arg)
3650                         goto out;
3651                 r = PAGE_SIZE;     /* struct kvm_run */
3652 #ifdef CONFIG_X86
3653                 r += PAGE_SIZE;    /* pio data page */
3654 #endif
3655 #ifdef CONFIG_KVM_MMIO
3656                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3657 #endif
3658                 break;
3659         case KVM_TRACE_ENABLE:
3660         case KVM_TRACE_PAUSE:
3661         case KVM_TRACE_DISABLE:
3662                 r = -EOPNOTSUPP;
3663                 break;
3664         default:
3665                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3666         }
3667 out:
3668         return r;
3669 }
3670 
3671 static struct file_operations kvm_chardev_ops = {
3672         .unlocked_ioctl = kvm_dev_ioctl,
3673         .llseek         = noop_llseek,
3674         KVM_COMPAT(kvm_dev_ioctl),
3675 };
3676 
3677 static struct miscdevice kvm_dev = {
3678         KVM_MINOR,
3679         "kvm",
3680         &kvm_chardev_ops,
3681 };
3682 
3683 static void hardware_enable_nolock(void *junk)
3684 {
3685         int cpu = raw_smp_processor_id();
3686         int r;
3687 
3688         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3689                 return;
3690 
3691         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3692 
3693         r = kvm_arch_hardware_enable();
3694 
3695         if (r) {
3696                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3697                 atomic_inc(&hardware_enable_failed);
3698                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3699         }
3700 }
3701 
3702 static int kvm_starting_cpu(unsigned int cpu)
3703 {
3704         raw_spin_lock(&kvm_count_lock);
3705         if (kvm_usage_count)
3706                 hardware_enable_nolock(NULL);
3707         raw_spin_unlock(&kvm_count_lock);
3708         return 0;
3709 }
3710 
3711 static void hardware_disable_nolock(void *junk)
3712 {
3713         int cpu = raw_smp_processor_id();
3714 
3715         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3716                 return;
3717         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3718         kvm_arch_hardware_disable();
3719 }
3720 
3721 static int kvm_dying_cpu(unsigned int cpu)
3722 {
3723         raw_spin_lock(&kvm_count_lock);
3724         if (kvm_usage_count)
3725                 hardware_disable_nolock(NULL);
3726         raw_spin_unlock(&kvm_count_lock);
3727         return 0;
3728 }
3729 
3730 static void hardware_disable_all_nolock(void)
3731 {
3732         BUG_ON(!kvm_usage_count);
3733 
3734         kvm_usage_count--;
3735         if (!kvm_usage_count)
3736                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3737 }
3738 
3739 static void hardware_disable_all(void)
3740 {
3741         raw_spin_lock(&kvm_count_lock);
3742         hardware_disable_all_nolock();
3743         raw_spin_unlock(&kvm_count_lock);
3744 }
3745 
3746 static int hardware_enable_all(void)
3747 {
3748         int r = 0;
3749 
3750         raw_spin_lock(&kvm_count_lock);
3751 
3752         kvm_usage_count++;
3753         if (kvm_usage_count == 1) {
3754                 atomic_set(&hardware_enable_failed, 0);
3755                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3756 
3757                 if (atomic_read(&hardware_enable_failed)) {
3758                         hardware_disable_all_nolock();
3759                         r = -EBUSY;
3760                 }
3761         }
3762 
3763         raw_spin_unlock(&kvm_count_lock);
3764 
3765         return r;
3766 }
3767 
3768 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3769                       void *v)
3770 {
3771         /*
3772          * Some (well, at least mine) BIOSes hang on reboot if
3773          * in vmx root mode.
3774          *
3775          * And Intel TXT required VMX off for all cpu when system shutdown.
3776          */
3777         pr_info("kvm: exiting hardware virtualization\n");
3778         kvm_rebooting = true;
3779         on_each_cpu(hardware_disable_nolock, NULL, 1);
3780         return NOTIFY_OK;
3781 }
3782 
3783 static struct notifier_block kvm_reboot_notifier = {
3784         .notifier_call = kvm_reboot,
3785         .priority = 0,
3786 };
3787 
3788 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3789 {
3790         int i;
3791 
3792         for (i = 0; i < bus->dev_count; i++) {
3793                 struct kvm_io_device *pos = bus->range[i].dev;
3794 
3795                 kvm_iodevice_destructor(pos);
3796         }
3797         kfree(bus);
3798 }
3799 
3800 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3801                                  const struct kvm_io_range *r2)
3802 {
3803         gpa_t addr1 = r1->addr;
3804         gpa_t addr2 = r2->addr;
3805 
3806         if (addr1 < addr2)
3807                 return -1;
3808 
3809         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3810          * accept any overlapping write.  Any order is acceptable for
3811          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3812          * we process all of them.
3813          */
3814         if (r2->len) {
3815                 addr1 += r1->len;
3816                 addr2 += r2->len;
3817         }
3818 
3819         if (addr1 > addr2)
3820                 return 1;
3821 
3822         return 0;
3823 }
3824 
3825 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3826 {
3827         return kvm_io_bus_cmp(p1, p2);
3828 }
3829 
3830 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3831                              gpa_t addr, int len)
3832 {
3833         struct kvm_io_range *range, key;
3834         int off;
3835 
3836         key = (struct kvm_io_range) {
3837                 .addr = addr,
3838                 .len = len,
3839         };
3840 
3841         range = bsearch(&key, bus->range, bus->dev_count,
3842                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3843         if (range == NULL)
3844                 return -ENOENT;
3845 
3846         off = range - bus->range;
3847 
3848         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3849                 off--;
3850 
3851         return off;
3852 }
3853 
3854 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3855                               struct kvm_io_range *range, const void *val)
3856 {
3857         int idx;
3858 
3859         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3860         if (idx < 0)
3861                 return -EOPNOTSUPP;
3862 
3863         while (idx < bus->dev_count &&
3864                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3865                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3866                                         range->len, val))
3867                         return idx;
3868                 idx++;
3869         }
3870 
3871         return -EOPNOTSUPP;
3872 }
3873 
3874 /* kvm_io_bus_write - called under kvm->slots_lock */
3875 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3876                      int len, const void *val)
3877 {
3878         struct kvm_io_bus *bus;
3879         struct kvm_io_range range;
3880         int r;
3881 
3882         range = (struct kvm_io_range) {
3883                 .addr = addr,
3884                 .len = len,
3885         };
3886 
3887         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3888         if (!bus)
3889                 return -ENOMEM;
3890         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3891         return r < 0 ? r : 0;
3892 }
3893 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3894 
3895 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3896 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3897                             gpa_t addr, int len, const void *val, long cookie)
3898 {
3899         struct kvm_io_bus *bus;
3900         struct kvm_io_range range;
3901 
3902         range = (struct kvm_io_range) {
3903                 .addr = addr,
3904                 .len = len,
3905         };
3906 
3907         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3908         if (!bus)
3909                 return -ENOMEM;
3910 
3911         /* First try the device referenced by cookie. */
3912         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3913             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3914                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3915                                         val))
3916                         return cookie;
3917 
3918         /*
3919          * cookie contained garbage; fall back to search and return the
3920          * correct cookie value.
3921          */
3922         return __kvm_io_bus_write(vcpu, bus, &range, val);
3923 }
3924 
3925 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3926                              struct kvm_io_range *range, void *val)
3927 {
3928         int idx;
3929 
3930         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3931         if (idx < 0)
3932                 return -EOPNOTSUPP;
3933 
3934         while (idx < bus->dev_count &&
3935                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3936                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3937                                        range->len, val))
3938                         return idx;
3939                 idx++;
3940         }
3941 
3942         return -EOPNOTSUPP;
3943 }
3944 
3945 /* kvm_io_bus_read - called under kvm->slots_lock */
3946 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3947                     int len, void *val)
3948 {
3949         struct kvm_io_bus *bus;
3950         struct kvm_io_range range;
3951         int r;
3952 
3953         range = (struct kvm_io_range) {
3954                 .addr = addr,
3955                 .len = len,
3956         };
3957 
3958         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3959         if (!bus)
3960                 return -ENOMEM;
3961         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3962         return r < 0 ? r : 0;
3963 }
3964 
3965 /* Caller must hold slots_lock. */
3966 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3967                             int len, struct kvm_io_device *dev)
3968 {
3969         int i;
3970         struct kvm_io_bus *new_bus, *bus;
3971         struct kvm_io_range range;
3972 
3973         bus = kvm_get_bus(kvm, bus_idx);
3974         if (!bus)
3975                 return -ENOMEM;
3976 
3977         /* exclude ioeventfd which is limited by maximum fd */
3978         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3979                 return -ENOSPC;
3980 
3981         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3982                           GFP_KERNEL_ACCOUNT);
3983         if (!new_bus)
3984                 return -ENOMEM;
3985 
3986         range = (struct kvm_io_range) {
3987                 .addr = addr,
3988                 .len = len,
3989                 .dev = dev,
3990         };
3991 
3992         for (i = 0; i < bus->dev_count; i++)
3993                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3994                         break;
3995 
3996         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3997         new_bus->dev_count++;
3998         new_bus->range[i] = range;
3999         memcpy(new_bus->range + i + 1, bus->range + i,
4000                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4001         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4002         synchronize_srcu_expedited(&kvm->srcu);
4003         kfree(bus);
4004 
4005         return 0;
4006 }
4007 
4008 /* Caller must hold slots_lock. */
4009 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4010                                struct kvm_io_device *dev)
4011 {
4012         int i;
4013         struct kvm_io_bus *new_bus, *bus;
4014 
4015         bus = kvm_get_bus(kvm, bus_idx);
4016         if (!bus)
4017                 return;
4018 
4019         for (i = 0; i < bus->dev_count; i++)
4020                 if (bus->range[i].dev == dev) {
4021                         break;
4022                 }
4023 
4024         if (i == bus->dev_count)
4025                 return;
4026 
4027         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4028                           GFP_KERNEL_ACCOUNT);
4029         if (!new_bus)  {
4030                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4031                 goto broken;
4032         }
4033 
4034         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4035         new_bus->dev_count--;
4036         memcpy(new_bus->range + i, bus->range + i + 1,
4037                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4038 
4039 broken:
4040         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4041         synchronize_srcu_expedited(&kvm->srcu);
4042         kfree(bus);
4043         return;
4044 }
4045 
4046 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4047                                          gpa_t addr)
4048 {
4049         struct kvm_io_bus *bus;
4050         int dev_idx, srcu_idx;
4051         struct kvm_io_device *iodev = NULL;
4052 
4053         srcu_idx = srcu_read_lock(&kvm->srcu);
4054 
4055         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4056         if (!bus)
4057                 goto out_unlock;
4058 
4059         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4060         if (dev_idx < 0)
4061                 goto out_unlock;
4062 
4063         iodev = bus->range[dev_idx].dev;
4064 
4065 out_unlock:
4066         srcu_read_unlock(&kvm->srcu, srcu_idx);
4067 
4068         return iodev;
4069 }
4070 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4071 
4072 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4073                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4074                            const char *fmt)
4075 {
4076         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4077                                           inode->i_private;
4078 
4079         /* The debugfs files are a reference to the kvm struct which
4080          * is still valid when kvm_destroy_vm is called.
4081          * To avoid the race between open and the removal of the debugfs
4082          * directory we test against the users count.
4083          */
4084         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4085                 return -ENOENT;
4086 
4087         if (simple_attr_open(inode, file, get,
4088                              stat_data->mode & S_IWUGO ? set : NULL,
4089                              fmt)) {
4090                 kvm_put_kvm(stat_data->kvm);
4091                 return -ENOMEM;
4092         }
4093 
4094         return 0;
4095 }
4096 
4097 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4098 {
4099         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4100                                           inode->i_private;
4101 
4102         simple_attr_release(inode, file);
4103         kvm_put_kvm(stat_data->kvm);
4104 
4105         return 0;
4106 }
4107 
4108 static int vm_stat_get_per_vm(void *data, u64 *val)
4109 {
4110         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4111 
4112         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4113 
4114         return 0;
4115 }
4116 
4117 static int vm_stat_clear_per_vm(void *data, u64 val)
4118 {
4119         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4120 
4121         if (val)
4122                 return -EINVAL;
4123 
4124         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4125 
4126         return 0;
4127 }
4128 
4129 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4130 {
4131         __simple_attr_check_format("%llu\n", 0ull);
4132         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4133                                 vm_stat_clear_per_vm, "%llu\n");
4134 }
4135 
4136 static const struct file_operations vm_stat_get_per_vm_fops = {
4137         .owner   = THIS_MODULE,
4138         .open    = vm_stat_get_per_vm_open,
4139         .release = kvm_debugfs_release,
4140         .read    = simple_attr_read,
4141         .write   = simple_attr_write,
4142         .llseek  = no_llseek,
4143 };
4144 
4145 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4146 {
4147         int i;
4148         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4149         struct kvm_vcpu *vcpu;
4150 
4151         *val = 0;
4152 
4153         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4154                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4155 
4156         return 0;
4157 }
4158 
4159 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4160 {
4161         int i;
4162         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4163         struct kvm_vcpu *vcpu;
4164 
4165         if (val)
4166                 return -EINVAL;
4167 
4168         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4169                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4170 
4171         return 0;
4172 }
4173 
4174 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4175 {
4176         __simple_attr_check_format("%llu\n", 0ull);
4177         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4178                                  vcpu_stat_clear_per_vm, "%llu\n");
4179 }
4180 
4181 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4182         .owner   = THIS_MODULE,
4183         .open    = vcpu_stat_get_per_vm_open,
4184         .release = kvm_debugfs_release,
4185         .read    = simple_attr_read,
4186         .write   = simple_attr_write,
4187         .llseek  = no_llseek,
4188 };
4189 
4190 static const struct file_operations *stat_fops_per_vm[] = {
4191         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4192         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4193 };
4194 
4195 static int vm_stat_get(void *_offset, u64 *val)
4196 {
4197         unsigned offset = (long)_offset;
4198         struct kvm *kvm;
4199         struct kvm_stat_data stat_tmp = {.offset = offset};
4200         u64 tmp_val;
4201 
4202         *val = 0;
4203         mutex_lock(&kvm_lock);
4204         list_for_each_entry(kvm, &vm_list, vm_list) {
4205                 stat_tmp.kvm = kvm;
4206                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4207                 *val += tmp_val;
4208         }
4209         mutex_unlock(&kvm_lock);
4210         return 0;
4211 }
4212 
4213 static int vm_stat_clear(void *_offset, u64 val)
4214 {
4215         unsigned offset = (long)_offset;
4216         struct kvm *kvm;
4217         struct kvm_stat_data stat_tmp = {.offset = offset};
4218 
4219         if (val)
4220                 return -EINVAL;
4221 
4222         mutex_lock(&kvm_lock);
4223         list_for_each_entry(kvm, &vm_list, vm_list) {
4224                 stat_tmp.kvm = kvm;
4225                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4226         }
4227         mutex_unlock(&kvm_lock);
4228 
4229         return 0;
4230 }
4231 
4232 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4233 
4234 static int vcpu_stat_get(void *_offset, u64 *val)
4235 {
4236         unsigned offset = (long)_offset;
4237         struct kvm *kvm;
4238         struct kvm_stat_data stat_tmp = {.offset = offset};
4239         u64 tmp_val;
4240 
4241         *val = 0;
4242         mutex_lock(&kvm_lock);
4243         list_for_each_entry(kvm, &vm_list, vm_list) {
4244                 stat_tmp.kvm = kvm;
4245                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4246                 *val += tmp_val;
4247         }
4248         mutex_unlock(&kvm_lock);
4249         return 0;
4250 }
4251 
4252 static int vcpu_stat_clear(void *_offset, u64 val)
4253 {
4254         unsigned offset = (long)_offset;
4255         struct kvm *kvm;
4256         struct kvm_stat_data stat_tmp = {.offset = offset};
4257 
4258         if (val)
4259                 return -EINVAL;
4260 
4261         mutex_lock(&kvm_lock);
4262         list_for_each_entry(kvm, &vm_list, vm_list) {
4263                 stat_tmp.kvm = kvm;
4264                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4265         }
4266         mutex_unlock(&kvm_lock);
4267 
4268         return 0;
4269 }
4270 
4271 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4272                         "%llu\n");
4273 
4274 static const struct file_operations *stat_fops[] = {
4275         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4276         [KVM_STAT_VM]   = &vm_stat_fops,
4277 };
4278 
4279 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4280 {
4281         struct kobj_uevent_env *env;
4282         unsigned long long created, active;
4283 
4284         if (!kvm_dev.this_device || !kvm)
4285                 return;
4286 
4287         mutex_lock(&kvm_lock);
4288         if (type == KVM_EVENT_CREATE_VM) {
4289                 kvm_createvm_count++;
4290                 kvm_active_vms++;
4291         } else if (type == KVM_EVENT_DESTROY_VM) {
4292                 kvm_active_vms--;
4293         }
4294         created = kvm_createvm_count;
4295         active = kvm_active_vms;
4296         mutex_unlock(&kvm_lock);
4297 
4298         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4299         if (!env)
4300                 return;
4301 
4302         add_uevent_var(env, "CREATED=%llu", created);
4303         add_uevent_var(env, "COUNT=%llu", active);
4304 
4305         if (type == KVM_EVENT_CREATE_VM) {
4306                 add_uevent_var(env, "EVENT=create");
4307                 kvm->userspace_pid = task_pid_nr(current);
4308         } else if (type == KVM_EVENT_DESTROY_VM) {
4309                 add_uevent_var(env, "EVENT=destroy");
4310         }
4311         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4312 
4313         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4314                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4315 
4316                 if (p) {
4317                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4318                         if (!IS_ERR(tmp))
4319                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4320                         kfree(p);
4321                 }
4322         }
4323         /* no need for checks, since we are adding at most only 5 keys */
4324         env->envp[env->envp_idx++] = NULL;
4325         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4326         kfree(env);
4327 }
4328 
4329 static void kvm_init_debug(void)
4330 {
4331         struct kvm_stats_debugfs_item *p;
4332 
4333         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4334 
4335         kvm_debugfs_num_entries = 0;
4336         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4337                 int mode = p->mode ? p->mode : 0644;
4338                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4339                                     (void *)(long)p->offset,
4340                                     stat_fops[p->kind]);
4341         }
4342 }
4343 
4344 static int kvm_suspend(void)
4345 {
4346         if (kvm_usage_count)
4347                 hardware_disable_nolock(NULL);
4348         return 0;
4349 }
4350 
4351 static void kvm_resume(void)
4352 {
4353         if (kvm_usage_count) {
4354 #ifdef CONFIG_LOCKDEP
4355                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4356 #endif
4357                 hardware_enable_nolock(NULL);
4358         }
4359 }
4360 
4361 static struct syscore_ops kvm_syscore_ops = {
4362         .suspend = kvm_suspend,
4363         .resume = kvm_resume,
4364 };
4365 
4366 static inline
4367 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4368 {
4369         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4370 }
4371 
4372 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4373 {
4374         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4375 
4376         WRITE_ONCE(vcpu->preempted, false);
4377         WRITE_ONCE(vcpu->ready, false);
4378 
4379         kvm_arch_sched_in(vcpu, cpu);
4380 
4381         kvm_arch_vcpu_load(vcpu, cpu);
4382 }
4383 
4384 static void kvm_sched_out(struct preempt_notifier *pn,
4385                           struct task_struct *next)
4386 {
4387         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4388 
4389         if (current->state == TASK_RUNNING) {
4390                 WRITE_ONCE(vcpu->preempted, true);
4391                 WRITE_ONCE(vcpu->ready, true);
4392         }
4393         kvm_arch_vcpu_put(vcpu);
4394 }
4395 
4396 static void check_processor_compat(void *rtn)
4397 {
4398         *(int *)rtn = kvm_arch_check_processor_compat();
4399 }
4400 
4401 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4402                   struct module *module)
4403 {
4404         int r;
4405         int cpu;
4406 
4407         r = kvm_arch_init(opaque);
4408         if (r)
4409                 goto out_fail;
4410 
4411         /*
4412          * kvm_arch_init makes sure there's at most one caller
4413          * for architectures that support multiple implementations,
4414          * like intel and amd on x86.
4415          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4416          * conflicts in case kvm is already setup for another implementation.
4417          */
4418         r = kvm_irqfd_init();
4419         if (r)
4420                 goto out_irqfd;
4421 
4422         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4423                 r = -ENOMEM;
4424                 goto out_free_0;
4425         }
4426 
4427         r = kvm_arch_hardware_setup();
4428         if (r < 0)
4429                 goto out_free_0a;
4430 
4431         for_each_online_cpu(cpu) {
4432                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4433                 if (r < 0)
4434                         goto out_free_1;
4435         }
4436 
4437         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4438                                       kvm_starting_cpu, kvm_dying_cpu);
4439         if (r)
4440                 goto out_free_2;
4441         register_reboot_notifier(&kvm_reboot_notifier);
4442 
4443         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4444         if (!vcpu_align)
4445                 vcpu_align = __alignof__(struct kvm_vcpu);
4446         kvm_vcpu_cache =
4447                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4448                                            SLAB_ACCOUNT,
4449                                            offsetof(struct kvm_vcpu, arch),
4450                                            sizeof_field(struct kvm_vcpu, arch),
4451                                            NULL);
4452         if (!kvm_vcpu_cache) {
4453                 r = -ENOMEM;
4454                 goto out_free_3;
4455         }
4456 
4457         r = kvm_async_pf_init();
4458         if (r)
4459                 goto out_free;
4460 
4461         kvm_chardev_ops.owner = module;
4462         kvm_vm_fops.owner = module;
4463         kvm_vcpu_fops.owner = module;
4464 
4465         r = misc_register(&kvm_dev);
4466         if (r) {
4467                 pr_err("kvm: misc device register failed\n");
4468                 goto out_unreg;
4469         }
4470 
4471         register_syscore_ops(&kvm_syscore_ops);
4472 
4473         kvm_preempt_ops.sched_in = kvm_sched_in;
4474         kvm_preempt_ops.sched_out = kvm_sched_out;
4475 
4476         kvm_init_debug();
4477 
4478         r = kvm_vfio_ops_init();
4479         WARN_ON(r);
4480 
4481         return 0;
4482 
4483 out_unreg:
4484         kvm_async_pf_deinit();
4485 out_free:
4486         kmem_cache_destroy(kvm_vcpu_cache);
4487 out_free_3:
4488         unregister_reboot_notifier(&kvm_reboot_notifier);
4489         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4490 out_free_2:
4491 out_free_1:
4492         kvm_arch_hardware_unsetup();
4493 out_free_0a:
4494         free_cpumask_var(cpus_hardware_enabled);
4495 out_free_0:
4496         kvm_irqfd_exit();
4497 out_irqfd:
4498         kvm_arch_exit();
4499 out_fail:
4500         return r;
4501 }
4502 EXPORT_SYMBOL_GPL(kvm_init);
4503 
4504 void kvm_exit(void)
4505 {
4506         debugfs_remove_recursive(kvm_debugfs_dir);
4507         misc_deregister(&kvm_dev);
4508         kmem_cache_destroy(kvm_vcpu_cache);
4509         kvm_async_pf_deinit();
4510         unregister_syscore_ops(&kvm_syscore_ops);
4511         unregister_reboot_notifier(&kvm_reboot_notifier);
4512         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4513         on_each_cpu(hardware_disable_nolock, NULL, 1);
4514         kvm_arch_hardware_unsetup();
4515         kvm_arch_exit();
4516         kvm_irqfd_exit();
4517         free_cpumask_var(cpus_hardware_enabled);
4518         kvm_vfio_ops_exit();
4519 }
4520 EXPORT_SYMBOL_GPL(kvm_exit);
4521 
4522 struct kvm_vm_worker_thread_context {
4523         struct kvm *kvm;
4524         struct task_struct *parent;
4525         struct completion init_done;
4526         kvm_vm_thread_fn_t thread_fn;
4527         uintptr_t data;
4528         int err;
4529 };
4530 
4531 static int kvm_vm_worker_thread(void *context)
4532 {
4533         /*
4534          * The init_context is allocated on the stack of the parent thread, so
4535          * we have to locally copy anything that is needed beyond initialization
4536          */
4537         struct kvm_vm_worker_thread_context *init_context = context;
4538         struct kvm *kvm = init_context->kvm;
4539         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4540         uintptr_t data = init_context->data;
4541         int err;
4542 
4543         err = kthread_park(current);
4544         /* kthread_park(current) is never supposed to return an error */
4545         WARN_ON(err != 0);
4546         if (err)
4547                 goto init_complete;
4548 
4549         err = cgroup_attach_task_all(init_context->parent, current);
4550         if (err) {
4551                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4552                         __func__, err);
4553                 goto init_complete;
4554         }
4555 
4556         set_user_nice(current, task_nice(init_context->parent));
4557 
4558 init_complete:
4559         init_context->err = err;
4560         complete(&init_context->init_done);
4561         init_context = NULL;
4562 
4563         if (err)
4564                 return err;
4565 
4566         /* Wait to be woken up by the spawner before proceeding. */
4567         kthread_parkme();
4568 
4569         if (!kthread_should_stop())
4570                 err = thread_fn(kvm, data);
4571 
4572         return err;
4573 }
4574 
4575 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4576                                 uintptr_t data, const char *name,
4577                                 struct task_struct **thread_ptr)
4578 {
4579         struct kvm_vm_worker_thread_context init_context = {};
4580         struct task_struct *thread;
4581 
4582         *thread_ptr = NULL;
4583         init_context.kvm = kvm;
4584         init_context.parent = current;
4585         init_context.thread_fn = thread_fn;
4586         init_context.data = data;
4587         init_completion(&init_context.init_done);
4588 
4589         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4590                              "%s-%d", name, task_pid_nr(current));
4591         if (IS_ERR(thread))
4592                 return PTR_ERR(thread);
4593 
4594         /* kthread_run is never supposed to return NULL */
4595         WARN_ON(thread == NULL);
4596 
4597         wait_for_completion(&init_context.init_done);
4598 
4599         if (!init_context.err)
4600                 *thread_ptr = thread;
4601 
4602         return init_context.err;
4603 }

/* [<][>][^][v][top][bottom][index][help] */