root/arch/parisc/kernel/time.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. timer_interrupt
  2. profile_pc
  3. read_cr16
  4. start_cpu_itimer
  5. rtc_generic_get_time
  6. rtc_generic_set_time
  7. rtc_init
  8. read_persistent_clock64
  9. read_cr16_sched_clock
  10. time_init
  11. init_cr16_clocksource

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  *  linux/arch/parisc/kernel/time.c
   4  *
   5  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
   6  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
   7  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
   8  *
   9  * 1994-07-02  Alan Modra
  10  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  11  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
  12  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  13  */
  14 #include <linux/errno.h>
  15 #include <linux/module.h>
  16 #include <linux/rtc.h>
  17 #include <linux/sched.h>
  18 #include <linux/sched/clock.h>
  19 #include <linux/sched_clock.h>
  20 #include <linux/kernel.h>
  21 #include <linux/param.h>
  22 #include <linux/string.h>
  23 #include <linux/mm.h>
  24 #include <linux/interrupt.h>
  25 #include <linux/time.h>
  26 #include <linux/init.h>
  27 #include <linux/smp.h>
  28 #include <linux/profile.h>
  29 #include <linux/clocksource.h>
  30 #include <linux/platform_device.h>
  31 #include <linux/ftrace.h>
  32 
  33 #include <linux/uaccess.h>
  34 #include <asm/io.h>
  35 #include <asm/irq.h>
  36 #include <asm/page.h>
  37 #include <asm/param.h>
  38 #include <asm/pdc.h>
  39 #include <asm/led.h>
  40 
  41 #include <linux/timex.h>
  42 
  43 static unsigned long clocktick __ro_after_init; /* timer cycles per tick */
  44 
  45 /*
  46  * We keep time on PA-RISC Linux by using the Interval Timer which is
  47  * a pair of registers; one is read-only and one is write-only; both
  48  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
  49  * and increments by 1 every CPU clock tick.  The architecture only
  50  * guarantees us a rate between 0.5 and 2, but all implementations use a
  51  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
  52  * 32 bits of the read-only register compare equal to the write-only
  53  * register, it raises a maskable external interrupt.  Each processor has
  54  * an Interval Timer of its own and they are not synchronised.  
  55  *
  56  * We want to generate an interrupt every 1/HZ seconds.  So we program
  57  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
  58  * is programmed with the intended time of the next tick.  We can be
  59  * held off for an arbitrarily long period of time by interrupts being
  60  * disabled, so we may miss one or more ticks.
  61  */
  62 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  63 {
  64         unsigned long now;
  65         unsigned long next_tick;
  66         unsigned long ticks_elapsed = 0;
  67         unsigned int cpu = smp_processor_id();
  68         struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  69 
  70         /* gcc can optimize for "read-only" case with a local clocktick */
  71         unsigned long cpt = clocktick;
  72 
  73         profile_tick(CPU_PROFILING);
  74 
  75         /* Initialize next_tick to the old expected tick time. */
  76         next_tick = cpuinfo->it_value;
  77 
  78         /* Calculate how many ticks have elapsed. */
  79         now = mfctl(16);
  80         do {
  81                 ++ticks_elapsed;
  82                 next_tick += cpt;
  83         } while (next_tick - now > cpt);
  84 
  85         /* Store (in CR16 cycles) up to when we are accounting right now. */
  86         cpuinfo->it_value = next_tick;
  87 
  88         /* Go do system house keeping. */
  89         if (cpu == 0)
  90                 xtime_update(ticks_elapsed);
  91 
  92         update_process_times(user_mode(get_irq_regs()));
  93 
  94         /* Skip clockticks on purpose if we know we would miss those.
  95          * The new CR16 must be "later" than current CR16 otherwise
  96          * itimer would not fire until CR16 wrapped - e.g 4 seconds
  97          * later on a 1Ghz processor. We'll account for the missed
  98          * ticks on the next timer interrupt.
  99          * We want IT to fire modulo clocktick even if we miss/skip some.
 100          * But those interrupts don't in fact get delivered that regularly.
 101          *
 102          * "next_tick - now" will always give the difference regardless
 103          * if one or the other wrapped. If "now" is "bigger" we'll end up
 104          * with a very large unsigned number.
 105          */
 106         now = mfctl(16);
 107         while (next_tick - now > cpt)
 108                 next_tick += cpt;
 109 
 110         /* Program the IT when to deliver the next interrupt.
 111          * Only bottom 32-bits of next_tick are writable in CR16!
 112          * Timer interrupt will be delivered at least a few hundred cycles
 113          * after the IT fires, so if we are too close (<= 8000 cycles) to the
 114          * next cycle, simply skip it.
 115          */
 116         if (next_tick - now <= 8000)
 117                 next_tick += cpt;
 118         mtctl(next_tick, 16);
 119 
 120         return IRQ_HANDLED;
 121 }
 122 
 123 
 124 unsigned long profile_pc(struct pt_regs *regs)
 125 {
 126         unsigned long pc = instruction_pointer(regs);
 127 
 128         if (regs->gr[0] & PSW_N)
 129                 pc -= 4;
 130 
 131 #ifdef CONFIG_SMP
 132         if (in_lock_functions(pc))
 133                 pc = regs->gr[2];
 134 #endif
 135 
 136         return pc;
 137 }
 138 EXPORT_SYMBOL(profile_pc);
 139 
 140 
 141 /* clock source code */
 142 
 143 static u64 notrace read_cr16(struct clocksource *cs)
 144 {
 145         return get_cycles();
 146 }
 147 
 148 static struct clocksource clocksource_cr16 = {
 149         .name                   = "cr16",
 150         .rating                 = 300,
 151         .read                   = read_cr16,
 152         .mask                   = CLOCKSOURCE_MASK(BITS_PER_LONG),
 153         .flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
 154 };
 155 
 156 void __init start_cpu_itimer(void)
 157 {
 158         unsigned int cpu = smp_processor_id();
 159         unsigned long next_tick = mfctl(16) + clocktick;
 160 
 161         mtctl(next_tick, 16);           /* kick off Interval Timer (CR16) */
 162 
 163         per_cpu(cpu_data, cpu).it_value = next_tick;
 164 }
 165 
 166 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
 167 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
 168 {
 169         struct pdc_tod tod_data;
 170 
 171         memset(tm, 0, sizeof(*tm));
 172         if (pdc_tod_read(&tod_data) < 0)
 173                 return -EOPNOTSUPP;
 174 
 175         /* we treat tod_sec as unsigned, so this can work until year 2106 */
 176         rtc_time64_to_tm(tod_data.tod_sec, tm);
 177         return 0;
 178 }
 179 
 180 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
 181 {
 182         time64_t secs = rtc_tm_to_time64(tm);
 183 
 184         if (pdc_tod_set(secs, 0) < 0)
 185                 return -EOPNOTSUPP;
 186 
 187         return 0;
 188 }
 189 
 190 static const struct rtc_class_ops rtc_generic_ops = {
 191         .read_time = rtc_generic_get_time,
 192         .set_time = rtc_generic_set_time,
 193 };
 194 
 195 static int __init rtc_init(void)
 196 {
 197         struct platform_device *pdev;
 198 
 199         pdev = platform_device_register_data(NULL, "rtc-generic", -1,
 200                                              &rtc_generic_ops,
 201                                              sizeof(rtc_generic_ops));
 202 
 203         return PTR_ERR_OR_ZERO(pdev);
 204 }
 205 device_initcall(rtc_init);
 206 #endif
 207 
 208 void read_persistent_clock64(struct timespec64 *ts)
 209 {
 210         static struct pdc_tod tod_data;
 211         if (pdc_tod_read(&tod_data) == 0) {
 212                 ts->tv_sec = tod_data.tod_sec;
 213                 ts->tv_nsec = tod_data.tod_usec * 1000;
 214         } else {
 215                 printk(KERN_ERR "Error reading tod clock\n");
 216                 ts->tv_sec = 0;
 217                 ts->tv_nsec = 0;
 218         }
 219 }
 220 
 221 
 222 static u64 notrace read_cr16_sched_clock(void)
 223 {
 224         return get_cycles();
 225 }
 226 
 227 
 228 /*
 229  * timer interrupt and sched_clock() initialization
 230  */
 231 
 232 void __init time_init(void)
 233 {
 234         unsigned long cr16_hz;
 235 
 236         clocktick = (100 * PAGE0->mem_10msec) / HZ;
 237         start_cpu_itimer();     /* get CPU 0 started */
 238 
 239         cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
 240 
 241         /* register as sched_clock source */
 242         sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
 243 }
 244 
 245 static int __init init_cr16_clocksource(void)
 246 {
 247         /*
 248          * The cr16 interval timers are not syncronized across CPUs on
 249          * different sockets, so mark them unstable and lower rating on
 250          * multi-socket SMP systems.
 251          */
 252         if (num_online_cpus() > 1 && !running_on_qemu) {
 253                 int cpu;
 254                 unsigned long cpu0_loc;
 255                 cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
 256 
 257                 for_each_online_cpu(cpu) {
 258                         if (cpu == 0)
 259                                 continue;
 260                         if ((cpu0_loc != 0) &&
 261                             (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
 262                                 continue;
 263 
 264                         clocksource_cr16.name = "cr16_unstable";
 265                         clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
 266                         clocksource_cr16.rating = 0;
 267                         break;
 268                 }
 269         }
 270 
 271         /* XXX: We may want to mark sched_clock stable here if cr16 clocks are
 272          *      in sync:
 273          *      (clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
 274 
 275         /* register at clocksource framework */
 276         clocksource_register_hz(&clocksource_cr16,
 277                 100 * PAGE0->mem_10msec);
 278 
 279         return 0;
 280 }
 281 
 282 device_initcall(init_cr16_clocksource);

/* [<][>][^][v][top][bottom][index][help] */