root/arch/um/include/asm/pgtable.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. pte_none
  2. pte_read
  3. pte_exec
  4. pte_write
  5. pte_dirty
  6. pte_young
  7. pte_newpage
  8. pte_newprot
  9. pte_special
  10. pte_mknewprot
  11. pte_mkclean
  12. pte_mkold
  13. pte_wrprotect
  14. pte_mkread
  15. pte_mkdirty
  16. pte_mkyoung
  17. pte_mkwrite
  18. pte_mkuptodate
  19. pte_mknewpage
  20. pte_mkspecial
  21. set_pte
  22. set_pte_at
  23. pte_same
  24. pte_modify

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /* 
   3  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   4  * Copyright 2003 PathScale, Inc.
   5  * Derived from include/asm-i386/pgtable.h
   6  */
   7 
   8 #ifndef __UM_PGTABLE_H
   9 #define __UM_PGTABLE_H
  10 
  11 #include <asm/fixmap.h>
  12 
  13 #define _PAGE_PRESENT   0x001
  14 #define _PAGE_NEWPAGE   0x002
  15 #define _PAGE_NEWPROT   0x004
  16 #define _PAGE_RW        0x020
  17 #define _PAGE_USER      0x040
  18 #define _PAGE_ACCESSED  0x080
  19 #define _PAGE_DIRTY     0x100
  20 /* If _PAGE_PRESENT is clear, we use these: */
  21 #define _PAGE_PROTNONE  0x010   /* if the user mapped it with PROT_NONE;
  22                                    pte_present gives true */
  23 
  24 #ifdef CONFIG_3_LEVEL_PGTABLES
  25 #include <asm/pgtable-3level.h>
  26 #else
  27 #include <asm/pgtable-2level.h>
  28 #endif
  29 
  30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  31 
  32 /* zero page used for uninitialized stuff */
  33 extern unsigned long *empty_zero_page;
  34 
  35 /* Just any arbitrary offset to the start of the vmalloc VM area: the
  36  * current 8MB value just means that there will be a 8MB "hole" after the
  37  * physical memory until the kernel virtual memory starts.  That means that
  38  * any out-of-bounds memory accesses will hopefully be caught.
  39  * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  40  * area for the same reason. ;)
  41  */
  42 
  43 extern unsigned long end_iomem;
  44 
  45 #define VMALLOC_OFFSET  (__va_space)
  46 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  47 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
  48 #define VMALLOC_END     (FIXADDR_START-2*PAGE_SIZE)
  49 #define MODULES_VADDR   VMALLOC_START
  50 #define MODULES_END     VMALLOC_END
  51 #define MODULES_LEN     (MODULES_VADDR - MODULES_END)
  52 
  53 #define _PAGE_TABLE     (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
  54 #define _KERNPG_TABLE   (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
  55 #define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
  56 #define __PAGE_KERNEL_EXEC                                              \
  57          (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  58 #define PAGE_NONE       __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
  59 #define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
  60 #define PAGE_COPY       __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  61 #define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
  62 #define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
  63 #define PAGE_KERNEL_EXEC        __pgprot(__PAGE_KERNEL_EXEC)
  64 
  65 /*
  66  * The i386 can't do page protection for execute, and considers that the same
  67  * are read.
  68  * Also, write permissions imply read permissions. This is the closest we can
  69  * get..
  70  */
  71 #define __P000  PAGE_NONE
  72 #define __P001  PAGE_READONLY
  73 #define __P010  PAGE_COPY
  74 #define __P011  PAGE_COPY
  75 #define __P100  PAGE_READONLY
  76 #define __P101  PAGE_READONLY
  77 #define __P110  PAGE_COPY
  78 #define __P111  PAGE_COPY
  79 
  80 #define __S000  PAGE_NONE
  81 #define __S001  PAGE_READONLY
  82 #define __S010  PAGE_SHARED
  83 #define __S011  PAGE_SHARED
  84 #define __S100  PAGE_READONLY
  85 #define __S101  PAGE_READONLY
  86 #define __S110  PAGE_SHARED
  87 #define __S111  PAGE_SHARED
  88 
  89 /*
  90  * ZERO_PAGE is a global shared page that is always zero: used
  91  * for zero-mapped memory areas etc..
  92  */
  93 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
  94 
  95 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
  96 
  97 #define pmd_none(x)     (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
  98 #define pmd_bad(x)      ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
  99 
 100 #define pmd_present(x)  (pmd_val(x) & _PAGE_PRESENT)
 101 #define pmd_clear(xp)   do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
 102 
 103 #define pmd_newpage(x)  (pmd_val(x) & _PAGE_NEWPAGE)
 104 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
 105 
 106 #define pud_newpage(x)  (pud_val(x) & _PAGE_NEWPAGE)
 107 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
 108 
 109 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
 110 
 111 #define pte_page(x) pfn_to_page(pte_pfn(x))
 112 
 113 #define pte_present(x)  pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
 114 
 115 /*
 116  * =================================
 117  * Flags checking section.
 118  * =================================
 119  */
 120 
 121 static inline int pte_none(pte_t pte)
 122 {
 123         return pte_is_zero(pte);
 124 }
 125 
 126 /*
 127  * The following only work if pte_present() is true.
 128  * Undefined behaviour if not..
 129  */
 130 static inline int pte_read(pte_t pte)
 131 { 
 132         return((pte_get_bits(pte, _PAGE_USER)) &&
 133                !(pte_get_bits(pte, _PAGE_PROTNONE)));
 134 }
 135 
 136 static inline int pte_exec(pte_t pte){
 137         return((pte_get_bits(pte, _PAGE_USER)) &&
 138                !(pte_get_bits(pte, _PAGE_PROTNONE)));
 139 }
 140 
 141 static inline int pte_write(pte_t pte)
 142 {
 143         return((pte_get_bits(pte, _PAGE_RW)) &&
 144                !(pte_get_bits(pte, _PAGE_PROTNONE)));
 145 }
 146 
 147 static inline int pte_dirty(pte_t pte)
 148 {
 149         return pte_get_bits(pte, _PAGE_DIRTY);
 150 }
 151 
 152 static inline int pte_young(pte_t pte)
 153 {
 154         return pte_get_bits(pte, _PAGE_ACCESSED);
 155 }
 156 
 157 static inline int pte_newpage(pte_t pte)
 158 {
 159         return pte_get_bits(pte, _PAGE_NEWPAGE);
 160 }
 161 
 162 static inline int pte_newprot(pte_t pte)
 163 { 
 164         return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
 165 }
 166 
 167 static inline int pte_special(pte_t pte)
 168 {
 169         return 0;
 170 }
 171 
 172 /*
 173  * =================================
 174  * Flags setting section.
 175  * =================================
 176  */
 177 
 178 static inline pte_t pte_mknewprot(pte_t pte)
 179 {
 180         pte_set_bits(pte, _PAGE_NEWPROT);
 181         return(pte);
 182 }
 183 
 184 static inline pte_t pte_mkclean(pte_t pte)
 185 {
 186         pte_clear_bits(pte, _PAGE_DIRTY);
 187         return(pte);
 188 }
 189 
 190 static inline pte_t pte_mkold(pte_t pte)        
 191 { 
 192         pte_clear_bits(pte, _PAGE_ACCESSED);
 193         return(pte);
 194 }
 195 
 196 static inline pte_t pte_wrprotect(pte_t pte)
 197 { 
 198         if (likely(pte_get_bits(pte, _PAGE_RW)))
 199                 pte_clear_bits(pte, _PAGE_RW);
 200         else
 201                 return pte;
 202         return(pte_mknewprot(pte)); 
 203 }
 204 
 205 static inline pte_t pte_mkread(pte_t pte)
 206 { 
 207         if (unlikely(pte_get_bits(pte, _PAGE_USER)))
 208                 return pte;
 209         pte_set_bits(pte, _PAGE_USER);
 210         return(pte_mknewprot(pte)); 
 211 }
 212 
 213 static inline pte_t pte_mkdirty(pte_t pte)
 214 { 
 215         pte_set_bits(pte, _PAGE_DIRTY);
 216         return(pte);
 217 }
 218 
 219 static inline pte_t pte_mkyoung(pte_t pte)
 220 {
 221         pte_set_bits(pte, _PAGE_ACCESSED);
 222         return(pte);
 223 }
 224 
 225 static inline pte_t pte_mkwrite(pte_t pte)      
 226 {
 227         if (unlikely(pte_get_bits(pte,  _PAGE_RW)))
 228                 return pte;
 229         pte_set_bits(pte, _PAGE_RW);
 230         return(pte_mknewprot(pte)); 
 231 }
 232 
 233 static inline pte_t pte_mkuptodate(pte_t pte)   
 234 {
 235         pte_clear_bits(pte, _PAGE_NEWPAGE);
 236         if(pte_present(pte))
 237                 pte_clear_bits(pte, _PAGE_NEWPROT);
 238         return(pte); 
 239 }
 240 
 241 static inline pte_t pte_mknewpage(pte_t pte)
 242 {
 243         pte_set_bits(pte, _PAGE_NEWPAGE);
 244         return(pte);
 245 }
 246 
 247 static inline pte_t pte_mkspecial(pte_t pte)
 248 {
 249         return(pte);
 250 }
 251 
 252 static inline void set_pte(pte_t *pteptr, pte_t pteval)
 253 {
 254         pte_copy(*pteptr, pteval);
 255 
 256         /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
 257          * fix_range knows to unmap it.  _PAGE_NEWPROT is specific to
 258          * mapped pages.
 259          */
 260 
 261         *pteptr = pte_mknewpage(*pteptr);
 262         if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
 263 }
 264 
 265 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 266                               pte_t *pteptr, pte_t pteval)
 267 {
 268         set_pte(pteptr, pteval);
 269 }
 270 
 271 #define __HAVE_ARCH_PTE_SAME
 272 static inline int pte_same(pte_t pte_a, pte_t pte_b)
 273 {
 274         return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
 275 }
 276 
 277 /*
 278  * Conversion functions: convert a page and protection to a page entry,
 279  * and a page entry and page directory to the page they refer to.
 280  */
 281 
 282 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
 283 #define __virt_to_page(virt) phys_to_page(__pa(virt))
 284 #define page_to_phys(page) pfn_to_phys(page_to_pfn(page))
 285 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
 286 
 287 #define mk_pte(page, pgprot) \
 288         ({ pte_t pte;                                   \
 289                                                         \
 290         pte_set_val(pte, page_to_phys(page), (pgprot)); \
 291         if (pte_present(pte))                           \
 292                 pte_mknewprot(pte_mknewpage(pte));      \
 293         pte;})
 294 
 295 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 296 {
 297         pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
 298         return pte; 
 299 }
 300 
 301 /*
 302  * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
 303  *
 304  * this macro returns the index of the entry in the pgd page which would
 305  * control the given virtual address
 306  */
 307 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 308 
 309 /*
 310  * pgd_offset() returns a (pgd_t *)
 311  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
 312  */
 313 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
 314 
 315 /*
 316  * a shortcut which implies the use of the kernel's pgd, instead
 317  * of a process's
 318  */
 319 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
 320 
 321 /*
 322  * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
 323  *
 324  * this macro returns the index of the entry in the pmd page which would
 325  * control the given virtual address
 326  */
 327 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 328 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 329 
 330 #define pmd_page_vaddr(pmd) \
 331         ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 332 
 333 /*
 334  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
 335  *
 336  * this macro returns the index of the entry in the pte page which would
 337  * control the given virtual address
 338  */
 339 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 340 #define pte_offset_kernel(dir, address) \
 341         ((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
 342 #define pte_offset_map(dir, address) \
 343         ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
 344 #define pte_unmap(pte) do { } while (0)
 345 
 346 struct mm_struct;
 347 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
 348 
 349 #define update_mmu_cache(vma,address,ptep) do ; while (0)
 350 
 351 /* Encode and de-code a swap entry */
 352 #define __swp_type(x)                   (((x).val >> 5) & 0x1f)
 353 #define __swp_offset(x)                 ((x).val >> 11)
 354 
 355 #define __swp_entry(type, offset) \
 356         ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
 357 #define __pte_to_swp_entry(pte) \
 358         ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
 359 #define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 360 
 361 #define kern_addr_valid(addr) (1)
 362 
 363 #include <asm-generic/pgtable.h>
 364 
 365 /* Clear a kernel PTE and flush it from the TLB */
 366 #define kpte_clear_flush(ptep, vaddr)           \
 367 do {                                            \
 368         pte_clear(&init_mm, (vaddr), (ptep));   \
 369         __flush_tlb_one((vaddr));               \
 370 } while (0)
 371 
 372 #endif

/* [<][>][^][v][top][bottom][index][help] */