root/arch/parisc/kernel/firmware.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. f_extend
  2. convert_to_wide
  3. set_firmware_width_unlocked
  4. set_firmware_width
  5. set_firmware_width_unlocked
  6. set_firmware_width
  7. pdc_emergency_unlock
  8. pdc_add_valid
  9. pdc_instr
  10. pdc_chassis_info
  11. pdc_pat_chassis_send_log
  12. pdc_chassis_disp
  13. __pdc_cpu_rendezvous
  14. pdc_chassis_warn
  15. pdc_coproc_cfg_unlocked
  16. pdc_coproc_cfg
  17. pdc_iodc_read
  18. pdc_system_map_find_mods
  19. pdc_system_map_find_addrs
  20. pdc_model_info
  21. pdc_model_sysmodel
  22. pdc_model_versions
  23. pdc_model_cpuid
  24. pdc_model_capabilities
  25. pdc_model_platform_info
  26. pdc_cache_info
  27. pdc_spaceid_bits
  28. pdc_btlb_info
  29. pdc_mem_map_hpa
  30. pdc_lan_station_id
  31. pdc_stable_read
  32. pdc_stable_write
  33. pdc_stable_get_size
  34. pdc_stable_verify_contents
  35. pdc_stable_initialize
  36. pdc_get_initiator
  37. pdc_pci_irt_size
  38. pdc_pci_irt
  39. pdc_pci_config_read
  40. pdc_pci_config_write
  41. pdc_tod_read
  42. pdc_mem_pdt_info
  43. pdc_mem_pdt_read_entries
  44. pdc_tod_set
  45. pdc_mem_mem_table
  46. pdc_do_firm_test_reset
  47. pdc_do_reset
  48. pdc_soft_power_info
  49. pdc_soft_power_button
  50. pdc_io_reset
  51. pdc_io_reset_devices
  52. pdc_iodc_print
  53. pdc_iodc_getc
  54. pdc_sti_call
  55. pdc_pat_cell_get_number
  56. pdc_pat_cell_module
  57. pdc_pat_cell_info
  58. pdc_pat_cpu_get_number
  59. pdc_pat_get_irt_size
  60. pdc_pat_get_irt
  61. pdc_pat_pd_get_addr_map
  62. pdc_pat_pd_get_pdc_revisions
  63. pdc_pat_io_pci_cfg_read
  64. pdc_pat_io_pci_cfg_write
  65. pdc_pat_mem_pdt_info
  66. pdc_pat_mem_pdt_cell_info
  67. pdc_pat_mem_read_cell_pdt
  68. pdc_pat_mem_read_pd_pdt
  69. pdc_pat_mem_get_dimm_phys_location
  70. real32_call
  71. real64_call

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4  *
   5  *      PDC == Processor Dependent Code
   6  *
   7  * See http://www.parisc-linux.org/documentation/index.html
   8  * for documentation describing the entry points and calling
   9  * conventions defined below.
  10  *
  11  * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  12  * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  13  * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  14  * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  15  * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  16  */
  17 
  18 /*      I think it would be in everyone's best interest to follow this
  19  *      guidelines when writing PDC wrappers:
  20  *
  21  *       - the name of the pdc wrapper should match one of the macros
  22  *         used for the first two arguments
  23  *       - don't use caps for random parts of the name
  24  *       - use the static PDC result buffers and "copyout" to structs
  25  *         supplied by the caller to encapsulate alignment restrictions
  26  *       - hold pdc_lock while in PDC or using static result buffers
  27  *       - use __pa() to convert virtual (kernel) pointers to physical
  28  *         ones.
  29  *       - the name of the struct used for pdc return values should equal
  30  *         one of the macros used for the first two arguments to the
  31  *         corresponding PDC call
  32  *       - keep the order of arguments
  33  *       - don't be smart (setting trailing NUL bytes for strings, return
  34  *         something useful even if the call failed) unless you are sure
  35  *         it's not going to affect functionality or performance
  36  *
  37  *      Example:
  38  *      int pdc_cache_info(struct pdc_cache_info *cache_info )
  39  *      {
  40  *              int retval;
  41  *
  42  *              spin_lock_irq(&pdc_lock);
  43  *              retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  44  *              convert_to_wide(pdc_result);
  45  *              memcpy(cache_info, pdc_result, sizeof(*cache_info));
  46  *              spin_unlock_irq(&pdc_lock);
  47  *
  48  *              return retval;
  49  *      }
  50  *                                      prumpf  991016  
  51  */
  52 
  53 #include <stdarg.h>
  54 
  55 #include <linux/delay.h>
  56 #include <linux/init.h>
  57 #include <linux/kernel.h>
  58 #include <linux/module.h>
  59 #include <linux/string.h>
  60 #include <linux/spinlock.h>
  61 
  62 #include <asm/page.h>
  63 #include <asm/pdc.h>
  64 #include <asm/pdcpat.h>
  65 #include <asm/processor.h>      /* for boot_cpu_data */
  66 
  67 #if defined(BOOTLOADER)
  68 # undef  spin_lock_irqsave
  69 # define spin_lock_irqsave(a, b) { b = 1; }
  70 # undef  spin_unlock_irqrestore
  71 # define spin_unlock_irqrestore(a, b)
  72 #else
  73 static DEFINE_SPINLOCK(pdc_lock);
  74 #endif
  75 
  76 extern unsigned long pdc_result[NUM_PDC_RESULT];
  77 extern unsigned long pdc_result2[NUM_PDC_RESULT];
  78 
  79 #ifdef CONFIG_64BIT
  80 #define WIDE_FIRMWARE 0x1
  81 #define NARROW_FIRMWARE 0x2
  82 
  83 /* Firmware needs to be initially set to narrow to determine the 
  84  * actual firmware width. */
  85 int parisc_narrow_firmware __ro_after_init = 1;
  86 #endif
  87 
  88 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  89  * and MEM_PDC calls are always the same width as the OS.
  90  * Some PAT boxes may have 64-bit IODC I/O.
  91  *
  92  * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  93  * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  94  * This allowed wide kernels to run on Cxxx boxes.
  95  * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  96  * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  97  */
  98 
  99 #ifdef CONFIG_64BIT
 100 long real64_call(unsigned long function, ...);
 101 #endif
 102 long real32_call(unsigned long function, ...);
 103 
 104 #ifdef CONFIG_64BIT
 105 #   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 106 #   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 107 #else
 108 #   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 109 #   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 110 #endif
 111 
 112 
 113 /**
 114  * f_extend - Convert PDC addresses to kernel addresses.
 115  * @address: Address returned from PDC.
 116  *
 117  * This function is used to convert PDC addresses into kernel addresses
 118  * when the PDC address size and kernel address size are different.
 119  */
 120 static unsigned long f_extend(unsigned long address)
 121 {
 122 #ifdef CONFIG_64BIT
 123         if(unlikely(parisc_narrow_firmware)) {
 124                 if((address & 0xff000000) == 0xf0000000)
 125                         return 0xf0f0f0f000000000UL | (u32)address;
 126 
 127                 if((address & 0xf0000000) == 0xf0000000)
 128                         return 0xffffffff00000000UL | (u32)address;
 129         }
 130 #endif
 131         return address;
 132 }
 133 
 134 /**
 135  * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 136  * @address: The return buffer from PDC.
 137  *
 138  * This function is used to convert the return buffer addresses retrieved from PDC
 139  * into kernel addresses when the PDC address size and kernel address size are
 140  * different.
 141  */
 142 static void convert_to_wide(unsigned long *addr)
 143 {
 144 #ifdef CONFIG_64BIT
 145         int i;
 146         unsigned int *p = (unsigned int *)addr;
 147 
 148         if (unlikely(parisc_narrow_firmware)) {
 149                 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 150                         addr[i] = p[i];
 151         }
 152 #endif
 153 }
 154 
 155 #ifdef CONFIG_64BIT
 156 void set_firmware_width_unlocked(void)
 157 {
 158         int ret;
 159 
 160         ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 161                 __pa(pdc_result), 0);
 162         convert_to_wide(pdc_result);
 163         if (pdc_result[0] != NARROW_FIRMWARE)
 164                 parisc_narrow_firmware = 0;
 165 }
 166         
 167 /**
 168  * set_firmware_width - Determine if the firmware is wide or narrow.
 169  * 
 170  * This function must be called before any pdc_* function that uses the
 171  * convert_to_wide function.
 172  */
 173 void set_firmware_width(void)
 174 {
 175         unsigned long flags;
 176         spin_lock_irqsave(&pdc_lock, flags);
 177         set_firmware_width_unlocked();
 178         spin_unlock_irqrestore(&pdc_lock, flags);
 179 }
 180 #else
 181 void set_firmware_width_unlocked(void)
 182 {
 183         return;
 184 }
 185 
 186 void set_firmware_width(void)
 187 {
 188         return;
 189 }
 190 #endif /*CONFIG_64BIT*/
 191 
 192 
 193 #if !defined(BOOTLOADER)
 194 /**
 195  * pdc_emergency_unlock - Unlock the linux pdc lock
 196  *
 197  * This call unlocks the linux pdc lock in case we need some PDC functions
 198  * (like pdc_add_valid) during kernel stack dump.
 199  */
 200 void pdc_emergency_unlock(void)
 201 {
 202         /* Spinlock DEBUG code freaks out if we unconditionally unlock */
 203         if (spin_is_locked(&pdc_lock))
 204                 spin_unlock(&pdc_lock);
 205 }
 206 
 207 
 208 /**
 209  * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 210  * @address: Address to be verified.
 211  *
 212  * This PDC call attempts to read from the specified address and verifies
 213  * if the address is valid.
 214  * 
 215  * The return value is PDC_OK (0) in case accessing this address is valid.
 216  */
 217 int pdc_add_valid(unsigned long address)
 218 {
 219         int retval;
 220         unsigned long flags;
 221 
 222         spin_lock_irqsave(&pdc_lock, flags);
 223         retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 224         spin_unlock_irqrestore(&pdc_lock, flags);
 225 
 226         return retval;
 227 }
 228 EXPORT_SYMBOL(pdc_add_valid);
 229 
 230 /**
 231  * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 232  * @instr: Pointer to variable which will get instruction opcode.
 233  *
 234  * The return value is PDC_OK (0) in case call succeeded.
 235  */
 236 int __init pdc_instr(unsigned int *instr)
 237 {
 238         int retval;
 239         unsigned long flags;
 240 
 241         spin_lock_irqsave(&pdc_lock, flags);
 242         retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 243         convert_to_wide(pdc_result);
 244         *instr = pdc_result[0];
 245         spin_unlock_irqrestore(&pdc_lock, flags);
 246 
 247         return retval;
 248 }
 249 
 250 /**
 251  * pdc_chassis_info - Return chassis information.
 252  * @result: The return buffer.
 253  * @chassis_info: The memory buffer address.
 254  * @len: The size of the memory buffer address.
 255  *
 256  * An HVERSION dependent call for returning the chassis information.
 257  */
 258 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 259 {
 260         int retval;
 261         unsigned long flags;
 262 
 263         spin_lock_irqsave(&pdc_lock, flags);
 264         memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 265         memcpy(&pdc_result2, led_info, len);
 266         retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 267                               __pa(pdc_result), __pa(pdc_result2), len);
 268         memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 269         memcpy(led_info, pdc_result2, len);
 270         spin_unlock_irqrestore(&pdc_lock, flags);
 271 
 272         return retval;
 273 }
 274 
 275 /**
 276  * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 277  * @retval: -1 on error, 0 on success. Other value are PDC errors
 278  * 
 279  * Must be correctly formatted or expect system crash
 280  */
 281 #ifdef CONFIG_64BIT
 282 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 283 {
 284         int retval = 0;
 285         unsigned long flags;
 286         
 287         if (!is_pdc_pat())
 288                 return -1;
 289 
 290         spin_lock_irqsave(&pdc_lock, flags);
 291         retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 292         spin_unlock_irqrestore(&pdc_lock, flags);
 293 
 294         return retval;
 295 }
 296 #endif
 297 
 298 /**
 299  * pdc_chassis_disp - Updates chassis code
 300  * @retval: -1 on error, 0 on success
 301  */
 302 int pdc_chassis_disp(unsigned long disp)
 303 {
 304         int retval = 0;
 305         unsigned long flags;
 306 
 307         spin_lock_irqsave(&pdc_lock, flags);
 308         retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 309         spin_unlock_irqrestore(&pdc_lock, flags);
 310 
 311         return retval;
 312 }
 313 
 314 /**
 315  * pdc_cpu_rendenzvous - Stop currently executing CPU
 316  * @retval: -1 on error, 0 on success
 317  */
 318 int __pdc_cpu_rendezvous(void)
 319 {
 320         if (is_pdc_pat())
 321                 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 322         else
 323                 return mem_pdc_call(PDC_PROC, 1, 0);
 324 }
 325 
 326 
 327 /**
 328  * pdc_chassis_warn - Fetches chassis warnings
 329  * @retval: -1 on error, 0 on success
 330  */
 331 int pdc_chassis_warn(unsigned long *warn)
 332 {
 333         int retval = 0;
 334         unsigned long flags;
 335 
 336         spin_lock_irqsave(&pdc_lock, flags);
 337         retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 338         *warn = pdc_result[0];
 339         spin_unlock_irqrestore(&pdc_lock, flags);
 340 
 341         return retval;
 342 }
 343 
 344 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 345 {
 346         int ret;
 347 
 348         ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 349         convert_to_wide(pdc_result);
 350         pdc_coproc_info->ccr_functional = pdc_result[0];
 351         pdc_coproc_info->ccr_present = pdc_result[1];
 352         pdc_coproc_info->revision = pdc_result[17];
 353         pdc_coproc_info->model = pdc_result[18];
 354 
 355         return ret;
 356 }
 357 
 358 /**
 359  * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 360  * @pdc_coproc_info: Return buffer address.
 361  *
 362  * This PDC call returns the presence and status of all the coprocessors
 363  * attached to the processor.
 364  */
 365 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 366 {
 367         int ret;
 368         unsigned long flags;
 369 
 370         spin_lock_irqsave(&pdc_lock, flags);
 371         ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 372         spin_unlock_irqrestore(&pdc_lock, flags);
 373 
 374         return ret;
 375 }
 376 
 377 /**
 378  * pdc_iodc_read - Read data from the modules IODC.
 379  * @actcnt: The actual number of bytes.
 380  * @hpa: The HPA of the module for the iodc read.
 381  * @index: The iodc entry point.
 382  * @iodc_data: A buffer memory for the iodc options.
 383  * @iodc_data_size: Size of the memory buffer.
 384  *
 385  * This PDC call reads from the IODC of the module specified by the hpa
 386  * argument.
 387  */
 388 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 389                   void *iodc_data, unsigned int iodc_data_size)
 390 {
 391         int retval;
 392         unsigned long flags;
 393 
 394         spin_lock_irqsave(&pdc_lock, flags);
 395         retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 396                               index, __pa(pdc_result2), iodc_data_size);
 397         convert_to_wide(pdc_result);
 398         *actcnt = pdc_result[0];
 399         memcpy(iodc_data, pdc_result2, iodc_data_size);
 400         spin_unlock_irqrestore(&pdc_lock, flags);
 401 
 402         return retval;
 403 }
 404 EXPORT_SYMBOL(pdc_iodc_read);
 405 
 406 /**
 407  * pdc_system_map_find_mods - Locate unarchitected modules.
 408  * @pdc_mod_info: Return buffer address.
 409  * @mod_path: pointer to dev path structure.
 410  * @mod_index: fixed address module index.
 411  *
 412  * To locate and identify modules which reside at fixed I/O addresses, which
 413  * do not self-identify via architected bus walks.
 414  */
 415 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 416                              struct pdc_module_path *mod_path, long mod_index)
 417 {
 418         int retval;
 419         unsigned long flags;
 420 
 421         spin_lock_irqsave(&pdc_lock, flags);
 422         retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 423                               __pa(pdc_result2), mod_index);
 424         convert_to_wide(pdc_result);
 425         memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 426         memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 427         spin_unlock_irqrestore(&pdc_lock, flags);
 428 
 429         pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 430         return retval;
 431 }
 432 
 433 /**
 434  * pdc_system_map_find_addrs - Retrieve additional address ranges.
 435  * @pdc_addr_info: Return buffer address.
 436  * @mod_index: Fixed address module index.
 437  * @addr_index: Address range index.
 438  * 
 439  * Retrieve additional information about subsequent address ranges for modules
 440  * with multiple address ranges.  
 441  */
 442 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 443                               long mod_index, long addr_index)
 444 {
 445         int retval;
 446         unsigned long flags;
 447 
 448         spin_lock_irqsave(&pdc_lock, flags);
 449         retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 450                               mod_index, addr_index);
 451         convert_to_wide(pdc_result);
 452         memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 453         spin_unlock_irqrestore(&pdc_lock, flags);
 454 
 455         pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 456         return retval;
 457 }
 458 
 459 /**
 460  * pdc_model_info - Return model information about the processor.
 461  * @model: The return buffer.
 462  *
 463  * Returns the version numbers, identifiers, and capabilities from the processor module.
 464  */
 465 int pdc_model_info(struct pdc_model *model) 
 466 {
 467         int retval;
 468         unsigned long flags;
 469 
 470         spin_lock_irqsave(&pdc_lock, flags);
 471         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 472         convert_to_wide(pdc_result);
 473         memcpy(model, pdc_result, sizeof(*model));
 474         spin_unlock_irqrestore(&pdc_lock, flags);
 475 
 476         return retval;
 477 }
 478 
 479 /**
 480  * pdc_model_sysmodel - Get the system model name.
 481  * @name: A char array of at least 81 characters.
 482  *
 483  * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 484  * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 485  * on HP/UX.
 486  */
 487 int pdc_model_sysmodel(char *name)
 488 {
 489         int retval;
 490         unsigned long flags;
 491 
 492         spin_lock_irqsave(&pdc_lock, flags);
 493         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 494                               OS_ID_HPUX, __pa(name));
 495         convert_to_wide(pdc_result);
 496 
 497         if (retval == PDC_OK) {
 498                 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 499         } else {
 500                 name[0] = 0;
 501         }
 502         spin_unlock_irqrestore(&pdc_lock, flags);
 503 
 504         return retval;
 505 }
 506 
 507 /**
 508  * pdc_model_versions - Identify the version number of each processor.
 509  * @cpu_id: The return buffer.
 510  * @id: The id of the processor to check.
 511  *
 512  * Returns the version number for each processor component.
 513  *
 514  * This comment was here before, but I do not know what it means :( -RB
 515  * id: 0 = cpu revision, 1 = boot-rom-version
 516  */
 517 int pdc_model_versions(unsigned long *versions, int id)
 518 {
 519         int retval;
 520         unsigned long flags;
 521 
 522         spin_lock_irqsave(&pdc_lock, flags);
 523         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 524         convert_to_wide(pdc_result);
 525         *versions = pdc_result[0];
 526         spin_unlock_irqrestore(&pdc_lock, flags);
 527 
 528         return retval;
 529 }
 530 
 531 /**
 532  * pdc_model_cpuid - Returns the CPU_ID.
 533  * @cpu_id: The return buffer.
 534  *
 535  * Returns the CPU_ID value which uniquely identifies the cpu portion of
 536  * the processor module.
 537  */
 538 int pdc_model_cpuid(unsigned long *cpu_id)
 539 {
 540         int retval;
 541         unsigned long flags;
 542 
 543         spin_lock_irqsave(&pdc_lock, flags);
 544         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 545         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 546         convert_to_wide(pdc_result);
 547         *cpu_id = pdc_result[0];
 548         spin_unlock_irqrestore(&pdc_lock, flags);
 549 
 550         return retval;
 551 }
 552 
 553 /**
 554  * pdc_model_capabilities - Returns the platform capabilities.
 555  * @capabilities: The return buffer.
 556  *
 557  * Returns information about platform support for 32- and/or 64-bit
 558  * OSes, IO-PDIR coherency, and virtual aliasing.
 559  */
 560 int pdc_model_capabilities(unsigned long *capabilities)
 561 {
 562         int retval;
 563         unsigned long flags;
 564 
 565         spin_lock_irqsave(&pdc_lock, flags);
 566         pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 567         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 568         convert_to_wide(pdc_result);
 569         if (retval == PDC_OK) {
 570                 *capabilities = pdc_result[0];
 571         } else {
 572                 *capabilities = PDC_MODEL_OS32;
 573         }
 574         spin_unlock_irqrestore(&pdc_lock, flags);
 575 
 576         return retval;
 577 }
 578 
 579 /**
 580  * pdc_model_platform_info - Returns machine product and serial number.
 581  * @orig_prod_num: Return buffer for original product number.
 582  * @current_prod_num: Return buffer for current product number.
 583  * @serial_no: Return buffer for serial number.
 584  *
 585  * Returns strings containing the original and current product numbers and the
 586  * serial number of the system.
 587  */
 588 int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 589                 char *serial_no)
 590 {
 591         int retval;
 592         unsigned long flags;
 593 
 594         spin_lock_irqsave(&pdc_lock, flags);
 595         retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 596                 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 597         convert_to_wide(pdc_result);
 598         spin_unlock_irqrestore(&pdc_lock, flags);
 599 
 600         return retval;
 601 }
 602 
 603 /**
 604  * pdc_cache_info - Return cache and TLB information.
 605  * @cache_info: The return buffer.
 606  *
 607  * Returns information about the processor's cache and TLB.
 608  */
 609 int pdc_cache_info(struct pdc_cache_info *cache_info)
 610 {
 611         int retval;
 612         unsigned long flags;
 613 
 614         spin_lock_irqsave(&pdc_lock, flags);
 615         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 616         convert_to_wide(pdc_result);
 617         memcpy(cache_info, pdc_result, sizeof(*cache_info));
 618         spin_unlock_irqrestore(&pdc_lock, flags);
 619 
 620         return retval;
 621 }
 622 
 623 /**
 624  * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 625  * @space_bits: Should be 0, if not, bad mojo!
 626  *
 627  * Returns information about Space ID hashing.
 628  */
 629 int pdc_spaceid_bits(unsigned long *space_bits)
 630 {
 631         int retval;
 632         unsigned long flags;
 633 
 634         spin_lock_irqsave(&pdc_lock, flags);
 635         pdc_result[0] = 0;
 636         retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 637         convert_to_wide(pdc_result);
 638         *space_bits = pdc_result[0];
 639         spin_unlock_irqrestore(&pdc_lock, flags);
 640 
 641         return retval;
 642 }
 643 
 644 #ifndef CONFIG_PA20
 645 /**
 646  * pdc_btlb_info - Return block TLB information.
 647  * @btlb: The return buffer.
 648  *
 649  * Returns information about the hardware Block TLB.
 650  */
 651 int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 652 {
 653         int retval;
 654         unsigned long flags;
 655 
 656         spin_lock_irqsave(&pdc_lock, flags);
 657         retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 658         memcpy(btlb, pdc_result, sizeof(*btlb));
 659         spin_unlock_irqrestore(&pdc_lock, flags);
 660 
 661         if(retval < 0) {
 662                 btlb->max_size = 0;
 663         }
 664         return retval;
 665 }
 666 
 667 /**
 668  * pdc_mem_map_hpa - Find fixed module information.  
 669  * @address: The return buffer
 670  * @mod_path: pointer to dev path structure.
 671  *
 672  * This call was developed for S700 workstations to allow the kernel to find
 673  * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 674  * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 675  * call.
 676  *
 677  * This call is supported by all existing S700 workstations (up to  Gecko).
 678  */
 679 int pdc_mem_map_hpa(struct pdc_memory_map *address,
 680                 struct pdc_module_path *mod_path)
 681 {
 682         int retval;
 683         unsigned long flags;
 684 
 685         spin_lock_irqsave(&pdc_lock, flags);
 686         memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 687         retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 688                                 __pa(pdc_result2));
 689         memcpy(address, pdc_result, sizeof(*address));
 690         spin_unlock_irqrestore(&pdc_lock, flags);
 691 
 692         return retval;
 693 }
 694 #endif  /* !CONFIG_PA20 */
 695 
 696 /**
 697  * pdc_lan_station_id - Get the LAN address.
 698  * @lan_addr: The return buffer.
 699  * @hpa: The network device HPA.
 700  *
 701  * Get the LAN station address when it is not directly available from the LAN hardware.
 702  */
 703 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 704 {
 705         int retval;
 706         unsigned long flags;
 707 
 708         spin_lock_irqsave(&pdc_lock, flags);
 709         retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 710                         __pa(pdc_result), hpa);
 711         if (retval < 0) {
 712                 /* FIXME: else read MAC from NVRAM */
 713                 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 714         } else {
 715                 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 716         }
 717         spin_unlock_irqrestore(&pdc_lock, flags);
 718 
 719         return retval;
 720 }
 721 EXPORT_SYMBOL(pdc_lan_station_id);
 722 
 723 /**
 724  * pdc_stable_read - Read data from Stable Storage.
 725  * @staddr: Stable Storage address to access.
 726  * @memaddr: The memory address where Stable Storage data shall be copied.
 727  * @count: number of bytes to transfer. count is multiple of 4.
 728  *
 729  * This PDC call reads from the Stable Storage address supplied in staddr
 730  * and copies count bytes to the memory address memaddr.
 731  * The call will fail if staddr+count > PDC_STABLE size.
 732  */
 733 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 734 {
 735        int retval;
 736         unsigned long flags;
 737 
 738        spin_lock_irqsave(&pdc_lock, flags);
 739        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 740                __pa(pdc_result), count);
 741        convert_to_wide(pdc_result);
 742        memcpy(memaddr, pdc_result, count);
 743        spin_unlock_irqrestore(&pdc_lock, flags);
 744 
 745        return retval;
 746 }
 747 EXPORT_SYMBOL(pdc_stable_read);
 748 
 749 /**
 750  * pdc_stable_write - Write data to Stable Storage.
 751  * @staddr: Stable Storage address to access.
 752  * @memaddr: The memory address where Stable Storage data shall be read from.
 753  * @count: number of bytes to transfer. count is multiple of 4.
 754  *
 755  * This PDC call reads count bytes from the supplied memaddr address,
 756  * and copies count bytes to the Stable Storage address staddr.
 757  * The call will fail if staddr+count > PDC_STABLE size.
 758  */
 759 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 760 {
 761        int retval;
 762         unsigned long flags;
 763 
 764        spin_lock_irqsave(&pdc_lock, flags);
 765        memcpy(pdc_result, memaddr, count);
 766        convert_to_wide(pdc_result);
 767        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 768                __pa(pdc_result), count);
 769        spin_unlock_irqrestore(&pdc_lock, flags);
 770 
 771        return retval;
 772 }
 773 EXPORT_SYMBOL(pdc_stable_write);
 774 
 775 /**
 776  * pdc_stable_get_size - Get Stable Storage size in bytes.
 777  * @size: pointer where the size will be stored.
 778  *
 779  * This PDC call returns the number of bytes in the processor's Stable
 780  * Storage, which is the number of contiguous bytes implemented in Stable
 781  * Storage starting from staddr=0. size in an unsigned 64-bit integer
 782  * which is a multiple of four.
 783  */
 784 int pdc_stable_get_size(unsigned long *size)
 785 {
 786        int retval;
 787         unsigned long flags;
 788 
 789        spin_lock_irqsave(&pdc_lock, flags);
 790        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 791        *size = pdc_result[0];
 792        spin_unlock_irqrestore(&pdc_lock, flags);
 793 
 794        return retval;
 795 }
 796 EXPORT_SYMBOL(pdc_stable_get_size);
 797 
 798 /**
 799  * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 800  *
 801  * This PDC call is meant to be used to check the integrity of the current
 802  * contents of Stable Storage.
 803  */
 804 int pdc_stable_verify_contents(void)
 805 {
 806        int retval;
 807         unsigned long flags;
 808 
 809        spin_lock_irqsave(&pdc_lock, flags);
 810        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 811        spin_unlock_irqrestore(&pdc_lock, flags);
 812 
 813        return retval;
 814 }
 815 EXPORT_SYMBOL(pdc_stable_verify_contents);
 816 
 817 /**
 818  * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 819  * the validity indicator.
 820  *
 821  * This PDC call will erase all contents of Stable Storage. Use with care!
 822  */
 823 int pdc_stable_initialize(void)
 824 {
 825        int retval;
 826         unsigned long flags;
 827 
 828        spin_lock_irqsave(&pdc_lock, flags);
 829        retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 830        spin_unlock_irqrestore(&pdc_lock, flags);
 831 
 832        return retval;
 833 }
 834 EXPORT_SYMBOL(pdc_stable_initialize);
 835 
 836 /**
 837  * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 838  * @hwpath: fully bc.mod style path to the device.
 839  * @initiator: the array to return the result into
 840  *
 841  * Get the SCSI operational parameters from PDC.
 842  * Needed since HPUX never used BIOS or symbios card NVRAM.
 843  * Most ncr/sym cards won't have an entry and just use whatever
 844  * capabilities of the card are (eg Ultra, LVD). But there are
 845  * several cases where it's useful:
 846  *    o set SCSI id for Multi-initiator clusters,
 847  *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 848  *    o bus width exported is less than what the interface chip supports.
 849  */
 850 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 851 {
 852         int retval;
 853         unsigned long flags;
 854 
 855         spin_lock_irqsave(&pdc_lock, flags);
 856 
 857 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 858 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 859         strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 860 
 861         retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 862                               __pa(pdc_result), __pa(hwpath));
 863         if (retval < PDC_OK)
 864                 goto out;
 865 
 866         if (pdc_result[0] < 16) {
 867                 initiator->host_id = pdc_result[0];
 868         } else {
 869                 initiator->host_id = -1;
 870         }
 871 
 872         /*
 873          * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 874          * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 875          */
 876         switch (pdc_result[1]) {
 877                 case  1: initiator->factor = 50; break;
 878                 case  2: initiator->factor = 25; break;
 879                 case  5: initiator->factor = 12; break;
 880                 case 25: initiator->factor = 10; break;
 881                 case 20: initiator->factor = 12; break;
 882                 case 40: initiator->factor = 10; break;
 883                 default: initiator->factor = -1; break;
 884         }
 885 
 886         if (IS_SPROCKETS()) {
 887                 initiator->width = pdc_result[4];
 888                 initiator->mode = pdc_result[5];
 889         } else {
 890                 initiator->width = -1;
 891                 initiator->mode = -1;
 892         }
 893 
 894  out:
 895         spin_unlock_irqrestore(&pdc_lock, flags);
 896 
 897         return (retval >= PDC_OK);
 898 }
 899 EXPORT_SYMBOL(pdc_get_initiator);
 900 
 901 
 902 /**
 903  * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 904  * @num_entries: The return value.
 905  * @hpa: The HPA for the device.
 906  *
 907  * This PDC function returns the number of entries in the specified cell's
 908  * interrupt table.
 909  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 910  */ 
 911 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 912 {
 913         int retval;
 914         unsigned long flags;
 915 
 916         spin_lock_irqsave(&pdc_lock, flags);
 917         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 918                               __pa(pdc_result), hpa);
 919         convert_to_wide(pdc_result);
 920         *num_entries = pdc_result[0];
 921         spin_unlock_irqrestore(&pdc_lock, flags);
 922 
 923         return retval;
 924 }
 925 
 926 /** 
 927  * pdc_pci_irt - Get the PCI interrupt routing table.
 928  * @num_entries: The number of entries in the table.
 929  * @hpa: The Hard Physical Address of the device.
 930  * @tbl: 
 931  *
 932  * Get the PCI interrupt routing table for the device at the given HPA.
 933  * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 934  */
 935 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 936 {
 937         int retval;
 938         unsigned long flags;
 939 
 940         BUG_ON((unsigned long)tbl & 0x7);
 941 
 942         spin_lock_irqsave(&pdc_lock, flags);
 943         pdc_result[0] = num_entries;
 944         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 945                               __pa(pdc_result), hpa, __pa(tbl));
 946         spin_unlock_irqrestore(&pdc_lock, flags);
 947 
 948         return retval;
 949 }
 950 
 951 
 952 #if 0   /* UNTEST CODE - left here in case someone needs it */
 953 
 954 /** 
 955  * pdc_pci_config_read - read PCI config space.
 956  * @hpa         token from PDC to indicate which PCI device
 957  * @pci_addr    configuration space address to read from
 958  *
 959  * Read PCI Configuration space *before* linux PCI subsystem is running.
 960  */
 961 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 962 {
 963         int retval;
 964         unsigned long flags;
 965 
 966         spin_lock_irqsave(&pdc_lock, flags);
 967         pdc_result[0] = 0;
 968         pdc_result[1] = 0;
 969         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 970                               __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 971         spin_unlock_irqrestore(&pdc_lock, flags);
 972 
 973         return retval ? ~0 : (unsigned int) pdc_result[0];
 974 }
 975 
 976 
 977 /** 
 978  * pdc_pci_config_write - read PCI config space.
 979  * @hpa         token from PDC to indicate which PCI device
 980  * @pci_addr    configuration space address to write
 981  * @val         value we want in the 32-bit register
 982  *
 983  * Write PCI Configuration space *before* linux PCI subsystem is running.
 984  */
 985 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 986 {
 987         int retval;
 988         unsigned long flags;
 989 
 990         spin_lock_irqsave(&pdc_lock, flags);
 991         pdc_result[0] = 0;
 992         retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 993                               __pa(pdc_result), hpa,
 994                               cfg_addr&~3UL, 4UL, (unsigned long) val);
 995         spin_unlock_irqrestore(&pdc_lock, flags);
 996 
 997         return retval;
 998 }
 999 #endif /* UNTESTED CODE */
1000 
1001 /**
1002  * pdc_tod_read - Read the Time-Of-Day clock.
1003  * @tod: The return buffer:
1004  *
1005  * Read the Time-Of-Day clock
1006  */
1007 int pdc_tod_read(struct pdc_tod *tod)
1008 {
1009         int retval;
1010         unsigned long flags;
1011 
1012         spin_lock_irqsave(&pdc_lock, flags);
1013         retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1014         convert_to_wide(pdc_result);
1015         memcpy(tod, pdc_result, sizeof(*tod));
1016         spin_unlock_irqrestore(&pdc_lock, flags);
1017 
1018         return retval;
1019 }
1020 EXPORT_SYMBOL(pdc_tod_read);
1021 
1022 int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1023 {
1024         int retval;
1025         unsigned long flags;
1026 
1027         spin_lock_irqsave(&pdc_lock, flags);
1028         retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1029         convert_to_wide(pdc_result);
1030         memcpy(rinfo, pdc_result, sizeof(*rinfo));
1031         spin_unlock_irqrestore(&pdc_lock, flags);
1032 
1033         return retval;
1034 }
1035 
1036 int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1037                 unsigned long *pdt_entries_ptr)
1038 {
1039         int retval;
1040         unsigned long flags;
1041 
1042         spin_lock_irqsave(&pdc_lock, flags);
1043         retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1044                         __pa(pdt_entries_ptr));
1045         if (retval == PDC_OK) {
1046                 convert_to_wide(pdc_result);
1047                 memcpy(pret, pdc_result, sizeof(*pret));
1048         }
1049         spin_unlock_irqrestore(&pdc_lock, flags);
1050 
1051 #ifdef CONFIG_64BIT
1052         /*
1053          * 64-bit kernels should not call this PDT function in narrow mode.
1054          * The pdt_entries_ptr array above will now contain 32-bit values
1055          */
1056         if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1057                 return PDC_ERROR;
1058 #endif
1059 
1060         return retval;
1061 }
1062 
1063 /**
1064  * pdc_tod_set - Set the Time-Of-Day clock.
1065  * @sec: The number of seconds since epoch.
1066  * @usec: The number of micro seconds.
1067  *
1068  * Set the Time-Of-Day clock.
1069  */ 
1070 int pdc_tod_set(unsigned long sec, unsigned long usec)
1071 {
1072         int retval;
1073         unsigned long flags;
1074 
1075         spin_lock_irqsave(&pdc_lock, flags);
1076         retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1077         spin_unlock_irqrestore(&pdc_lock, flags);
1078 
1079         return retval;
1080 }
1081 EXPORT_SYMBOL(pdc_tod_set);
1082 
1083 #ifdef CONFIG_64BIT
1084 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1085                 struct pdc_memory_table *tbl, unsigned long entries)
1086 {
1087         int retval;
1088         unsigned long flags;
1089 
1090         spin_lock_irqsave(&pdc_lock, flags);
1091         retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1092         convert_to_wide(pdc_result);
1093         memcpy(r_addr, pdc_result, sizeof(*r_addr));
1094         memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1095         spin_unlock_irqrestore(&pdc_lock, flags);
1096 
1097         return retval;
1098 }
1099 #endif /* CONFIG_64BIT */
1100 
1101 /* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1102  * so I guessed at unsigned long.  Someone who knows what this does, can fix
1103  * it later. :)
1104  */
1105 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1106 {
1107         int retval;
1108         unsigned long flags;
1109 
1110         spin_lock_irqsave(&pdc_lock, flags);
1111         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1112                               PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1113         spin_unlock_irqrestore(&pdc_lock, flags);
1114 
1115         return retval;
1116 }
1117 
1118 /*
1119  * pdc_do_reset - Reset the system.
1120  *
1121  * Reset the system.
1122  */
1123 int pdc_do_reset(void)
1124 {
1125         int retval;
1126         unsigned long flags;
1127 
1128         spin_lock_irqsave(&pdc_lock, flags);
1129         retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1130         spin_unlock_irqrestore(&pdc_lock, flags);
1131 
1132         return retval;
1133 }
1134 
1135 /*
1136  * pdc_soft_power_info - Enable soft power switch.
1137  * @power_reg: address of soft power register
1138  *
1139  * Return the absolute address of the soft power switch register
1140  */
1141 int __init pdc_soft_power_info(unsigned long *power_reg)
1142 {
1143         int retval;
1144         unsigned long flags;
1145 
1146         *power_reg = (unsigned long) (-1);
1147         
1148         spin_lock_irqsave(&pdc_lock, flags);
1149         retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1150         if (retval == PDC_OK) {
1151                 convert_to_wide(pdc_result);
1152                 *power_reg = f_extend(pdc_result[0]);
1153         }
1154         spin_unlock_irqrestore(&pdc_lock, flags);
1155 
1156         return retval;
1157 }
1158 
1159 /*
1160  * pdc_soft_power_button - Control the soft power button behaviour
1161  * @sw_control: 0 for hardware control, 1 for software control 
1162  *
1163  *
1164  * This PDC function places the soft power button under software or
1165  * hardware control.
1166  * Under software control the OS may control to when to allow to shut 
1167  * down the system. Under hardware control pressing the power button 
1168  * powers off the system immediately.
1169  */
1170 int pdc_soft_power_button(int sw_control)
1171 {
1172         int retval;
1173         unsigned long flags;
1174 
1175         spin_lock_irqsave(&pdc_lock, flags);
1176         retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1177         spin_unlock_irqrestore(&pdc_lock, flags);
1178 
1179         return retval;
1180 }
1181 
1182 /*
1183  * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1184  * Primarily a problem on T600 (which parisc-linux doesn't support) but
1185  * who knows what other platform firmware might do with this OS "hook".
1186  */
1187 void pdc_io_reset(void)
1188 {
1189         unsigned long flags;
1190 
1191         spin_lock_irqsave(&pdc_lock, flags);
1192         mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1193         spin_unlock_irqrestore(&pdc_lock, flags);
1194 }
1195 
1196 /*
1197  * pdc_io_reset_devices - Hack to Stop USB controller
1198  *
1199  * If PDC used the usb controller, the usb controller
1200  * is still running and will crash the machines during iommu 
1201  * setup, because of still running DMA. This PDC call
1202  * stops the USB controller.
1203  * Normally called after calling pdc_io_reset().
1204  */
1205 void pdc_io_reset_devices(void)
1206 {
1207         unsigned long flags;
1208 
1209         spin_lock_irqsave(&pdc_lock, flags);
1210         mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1211         spin_unlock_irqrestore(&pdc_lock, flags);
1212 }
1213 
1214 #endif /* defined(BOOTLOADER) */
1215 
1216 /* locked by pdc_console_lock */
1217 static int __attribute__((aligned(8)))   iodc_retbuf[32];
1218 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1219 
1220 /**
1221  * pdc_iodc_print - Console print using IODC.
1222  * @str: the string to output.
1223  * @count: length of str
1224  *
1225  * Note that only these special chars are architected for console IODC io:
1226  * BEL, BS, CR, and LF. Others are passed through.
1227  * Since the HP console requires CR+LF to perform a 'newline', we translate
1228  * "\n" to "\r\n".
1229  */
1230 int pdc_iodc_print(const unsigned char *str, unsigned count)
1231 {
1232         unsigned int i;
1233         unsigned long flags;
1234 
1235         for (i = 0; i < count;) {
1236                 switch(str[i]) {
1237                 case '\n':
1238                         iodc_dbuf[i+0] = '\r';
1239                         iodc_dbuf[i+1] = '\n';
1240                         i += 2;
1241                         goto print;
1242                 default:
1243                         iodc_dbuf[i] = str[i];
1244                         i++;
1245                         break;
1246                 }
1247         }
1248 
1249 print:
1250         spin_lock_irqsave(&pdc_lock, flags);
1251         real32_call(PAGE0->mem_cons.iodc_io,
1252                     (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1253                     PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1254                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1255         spin_unlock_irqrestore(&pdc_lock, flags);
1256 
1257         return i;
1258 }
1259 
1260 #if !defined(BOOTLOADER)
1261 /**
1262  * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1263  *
1264  * Read a character (non-blocking) from the PDC console, returns -1 if
1265  * key is not present.
1266  */
1267 int pdc_iodc_getc(void)
1268 {
1269         int ch;
1270         int status;
1271         unsigned long flags;
1272 
1273         /* Bail if no console input device. */
1274         if (!PAGE0->mem_kbd.iodc_io)
1275                 return 0;
1276         
1277         /* wait for a keyboard (rs232)-input */
1278         spin_lock_irqsave(&pdc_lock, flags);
1279         real32_call(PAGE0->mem_kbd.iodc_io,
1280                     (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1281                     PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1282                     __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1283 
1284         ch = *iodc_dbuf;
1285         status = *iodc_retbuf;
1286         spin_unlock_irqrestore(&pdc_lock, flags);
1287 
1288         if (status == 0)
1289             return -1;
1290         
1291         return ch;
1292 }
1293 
1294 int pdc_sti_call(unsigned long func, unsigned long flags,
1295                  unsigned long inptr, unsigned long outputr,
1296                  unsigned long glob_cfg)
1297 {
1298         int retval;
1299         unsigned long irqflags;
1300 
1301         spin_lock_irqsave(&pdc_lock, irqflags);  
1302         retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1303         spin_unlock_irqrestore(&pdc_lock, irqflags);
1304 
1305         return retval;
1306 }
1307 EXPORT_SYMBOL(pdc_sti_call);
1308 
1309 #ifdef CONFIG_64BIT
1310 /**
1311  * pdc_pat_cell_get_number - Returns the cell number.
1312  * @cell_info: The return buffer.
1313  *
1314  * This PDC call returns the cell number of the cell from which the call
1315  * is made.
1316  */
1317 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1318 {
1319         int retval;
1320         unsigned long flags;
1321 
1322         spin_lock_irqsave(&pdc_lock, flags);
1323         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1324         memcpy(cell_info, pdc_result, sizeof(*cell_info));
1325         spin_unlock_irqrestore(&pdc_lock, flags);
1326 
1327         return retval;
1328 }
1329 
1330 /**
1331  * pdc_pat_cell_module - Retrieve the cell's module information.
1332  * @actcnt: The number of bytes written to mem_addr.
1333  * @ploc: The physical location.
1334  * @mod: The module index.
1335  * @view_type: The view of the address type.
1336  * @mem_addr: The return buffer.
1337  *
1338  * This PDC call returns information about each module attached to the cell
1339  * at the specified location.
1340  */
1341 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1342                         unsigned long view_type, void *mem_addr)
1343 {
1344         int retval;
1345         unsigned long flags;
1346         static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1347 
1348         spin_lock_irqsave(&pdc_lock, flags);
1349         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1350                               ploc, mod, view_type, __pa(&result));
1351         if(!retval) {
1352                 *actcnt = pdc_result[0];
1353                 memcpy(mem_addr, &result, *actcnt);
1354         }
1355         spin_unlock_irqrestore(&pdc_lock, flags);
1356 
1357         return retval;
1358 }
1359 
1360 /**
1361  * pdc_pat_cell_info - Retrieve the cell's information.
1362  * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1363  * @actcnt: The number of bytes which should be written to info.
1364  * @offset: offset of the structure.
1365  * @cell_number: The cell number which should be asked, or -1 for current cell.
1366  *
1367  * This PDC call returns information about the given cell (or all cells).
1368  */
1369 int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1370                 unsigned long *actcnt, unsigned long offset,
1371                 unsigned long cell_number)
1372 {
1373         int retval;
1374         unsigned long flags;
1375         struct pdc_pat_cell_info_rtn_block result;
1376 
1377         spin_lock_irqsave(&pdc_lock, flags);
1378         retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1379                         __pa(pdc_result), __pa(&result), *actcnt,
1380                         offset, cell_number);
1381         if (!retval) {
1382                 *actcnt = pdc_result[0];
1383                 memcpy(info, &result, *actcnt);
1384         }
1385         spin_unlock_irqrestore(&pdc_lock, flags);
1386 
1387         return retval;
1388 }
1389 
1390 /**
1391  * pdc_pat_cpu_get_number - Retrieve the cpu number.
1392  * @cpu_info: The return buffer.
1393  * @hpa: The Hard Physical Address of the CPU.
1394  *
1395  * Retrieve the cpu number for the cpu at the specified HPA.
1396  */
1397 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1398 {
1399         int retval;
1400         unsigned long flags;
1401 
1402         spin_lock_irqsave(&pdc_lock, flags);
1403         retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1404                               __pa(&pdc_result), hpa);
1405         memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1406         spin_unlock_irqrestore(&pdc_lock, flags);
1407 
1408         return retval;
1409 }
1410 
1411 /**
1412  * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1413  * @num_entries: The return value.
1414  * @cell_num: The target cell.
1415  *
1416  * This PDC function returns the number of entries in the specified cell's
1417  * interrupt table.
1418  */
1419 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1420 {
1421         int retval;
1422         unsigned long flags;
1423 
1424         spin_lock_irqsave(&pdc_lock, flags);
1425         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1426                               __pa(pdc_result), cell_num);
1427         *num_entries = pdc_result[0];
1428         spin_unlock_irqrestore(&pdc_lock, flags);
1429 
1430         return retval;
1431 }
1432 
1433 /**
1434  * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1435  * @r_addr: The return buffer.
1436  * @cell_num: The target cell.
1437  *
1438  * This PDC function returns the actual interrupt table for the specified cell.
1439  */
1440 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1441 {
1442         int retval;
1443         unsigned long flags;
1444 
1445         spin_lock_irqsave(&pdc_lock, flags);
1446         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1447                               __pa(r_addr), cell_num);
1448         spin_unlock_irqrestore(&pdc_lock, flags);
1449 
1450         return retval;
1451 }
1452 
1453 /**
1454  * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1455  * @actlen: The return buffer.
1456  * @mem_addr: Pointer to the memory buffer.
1457  * @count: The number of bytes to read from the buffer.
1458  * @offset: The offset with respect to the beginning of the buffer.
1459  *
1460  */
1461 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1462                             unsigned long count, unsigned long offset)
1463 {
1464         int retval;
1465         unsigned long flags;
1466 
1467         spin_lock_irqsave(&pdc_lock, flags);
1468         retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1469                               __pa(pdc_result2), count, offset);
1470         *actual_len = pdc_result[0];
1471         memcpy(mem_addr, pdc_result2, *actual_len);
1472         spin_unlock_irqrestore(&pdc_lock, flags);
1473 
1474         return retval;
1475 }
1476 
1477 /**
1478  * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1479  * @legacy_rev: The legacy revision.
1480  * @pat_rev: The PAT revision.
1481  * @pdc_cap: The PDC capabilities.
1482  *
1483  */
1484 int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1485                 unsigned long *pat_rev, unsigned long *pdc_cap)
1486 {
1487         int retval;
1488         unsigned long flags;
1489 
1490         spin_lock_irqsave(&pdc_lock, flags);
1491         retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1492                                 __pa(pdc_result));
1493         if (retval == PDC_OK) {
1494                 *legacy_rev = pdc_result[0];
1495                 *pat_rev = pdc_result[1];
1496                 *pdc_cap = pdc_result[2];
1497         }
1498         spin_unlock_irqrestore(&pdc_lock, flags);
1499 
1500         return retval;
1501 }
1502 
1503 
1504 /**
1505  * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1506  * @pci_addr: PCI configuration space address for which the read request is being made.
1507  * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1508  * @mem_addr: Pointer to return memory buffer.
1509  *
1510  */
1511 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1512 {
1513         int retval;
1514         unsigned long flags;
1515 
1516         spin_lock_irqsave(&pdc_lock, flags);
1517         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1518                                         __pa(pdc_result), pci_addr, pci_size);
1519         switch(pci_size) {
1520                 case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1521                 case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1522                 case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1523         }
1524         spin_unlock_irqrestore(&pdc_lock, flags);
1525 
1526         return retval;
1527 }
1528 
1529 /**
1530  * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1531  * @pci_addr: PCI configuration space address for which the write  request is being made.
1532  * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1533  * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1534  *         written to PCI Config space.
1535  *
1536  */
1537 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1538 {
1539         int retval;
1540         unsigned long flags;
1541 
1542         spin_lock_irqsave(&pdc_lock, flags);
1543         retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1544                                 pci_addr, pci_size, val);
1545         spin_unlock_irqrestore(&pdc_lock, flags);
1546 
1547         return retval;
1548 }
1549 
1550 /**
1551  * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1552  * @rinfo: memory pdt information
1553  *
1554  */
1555 int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1556 {
1557         int retval;
1558         unsigned long flags;
1559 
1560         spin_lock_irqsave(&pdc_lock, flags);
1561         retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1562                         __pa(&pdc_result));
1563         if (retval == PDC_OK)
1564                 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1565         spin_unlock_irqrestore(&pdc_lock, flags);
1566 
1567         return retval;
1568 }
1569 
1570 /**
1571  * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1572  *                              table of a cell
1573  * @rinfo: memory pdt information
1574  * @cell: cell number
1575  *
1576  */
1577 int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1578                 unsigned long cell)
1579 {
1580         int retval;
1581         unsigned long flags;
1582 
1583         spin_lock_irqsave(&pdc_lock, flags);
1584         retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1585                         __pa(&pdc_result), cell);
1586         if (retval == PDC_OK)
1587                 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1588         spin_unlock_irqrestore(&pdc_lock, flags);
1589 
1590         return retval;
1591 }
1592 
1593 /**
1594  * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1595  * @pret: array of PDT entries
1596  * @pdt_entries_ptr: ptr to hold number of PDT entries
1597  * @max_entries: maximum number of entries to be read
1598  *
1599  */
1600 int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1601                 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1602 {
1603         int retval;
1604         unsigned long flags, entries;
1605 
1606         spin_lock_irqsave(&pdc_lock, flags);
1607         /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1608         retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1609                         __pa(&pdc_result), parisc_cell_num,
1610                         __pa(pdt_entries_ptr));
1611 
1612         if (retval == PDC_OK) {
1613                 /* build up return value as for PDC_PAT_MEM_PD_READ */
1614                 entries = min(pdc_result[0], max_entries);
1615                 pret->pdt_entries = entries;
1616                 pret->actual_count_bytes = entries * sizeof(unsigned long);
1617         }
1618 
1619         spin_unlock_irqrestore(&pdc_lock, flags);
1620         WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1621 
1622         return retval;
1623 }
1624 /**
1625  * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1626  * @pret: array of PDT entries
1627  * @pdt_entries_ptr: ptr to hold number of PDT entries
1628  * @count: number of bytes to read
1629  * @offset: offset to start (in bytes)
1630  *
1631  */
1632 int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1633                 unsigned long *pdt_entries_ptr, unsigned long count,
1634                 unsigned long offset)
1635 {
1636         int retval;
1637         unsigned long flags, entries;
1638 
1639         spin_lock_irqsave(&pdc_lock, flags);
1640         retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1641                 __pa(&pdc_result), __pa(pdt_entries_ptr),
1642                 count, offset);
1643 
1644         if (retval == PDC_OK) {
1645                 entries = min(pdc_result[0], count);
1646                 pret->actual_count_bytes = entries;
1647                 pret->pdt_entries = entries / sizeof(unsigned long);
1648         }
1649 
1650         spin_unlock_irqrestore(&pdc_lock, flags);
1651 
1652         return retval;
1653 }
1654 
1655 /**
1656  * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1657  * @pret: ptr to hold returned information
1658  * @phys_addr: physical address to examine
1659  *
1660  */
1661 int pdc_pat_mem_get_dimm_phys_location(
1662                 struct pdc_pat_mem_phys_mem_location *pret,
1663                 unsigned long phys_addr)
1664 {
1665         int retval;
1666         unsigned long flags;
1667 
1668         spin_lock_irqsave(&pdc_lock, flags);
1669         retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1670                 __pa(&pdc_result), phys_addr);
1671 
1672         if (retval == PDC_OK)
1673                 memcpy(pret, &pdc_result, sizeof(*pret));
1674 
1675         spin_unlock_irqrestore(&pdc_lock, flags);
1676 
1677         return retval;
1678 }
1679 #endif /* CONFIG_64BIT */
1680 #endif /* defined(BOOTLOADER) */
1681 
1682 
1683 /***************** 32-bit real-mode calls ***********/
1684 /* The struct below is used
1685  * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1686  * real32_call_asm() then uses this stack in narrow real mode
1687  */
1688 
1689 struct narrow_stack {
1690         /* use int, not long which is 64 bits */
1691         unsigned int arg13;
1692         unsigned int arg12;
1693         unsigned int arg11;
1694         unsigned int arg10;
1695         unsigned int arg9;
1696         unsigned int arg8;
1697         unsigned int arg7;
1698         unsigned int arg6;
1699         unsigned int arg5;
1700         unsigned int arg4;
1701         unsigned int arg3;
1702         unsigned int arg2;
1703         unsigned int arg1;
1704         unsigned int arg0;
1705         unsigned int frame_marker[8];
1706         unsigned int sp;
1707         /* in reality, there's nearly 8k of stack after this */
1708 };
1709 
1710 long real32_call(unsigned long fn, ...)
1711 {
1712         va_list args;
1713         extern struct narrow_stack real_stack;
1714         extern unsigned long real32_call_asm(unsigned int *,
1715                                              unsigned int *, 
1716                                              unsigned int);
1717         
1718         va_start(args, fn);
1719         real_stack.arg0 = va_arg(args, unsigned int);
1720         real_stack.arg1 = va_arg(args, unsigned int);
1721         real_stack.arg2 = va_arg(args, unsigned int);
1722         real_stack.arg3 = va_arg(args, unsigned int);
1723         real_stack.arg4 = va_arg(args, unsigned int);
1724         real_stack.arg5 = va_arg(args, unsigned int);
1725         real_stack.arg6 = va_arg(args, unsigned int);
1726         real_stack.arg7 = va_arg(args, unsigned int);
1727         real_stack.arg8 = va_arg(args, unsigned int);
1728         real_stack.arg9 = va_arg(args, unsigned int);
1729         real_stack.arg10 = va_arg(args, unsigned int);
1730         real_stack.arg11 = va_arg(args, unsigned int);
1731         real_stack.arg12 = va_arg(args, unsigned int);
1732         real_stack.arg13 = va_arg(args, unsigned int);
1733         va_end(args);
1734         
1735         return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1736 }
1737 
1738 #ifdef CONFIG_64BIT
1739 /***************** 64-bit real-mode calls ***********/
1740 
1741 struct wide_stack {
1742         unsigned long arg0;
1743         unsigned long arg1;
1744         unsigned long arg2;
1745         unsigned long arg3;
1746         unsigned long arg4;
1747         unsigned long arg5;
1748         unsigned long arg6;
1749         unsigned long arg7;
1750         unsigned long arg8;
1751         unsigned long arg9;
1752         unsigned long arg10;
1753         unsigned long arg11;
1754         unsigned long arg12;
1755         unsigned long arg13;
1756         unsigned long frame_marker[2];  /* rp, previous sp */
1757         unsigned long sp;
1758         /* in reality, there's nearly 8k of stack after this */
1759 };
1760 
1761 long real64_call(unsigned long fn, ...)
1762 {
1763         va_list args;
1764         extern struct wide_stack real64_stack;
1765         extern unsigned long real64_call_asm(unsigned long *,
1766                                              unsigned long *, 
1767                                              unsigned long);
1768     
1769         va_start(args, fn);
1770         real64_stack.arg0 = va_arg(args, unsigned long);
1771         real64_stack.arg1 = va_arg(args, unsigned long);
1772         real64_stack.arg2 = va_arg(args, unsigned long);
1773         real64_stack.arg3 = va_arg(args, unsigned long);
1774         real64_stack.arg4 = va_arg(args, unsigned long);
1775         real64_stack.arg5 = va_arg(args, unsigned long);
1776         real64_stack.arg6 = va_arg(args, unsigned long);
1777         real64_stack.arg7 = va_arg(args, unsigned long);
1778         real64_stack.arg8 = va_arg(args, unsigned long);
1779         real64_stack.arg9 = va_arg(args, unsigned long);
1780         real64_stack.arg10 = va_arg(args, unsigned long);
1781         real64_stack.arg11 = va_arg(args, unsigned long);
1782         real64_stack.arg12 = va_arg(args, unsigned long);
1783         real64_stack.arg13 = va_arg(args, unsigned long);
1784         va_end(args);
1785         
1786         return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1787 }
1788 
1789 #endif /* CONFIG_64BIT */

/* [<][>][^][v][top][bottom][index][help] */