This source file includes following definitions.
- timer_interrupt
- profile_pc
- read_cr16
- start_cpu_itimer
- rtc_generic_get_time
- rtc_generic_set_time
- rtc_init
- read_persistent_clock64
- read_cr16_sched_clock
- time_init
- init_cr16_clocksource
1
2
3
4
5
6
7
8
9
10
11
12
13
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/rtc.h>
17 #include <linux/sched.h>
18 #include <linux/sched/clock.h>
19 #include <linux/sched_clock.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/profile.h>
29 #include <linux/clocksource.h>
30 #include <linux/platform_device.h>
31 #include <linux/ftrace.h>
32
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/page.h>
37 #include <asm/param.h>
38 #include <asm/pdc.h>
39 #include <asm/led.h>
40
41 #include <linux/timex.h>
42
43 static unsigned long clocktick __ro_after_init;
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
63 {
64 unsigned long now;
65 unsigned long next_tick;
66 unsigned long ticks_elapsed = 0;
67 unsigned int cpu = smp_processor_id();
68 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
69
70
71 unsigned long cpt = clocktick;
72
73 profile_tick(CPU_PROFILING);
74
75
76 next_tick = cpuinfo->it_value;
77
78
79 now = mfctl(16);
80 do {
81 ++ticks_elapsed;
82 next_tick += cpt;
83 } while (next_tick - now > cpt);
84
85
86 cpuinfo->it_value = next_tick;
87
88
89 if (cpu == 0)
90 xtime_update(ticks_elapsed);
91
92 update_process_times(user_mode(get_irq_regs()));
93
94
95
96
97
98
99
100
101
102
103
104
105
106 now = mfctl(16);
107 while (next_tick - now > cpt)
108 next_tick += cpt;
109
110
111
112
113
114
115
116 if (next_tick - now <= 8000)
117 next_tick += cpt;
118 mtctl(next_tick, 16);
119
120 return IRQ_HANDLED;
121 }
122
123
124 unsigned long profile_pc(struct pt_regs *regs)
125 {
126 unsigned long pc = instruction_pointer(regs);
127
128 if (regs->gr[0] & PSW_N)
129 pc -= 4;
130
131 #ifdef CONFIG_SMP
132 if (in_lock_functions(pc))
133 pc = regs->gr[2];
134 #endif
135
136 return pc;
137 }
138 EXPORT_SYMBOL(profile_pc);
139
140
141
142
143 static u64 notrace read_cr16(struct clocksource *cs)
144 {
145 return get_cycles();
146 }
147
148 static struct clocksource clocksource_cr16 = {
149 .name = "cr16",
150 .rating = 300,
151 .read = read_cr16,
152 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
153 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155
156 void __init start_cpu_itimer(void)
157 {
158 unsigned int cpu = smp_processor_id();
159 unsigned long next_tick = mfctl(16) + clocktick;
160
161 mtctl(next_tick, 16);
162
163 per_cpu(cpu_data, cpu).it_value = next_tick;
164 }
165
166 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
167 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
168 {
169 struct pdc_tod tod_data;
170
171 memset(tm, 0, sizeof(*tm));
172 if (pdc_tod_read(&tod_data) < 0)
173 return -EOPNOTSUPP;
174
175
176 rtc_time64_to_tm(tod_data.tod_sec, tm);
177 return 0;
178 }
179
180 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
181 {
182 time64_t secs = rtc_tm_to_time64(tm);
183
184 if (pdc_tod_set(secs, 0) < 0)
185 return -EOPNOTSUPP;
186
187 return 0;
188 }
189
190 static const struct rtc_class_ops rtc_generic_ops = {
191 .read_time = rtc_generic_get_time,
192 .set_time = rtc_generic_set_time,
193 };
194
195 static int __init rtc_init(void)
196 {
197 struct platform_device *pdev;
198
199 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
200 &rtc_generic_ops,
201 sizeof(rtc_generic_ops));
202
203 return PTR_ERR_OR_ZERO(pdev);
204 }
205 device_initcall(rtc_init);
206 #endif
207
208 void read_persistent_clock64(struct timespec64 *ts)
209 {
210 static struct pdc_tod tod_data;
211 if (pdc_tod_read(&tod_data) == 0) {
212 ts->tv_sec = tod_data.tod_sec;
213 ts->tv_nsec = tod_data.tod_usec * 1000;
214 } else {
215 printk(KERN_ERR "Error reading tod clock\n");
216 ts->tv_sec = 0;
217 ts->tv_nsec = 0;
218 }
219 }
220
221
222 static u64 notrace read_cr16_sched_clock(void)
223 {
224 return get_cycles();
225 }
226
227
228
229
230
231
232 void __init time_init(void)
233 {
234 unsigned long cr16_hz;
235
236 clocktick = (100 * PAGE0->mem_10msec) / HZ;
237 start_cpu_itimer();
238
239 cr16_hz = 100 * PAGE0->mem_10msec;
240
241
242 sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
243 }
244
245 static int __init init_cr16_clocksource(void)
246 {
247
248
249
250
251
252 if (num_online_cpus() > 1 && !running_on_qemu) {
253 int cpu;
254 unsigned long cpu0_loc;
255 cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
256
257 for_each_online_cpu(cpu) {
258 if (cpu == 0)
259 continue;
260 if ((cpu0_loc != 0) &&
261 (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
262 continue;
263
264 clocksource_cr16.name = "cr16_unstable";
265 clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
266 clocksource_cr16.rating = 0;
267 break;
268 }
269 }
270
271
272
273
274
275
276 clocksource_register_hz(&clocksource_cr16,
277 100 * PAGE0->mem_10msec);
278
279 return 0;
280 }
281
282 device_initcall(init_cr16_clocksource);