root/arch/um/drivers/vector_kern.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vector_reset_stats
  2. get_mtu
  3. get_depth
  4. get_headroom
  5. get_req_size
  6. get_transport_options
  7. vector_advancehead
  8. vector_advancetail
  9. prep_msg
  10. vector_enqueue
  11. consume_vector_skbs
  12. vector_send
  13. destroy_queue
  14. create_queue
  15. prep_skb
  16. prep_queue_for_rx
  17. find_device
  18. vector_parse
  19. vector_config
  20. vector_id
  21. vector_remove
  22. vector_device_release
  23. vector_legacy_rx
  24. writev_tx
  25. vector_mmsg_rx
  26. vector_rx
  27. vector_net_start_xmit
  28. vector_rx_interrupt
  29. vector_tx_interrupt
  30. vector_net_close
  31. vector_tx_poll
  32. vector_reset_tx
  33. vector_net_open
  34. vector_net_set_multicast_list
  35. vector_net_tx_timeout
  36. vector_fix_features
  37. vector_set_features
  38. vector_net_poll_controller
  39. vector_net_get_drvinfo
  40. vector_get_ringparam
  41. vector_get_strings
  42. vector_get_sset_count
  43. vector_get_ethtool_stats
  44. vector_get_coalesce
  45. vector_set_coalesce
  46. vector_timer_expire
  47. vector_eth_configure
  48. vector_init
  49. vector_setup
  50. vector_inetaddr_event
  51. inet_register
  52. inet_register
  53. vector_net_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) 2017 - Cambridge Greys Limited
   4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
   5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
   7  * James Leu (jleu@mindspring.net).
   8  * Copyright (C) 2001 by various other people who didn't put their name here.
   9  */
  10 
  11 #include <linux/version.h>
  12 #include <linux/memblock.h>
  13 #include <linux/etherdevice.h>
  14 #include <linux/ethtool.h>
  15 #include <linux/inetdevice.h>
  16 #include <linux/init.h>
  17 #include <linux/list.h>
  18 #include <linux/netdevice.h>
  19 #include <linux/platform_device.h>
  20 #include <linux/rtnetlink.h>
  21 #include <linux/skbuff.h>
  22 #include <linux/slab.h>
  23 #include <linux/interrupt.h>
  24 #include <init.h>
  25 #include <irq_kern.h>
  26 #include <irq_user.h>
  27 #include <net_kern.h>
  28 #include <os.h>
  29 #include "mconsole_kern.h"
  30 #include "vector_user.h"
  31 #include "vector_kern.h"
  32 
  33 /*
  34  * Adapted from network devices with the following major changes:
  35  * All transports are static - simplifies the code significantly
  36  * Multiple FDs/IRQs per device
  37  * Vector IO optionally used for read/write, falling back to legacy
  38  * based on configuration and/or availability
  39  * Configuration is no longer positional - L2TPv3 and GRE require up to
  40  * 10 parameters, passing this as positional is not fit for purpose.
  41  * Only socket transports are supported
  42  */
  43 
  44 
  45 #define DRIVER_NAME "uml-vector"
  46 #define DRIVER_VERSION "01"
  47 struct vector_cmd_line_arg {
  48         struct list_head list;
  49         int unit;
  50         char *arguments;
  51 };
  52 
  53 struct vector_device {
  54         struct list_head list;
  55         struct net_device *dev;
  56         struct platform_device pdev;
  57         int unit;
  58         int opened;
  59 };
  60 
  61 static LIST_HEAD(vec_cmd_line);
  62 
  63 static DEFINE_SPINLOCK(vector_devices_lock);
  64 static LIST_HEAD(vector_devices);
  65 
  66 static int driver_registered;
  67 
  68 static void vector_eth_configure(int n, struct arglist *def);
  69 
  70 /* Argument accessors to set variables (and/or set default values)
  71  * mtu, buffer sizing, default headroom, etc
  72  */
  73 
  74 #define DEFAULT_HEADROOM 2
  75 #define SAFETY_MARGIN 32
  76 #define DEFAULT_VECTOR_SIZE 64
  77 #define TX_SMALL_PACKET 128
  78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
  79 #define MAX_ITERATIONS 64
  80 
  81 static const struct {
  82         const char string[ETH_GSTRING_LEN];
  83 } ethtool_stats_keys[] = {
  84         { "rx_queue_max" },
  85         { "rx_queue_running_average" },
  86         { "tx_queue_max" },
  87         { "tx_queue_running_average" },
  88         { "rx_encaps_errors" },
  89         { "tx_timeout_count" },
  90         { "tx_restart_queue" },
  91         { "tx_kicks" },
  92         { "tx_flow_control_xon" },
  93         { "tx_flow_control_xoff" },
  94         { "rx_csum_offload_good" },
  95         { "rx_csum_offload_errors"},
  96         { "sg_ok"},
  97         { "sg_linearized"},
  98 };
  99 
 100 #define VECTOR_NUM_STATS        ARRAY_SIZE(ethtool_stats_keys)
 101 
 102 static void vector_reset_stats(struct vector_private *vp)
 103 {
 104         vp->estats.rx_queue_max = 0;
 105         vp->estats.rx_queue_running_average = 0;
 106         vp->estats.tx_queue_max = 0;
 107         vp->estats.tx_queue_running_average = 0;
 108         vp->estats.rx_encaps_errors = 0;
 109         vp->estats.tx_timeout_count = 0;
 110         vp->estats.tx_restart_queue = 0;
 111         vp->estats.tx_kicks = 0;
 112         vp->estats.tx_flow_control_xon = 0;
 113         vp->estats.tx_flow_control_xoff = 0;
 114         vp->estats.sg_ok = 0;
 115         vp->estats.sg_linearized = 0;
 116 }
 117 
 118 static int get_mtu(struct arglist *def)
 119 {
 120         char *mtu = uml_vector_fetch_arg(def, "mtu");
 121         long result;
 122 
 123         if (mtu != NULL) {
 124                 if (kstrtoul(mtu, 10, &result) == 0)
 125                         if ((result < (1 << 16) - 1) && (result >= 576))
 126                                 return result;
 127         }
 128         return ETH_MAX_PACKET;
 129 }
 130 
 131 static int get_depth(struct arglist *def)
 132 {
 133         char *mtu = uml_vector_fetch_arg(def, "depth");
 134         long result;
 135 
 136         if (mtu != NULL) {
 137                 if (kstrtoul(mtu, 10, &result) == 0)
 138                         return result;
 139         }
 140         return DEFAULT_VECTOR_SIZE;
 141 }
 142 
 143 static int get_headroom(struct arglist *def)
 144 {
 145         char *mtu = uml_vector_fetch_arg(def, "headroom");
 146         long result;
 147 
 148         if (mtu != NULL) {
 149                 if (kstrtoul(mtu, 10, &result) == 0)
 150                         return result;
 151         }
 152         return DEFAULT_HEADROOM;
 153 }
 154 
 155 static int get_req_size(struct arglist *def)
 156 {
 157         char *gro = uml_vector_fetch_arg(def, "gro");
 158         long result;
 159 
 160         if (gro != NULL) {
 161                 if (kstrtoul(gro, 10, &result) == 0) {
 162                         if (result > 0)
 163                                 return 65536;
 164                 }
 165         }
 166         return get_mtu(def) + ETH_HEADER_OTHER +
 167                 get_headroom(def) + SAFETY_MARGIN;
 168 }
 169 
 170 
 171 static int get_transport_options(struct arglist *def)
 172 {
 173         char *transport = uml_vector_fetch_arg(def, "transport");
 174         char *vector = uml_vector_fetch_arg(def, "vec");
 175 
 176         int vec_rx = VECTOR_RX;
 177         int vec_tx = VECTOR_TX;
 178         long parsed;
 179 
 180         if (vector != NULL) {
 181                 if (kstrtoul(vector, 10, &parsed) == 0) {
 182                         if (parsed == 0) {
 183                                 vec_rx = 0;
 184                                 vec_tx = 0;
 185                         }
 186                 }
 187         }
 188 
 189 
 190         if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
 191                 return 0;
 192         if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
 193                 return (vec_rx | VECTOR_BPF);
 194         if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
 195                 return (vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
 196         return (vec_rx | vec_tx);
 197 }
 198 
 199 
 200 /* A mini-buffer for packet drop read
 201  * All of our supported transports are datagram oriented and we always
 202  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
 203  * than the packet size it still counts as full packet read and will
 204  * clean the incoming stream to keep sigio/epoll happy
 205  */
 206 
 207 #define DROP_BUFFER_SIZE 32
 208 
 209 static char *drop_buffer;
 210 
 211 /* Array backed queues optimized for bulk enqueue/dequeue and
 212  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
 213  * For more details and full design rationale see
 214  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
 215  */
 216 
 217 
 218 /*
 219  * Advance the mmsg queue head by n = advance. Resets the queue to
 220  * maximum enqueue/dequeue-at-once capacity if possible. Called by
 221  * dequeuers. Caller must hold the head_lock!
 222  */
 223 
 224 static int vector_advancehead(struct vector_queue *qi, int advance)
 225 {
 226         int queue_depth;
 227 
 228         qi->head =
 229                 (qi->head + advance)
 230                         % qi->max_depth;
 231 
 232 
 233         spin_lock(&qi->tail_lock);
 234         qi->queue_depth -= advance;
 235 
 236         /* we are at 0, use this to
 237          * reset head and tail so we can use max size vectors
 238          */
 239 
 240         if (qi->queue_depth == 0) {
 241                 qi->head = 0;
 242                 qi->tail = 0;
 243         }
 244         queue_depth = qi->queue_depth;
 245         spin_unlock(&qi->tail_lock);
 246         return queue_depth;
 247 }
 248 
 249 /*      Advance the queue tail by n = advance.
 250  *      This is called by enqueuers which should hold the
 251  *      head lock already
 252  */
 253 
 254 static int vector_advancetail(struct vector_queue *qi, int advance)
 255 {
 256         int queue_depth;
 257 
 258         qi->tail =
 259                 (qi->tail + advance)
 260                         % qi->max_depth;
 261         spin_lock(&qi->head_lock);
 262         qi->queue_depth += advance;
 263         queue_depth = qi->queue_depth;
 264         spin_unlock(&qi->head_lock);
 265         return queue_depth;
 266 }
 267 
 268 static int prep_msg(struct vector_private *vp,
 269         struct sk_buff *skb,
 270         struct iovec *iov)
 271 {
 272         int iov_index = 0;
 273         int nr_frags, frag;
 274         skb_frag_t *skb_frag;
 275 
 276         nr_frags = skb_shinfo(skb)->nr_frags;
 277         if (nr_frags > MAX_IOV_SIZE) {
 278                 if (skb_linearize(skb) != 0)
 279                         goto drop;
 280         }
 281         if (vp->header_size > 0) {
 282                 iov[iov_index].iov_len = vp->header_size;
 283                 vp->form_header(iov[iov_index].iov_base, skb, vp);
 284                 iov_index++;
 285         }
 286         iov[iov_index].iov_base = skb->data;
 287         if (nr_frags > 0) {
 288                 iov[iov_index].iov_len = skb->len - skb->data_len;
 289                 vp->estats.sg_ok++;
 290         } else
 291                 iov[iov_index].iov_len = skb->len;
 292         iov_index++;
 293         for (frag = 0; frag < nr_frags; frag++) {
 294                 skb_frag = &skb_shinfo(skb)->frags[frag];
 295                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 296                 iov[iov_index].iov_len = skb_frag_size(skb_frag);
 297                 iov_index++;
 298         }
 299         return iov_index;
 300 drop:
 301         return -1;
 302 }
 303 /*
 304  * Generic vector enqueue with support for forming headers using transport
 305  * specific callback. Allows GRE, L2TPv3, RAW and other transports
 306  * to use a common enqueue procedure in vector mode
 307  */
 308 
 309 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
 310 {
 311         struct vector_private *vp = netdev_priv(qi->dev);
 312         int queue_depth;
 313         int packet_len;
 314         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 315         int iov_count;
 316 
 317         spin_lock(&qi->tail_lock);
 318         spin_lock(&qi->head_lock);
 319         queue_depth = qi->queue_depth;
 320         spin_unlock(&qi->head_lock);
 321 
 322         if (skb)
 323                 packet_len = skb->len;
 324 
 325         if (queue_depth < qi->max_depth) {
 326 
 327                 *(qi->skbuff_vector + qi->tail) = skb;
 328                 mmsg_vector += qi->tail;
 329                 iov_count = prep_msg(
 330                         vp,
 331                         skb,
 332                         mmsg_vector->msg_hdr.msg_iov
 333                 );
 334                 if (iov_count < 1)
 335                         goto drop;
 336                 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
 337                 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
 338                 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
 339                 queue_depth = vector_advancetail(qi, 1);
 340         } else
 341                 goto drop;
 342         spin_unlock(&qi->tail_lock);
 343         return queue_depth;
 344 drop:
 345         qi->dev->stats.tx_dropped++;
 346         if (skb != NULL) {
 347                 packet_len = skb->len;
 348                 dev_consume_skb_any(skb);
 349                 netdev_completed_queue(qi->dev, 1, packet_len);
 350         }
 351         spin_unlock(&qi->tail_lock);
 352         return queue_depth;
 353 }
 354 
 355 static int consume_vector_skbs(struct vector_queue *qi, int count)
 356 {
 357         struct sk_buff *skb;
 358         int skb_index;
 359         int bytes_compl = 0;
 360 
 361         for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
 362                 skb = *(qi->skbuff_vector + skb_index);
 363                 /* mark as empty to ensure correct destruction if
 364                  * needed
 365                  */
 366                 bytes_compl += skb->len;
 367                 *(qi->skbuff_vector + skb_index) = NULL;
 368                 dev_consume_skb_any(skb);
 369         }
 370         qi->dev->stats.tx_bytes += bytes_compl;
 371         qi->dev->stats.tx_packets += count;
 372         netdev_completed_queue(qi->dev, count, bytes_compl);
 373         return vector_advancehead(qi, count);
 374 }
 375 
 376 /*
 377  * Generic vector deque via sendmmsg with support for forming headers
 378  * using transport specific callback. Allows GRE, L2TPv3, RAW and
 379  * other transports to use a common dequeue procedure in vector mode
 380  */
 381 
 382 
 383 static int vector_send(struct vector_queue *qi)
 384 {
 385         struct vector_private *vp = netdev_priv(qi->dev);
 386         struct mmsghdr *send_from;
 387         int result = 0, send_len, queue_depth = qi->max_depth;
 388 
 389         if (spin_trylock(&qi->head_lock)) {
 390                 if (spin_trylock(&qi->tail_lock)) {
 391                         /* update queue_depth to current value */
 392                         queue_depth = qi->queue_depth;
 393                         spin_unlock(&qi->tail_lock);
 394                         while (queue_depth > 0) {
 395                                 /* Calculate the start of the vector */
 396                                 send_len = queue_depth;
 397                                 send_from = qi->mmsg_vector;
 398                                 send_from += qi->head;
 399                                 /* Adjust vector size if wraparound */
 400                                 if (send_len + qi->head > qi->max_depth)
 401                                         send_len = qi->max_depth - qi->head;
 402                                 /* Try to TX as many packets as possible */
 403                                 if (send_len > 0) {
 404                                         result = uml_vector_sendmmsg(
 405                                                  vp->fds->tx_fd,
 406                                                  send_from,
 407                                                  send_len,
 408                                                  0
 409                                         );
 410                                         vp->in_write_poll =
 411                                                 (result != send_len);
 412                                 }
 413                                 /* For some of the sendmmsg error scenarios
 414                                  * we may end being unsure in the TX success
 415                                  * for all packets. It is safer to declare
 416                                  * them all TX-ed and blame the network.
 417                                  */
 418                                 if (result < 0) {
 419                                         if (net_ratelimit())
 420                                                 netdev_err(vp->dev, "sendmmsg err=%i\n",
 421                                                         result);
 422                                         vp->in_error = true;
 423                                         result = send_len;
 424                                 }
 425                                 if (result > 0) {
 426                                         queue_depth =
 427                                                 consume_vector_skbs(qi, result);
 428                                         /* This is equivalent to an TX IRQ.
 429                                          * Restart the upper layers to feed us
 430                                          * more packets.
 431                                          */
 432                                         if (result > vp->estats.tx_queue_max)
 433                                                 vp->estats.tx_queue_max = result;
 434                                         vp->estats.tx_queue_running_average =
 435                                                 (vp->estats.tx_queue_running_average + result) >> 1;
 436                                 }
 437                                 netif_trans_update(qi->dev);
 438                                 netif_wake_queue(qi->dev);
 439                                 /* if TX is busy, break out of the send loop,
 440                                  *  poll write IRQ will reschedule xmit for us
 441                                  */
 442                                 if (result != send_len) {
 443                                         vp->estats.tx_restart_queue++;
 444                                         break;
 445                                 }
 446                         }
 447                 }
 448                 spin_unlock(&qi->head_lock);
 449         } else {
 450                 tasklet_schedule(&vp->tx_poll);
 451         }
 452         return queue_depth;
 453 }
 454 
 455 /* Queue destructor. Deliberately stateless so we can use
 456  * it in queue cleanup if initialization fails.
 457  */
 458 
 459 static void destroy_queue(struct vector_queue *qi)
 460 {
 461         int i;
 462         struct iovec *iov;
 463         struct vector_private *vp = netdev_priv(qi->dev);
 464         struct mmsghdr *mmsg_vector;
 465 
 466         if (qi == NULL)
 467                 return;
 468         /* deallocate any skbuffs - we rely on any unused to be
 469          * set to NULL.
 470          */
 471         if (qi->skbuff_vector != NULL) {
 472                 for (i = 0; i < qi->max_depth; i++) {
 473                         if (*(qi->skbuff_vector + i) != NULL)
 474                                 dev_kfree_skb_any(*(qi->skbuff_vector + i));
 475                 }
 476                 kfree(qi->skbuff_vector);
 477         }
 478         /* deallocate matching IOV structures including header buffs */
 479         if (qi->mmsg_vector != NULL) {
 480                 mmsg_vector = qi->mmsg_vector;
 481                 for (i = 0; i < qi->max_depth; i++) {
 482                         iov = mmsg_vector->msg_hdr.msg_iov;
 483                         if (iov != NULL) {
 484                                 if ((vp->header_size > 0) &&
 485                                         (iov->iov_base != NULL))
 486                                         kfree(iov->iov_base);
 487                                 kfree(iov);
 488                         }
 489                         mmsg_vector++;
 490                 }
 491                 kfree(qi->mmsg_vector);
 492         }
 493         kfree(qi);
 494 }
 495 
 496 /*
 497  * Queue constructor. Create a queue with a given side.
 498  */
 499 static struct vector_queue *create_queue(
 500         struct vector_private *vp,
 501         int max_size,
 502         int header_size,
 503         int num_extra_frags)
 504 {
 505         struct vector_queue *result;
 506         int i;
 507         struct iovec *iov;
 508         struct mmsghdr *mmsg_vector;
 509 
 510         result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
 511         if (result == NULL)
 512                 return NULL;
 513         result->max_depth = max_size;
 514         result->dev = vp->dev;
 515         result->mmsg_vector = kmalloc(
 516                 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
 517         if (result->mmsg_vector == NULL)
 518                 goto out_mmsg_fail;
 519         result->skbuff_vector = kmalloc(
 520                 (sizeof(void *) * max_size), GFP_KERNEL);
 521         if (result->skbuff_vector == NULL)
 522                 goto out_skb_fail;
 523 
 524         /* further failures can be handled safely by destroy_queue*/
 525 
 526         mmsg_vector = result->mmsg_vector;
 527         for (i = 0; i < max_size; i++) {
 528                 /* Clear all pointers - we use non-NULL as marking on
 529                  * what to free on destruction
 530                  */
 531                 *(result->skbuff_vector + i) = NULL;
 532                 mmsg_vector->msg_hdr.msg_iov = NULL;
 533                 mmsg_vector++;
 534         }
 535         mmsg_vector = result->mmsg_vector;
 536         result->max_iov_frags = num_extra_frags;
 537         for (i = 0; i < max_size; i++) {
 538                 if (vp->header_size > 0)
 539                         iov = kmalloc_array(3 + num_extra_frags,
 540                                             sizeof(struct iovec),
 541                                             GFP_KERNEL
 542                         );
 543                 else
 544                         iov = kmalloc_array(2 + num_extra_frags,
 545                                             sizeof(struct iovec),
 546                                             GFP_KERNEL
 547                         );
 548                 if (iov == NULL)
 549                         goto out_fail;
 550                 mmsg_vector->msg_hdr.msg_iov = iov;
 551                 mmsg_vector->msg_hdr.msg_iovlen = 1;
 552                 mmsg_vector->msg_hdr.msg_control = NULL;
 553                 mmsg_vector->msg_hdr.msg_controllen = 0;
 554                 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
 555                 mmsg_vector->msg_hdr.msg_name = NULL;
 556                 mmsg_vector->msg_hdr.msg_namelen = 0;
 557                 if (vp->header_size > 0) {
 558                         iov->iov_base = kmalloc(header_size, GFP_KERNEL);
 559                         if (iov->iov_base == NULL)
 560                                 goto out_fail;
 561                         iov->iov_len = header_size;
 562                         mmsg_vector->msg_hdr.msg_iovlen = 2;
 563                         iov++;
 564                 }
 565                 iov->iov_base = NULL;
 566                 iov->iov_len = 0;
 567                 mmsg_vector++;
 568         }
 569         spin_lock_init(&result->head_lock);
 570         spin_lock_init(&result->tail_lock);
 571         result->queue_depth = 0;
 572         result->head = 0;
 573         result->tail = 0;
 574         return result;
 575 out_skb_fail:
 576         kfree(result->mmsg_vector);
 577 out_mmsg_fail:
 578         kfree(result);
 579         return NULL;
 580 out_fail:
 581         destroy_queue(result);
 582         return NULL;
 583 }
 584 
 585 /*
 586  * We do not use the RX queue as a proper wraparound queue for now
 587  * This is not necessary because the consumption via netif_rx()
 588  * happens in-line. While we can try using the return code of
 589  * netif_rx() for flow control there are no drivers doing this today.
 590  * For this RX specific use we ignore the tail/head locks and
 591  * just read into a prepared queue filled with skbuffs.
 592  */
 593 
 594 static struct sk_buff *prep_skb(
 595         struct vector_private *vp,
 596         struct user_msghdr *msg)
 597 {
 598         int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
 599         struct sk_buff *result;
 600         int iov_index = 0, len;
 601         struct iovec *iov = msg->msg_iov;
 602         int err, nr_frags, frag;
 603         skb_frag_t *skb_frag;
 604 
 605         if (vp->req_size <= linear)
 606                 len = linear;
 607         else
 608                 len = vp->req_size;
 609         result = alloc_skb_with_frags(
 610                 linear,
 611                 len - vp->max_packet,
 612                 3,
 613                 &err,
 614                 GFP_ATOMIC
 615         );
 616         if (vp->header_size > 0)
 617                 iov_index++;
 618         if (result == NULL) {
 619                 iov[iov_index].iov_base = NULL;
 620                 iov[iov_index].iov_len = 0;
 621                 goto done;
 622         }
 623         skb_reserve(result, vp->headroom);
 624         result->dev = vp->dev;
 625         skb_put(result, vp->max_packet);
 626         result->data_len = len - vp->max_packet;
 627         result->len += len - vp->max_packet;
 628         skb_reset_mac_header(result);
 629         result->ip_summed = CHECKSUM_NONE;
 630         iov[iov_index].iov_base = result->data;
 631         iov[iov_index].iov_len = vp->max_packet;
 632         iov_index++;
 633 
 634         nr_frags = skb_shinfo(result)->nr_frags;
 635         for (frag = 0; frag < nr_frags; frag++) {
 636                 skb_frag = &skb_shinfo(result)->frags[frag];
 637                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 638                 if (iov[iov_index].iov_base != NULL)
 639                         iov[iov_index].iov_len = skb_frag_size(skb_frag);
 640                 else
 641                         iov[iov_index].iov_len = 0;
 642                 iov_index++;
 643         }
 644 done:
 645         msg->msg_iovlen = iov_index;
 646         return result;
 647 }
 648 
 649 
 650 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
 651 
 652 static void prep_queue_for_rx(struct vector_queue *qi)
 653 {
 654         struct vector_private *vp = netdev_priv(qi->dev);
 655         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 656         void **skbuff_vector = qi->skbuff_vector;
 657         int i;
 658 
 659         if (qi->queue_depth == 0)
 660                 return;
 661         for (i = 0; i < qi->queue_depth; i++) {
 662                 /* it is OK if allocation fails - recvmmsg with NULL data in
 663                  * iov argument still performs an RX, just drops the packet
 664                  * This allows us stop faffing around with a "drop buffer"
 665                  */
 666 
 667                 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
 668                 skbuff_vector++;
 669                 mmsg_vector++;
 670         }
 671         qi->queue_depth = 0;
 672 }
 673 
 674 static struct vector_device *find_device(int n)
 675 {
 676         struct vector_device *device;
 677         struct list_head *ele;
 678 
 679         spin_lock(&vector_devices_lock);
 680         list_for_each(ele, &vector_devices) {
 681                 device = list_entry(ele, struct vector_device, list);
 682                 if (device->unit == n)
 683                         goto out;
 684         }
 685         device = NULL;
 686  out:
 687         spin_unlock(&vector_devices_lock);
 688         return device;
 689 }
 690 
 691 static int vector_parse(char *str, int *index_out, char **str_out,
 692                         char **error_out)
 693 {
 694         int n, len, err;
 695         char *start = str;
 696 
 697         len = strlen(str);
 698 
 699         while ((*str != ':') && (strlen(str) > 1))
 700                 str++;
 701         if (*str != ':') {
 702                 *error_out = "Expected ':' after device number";
 703                 return -EINVAL;
 704         }
 705         *str = '\0';
 706 
 707         err = kstrtouint(start, 0, &n);
 708         if (err < 0) {
 709                 *error_out = "Bad device number";
 710                 return err;
 711         }
 712 
 713         str++;
 714         if (find_device(n)) {
 715                 *error_out = "Device already configured";
 716                 return -EINVAL;
 717         }
 718 
 719         *index_out = n;
 720         *str_out = str;
 721         return 0;
 722 }
 723 
 724 static int vector_config(char *str, char **error_out)
 725 {
 726         int err, n;
 727         char *params;
 728         struct arglist *parsed;
 729 
 730         err = vector_parse(str, &n, &params, error_out);
 731         if (err != 0)
 732                 return err;
 733 
 734         /* This string is broken up and the pieces used by the underlying
 735          * driver. We should copy it to make sure things do not go wrong
 736          * later.
 737          */
 738 
 739         params = kstrdup(params, GFP_KERNEL);
 740         if (params == NULL) {
 741                 *error_out = "vector_config failed to strdup string";
 742                 return -ENOMEM;
 743         }
 744 
 745         parsed = uml_parse_vector_ifspec(params);
 746 
 747         if (parsed == NULL) {
 748                 *error_out = "vector_config failed to parse parameters";
 749                 return -EINVAL;
 750         }
 751 
 752         vector_eth_configure(n, parsed);
 753         return 0;
 754 }
 755 
 756 static int vector_id(char **str, int *start_out, int *end_out)
 757 {
 758         char *end;
 759         int n;
 760 
 761         n = simple_strtoul(*str, &end, 0);
 762         if ((*end != '\0') || (end == *str))
 763                 return -1;
 764 
 765         *start_out = n;
 766         *end_out = n;
 767         *str = end;
 768         return n;
 769 }
 770 
 771 static int vector_remove(int n, char **error_out)
 772 {
 773         struct vector_device *vec_d;
 774         struct net_device *dev;
 775         struct vector_private *vp;
 776 
 777         vec_d = find_device(n);
 778         if (vec_d == NULL)
 779                 return -ENODEV;
 780         dev = vec_d->dev;
 781         vp = netdev_priv(dev);
 782         if (vp->fds != NULL)
 783                 return -EBUSY;
 784         unregister_netdev(dev);
 785         platform_device_unregister(&vec_d->pdev);
 786         return 0;
 787 }
 788 
 789 /*
 790  * There is no shared per-transport initialization code, so
 791  * we will just initialize each interface one by one and
 792  * add them to a list
 793  */
 794 
 795 static struct platform_driver uml_net_driver = {
 796         .driver = {
 797                 .name = DRIVER_NAME,
 798         },
 799 };
 800 
 801 
 802 static void vector_device_release(struct device *dev)
 803 {
 804         struct vector_device *device = dev_get_drvdata(dev);
 805         struct net_device *netdev = device->dev;
 806 
 807         list_del(&device->list);
 808         kfree(device);
 809         free_netdev(netdev);
 810 }
 811 
 812 /* Bog standard recv using recvmsg - not used normally unless the user
 813  * explicitly specifies not to use recvmmsg vector RX.
 814  */
 815 
 816 static int vector_legacy_rx(struct vector_private *vp)
 817 {
 818         int pkt_len;
 819         struct user_msghdr hdr;
 820         struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
 821         int iovpos = 0;
 822         struct sk_buff *skb;
 823         int header_check;
 824 
 825         hdr.msg_name = NULL;
 826         hdr.msg_namelen = 0;
 827         hdr.msg_iov = (struct iovec *) &iov;
 828         hdr.msg_control = NULL;
 829         hdr.msg_controllen = 0;
 830         hdr.msg_flags = 0;
 831 
 832         if (vp->header_size > 0) {
 833                 iov[0].iov_base = vp->header_rxbuffer;
 834                 iov[0].iov_len = vp->header_size;
 835         }
 836 
 837         skb = prep_skb(vp, &hdr);
 838 
 839         if (skb == NULL) {
 840                 /* Read a packet into drop_buffer and don't do
 841                  * anything with it.
 842                  */
 843                 iov[iovpos].iov_base = drop_buffer;
 844                 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
 845                 hdr.msg_iovlen = 1;
 846                 vp->dev->stats.rx_dropped++;
 847         }
 848 
 849         pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
 850         if (pkt_len < 0) {
 851                 vp->in_error = true;
 852                 return pkt_len;
 853         }
 854 
 855         if (skb != NULL) {
 856                 if (pkt_len > vp->header_size) {
 857                         if (vp->header_size > 0) {
 858                                 header_check = vp->verify_header(
 859                                         vp->header_rxbuffer, skb, vp);
 860                                 if (header_check < 0) {
 861                                         dev_kfree_skb_irq(skb);
 862                                         vp->dev->stats.rx_dropped++;
 863                                         vp->estats.rx_encaps_errors++;
 864                                         return 0;
 865                                 }
 866                                 if (header_check > 0) {
 867                                         vp->estats.rx_csum_offload_good++;
 868                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
 869                                 }
 870                         }
 871                         pskb_trim(skb, pkt_len - vp->rx_header_size);
 872                         skb->protocol = eth_type_trans(skb, skb->dev);
 873                         vp->dev->stats.rx_bytes += skb->len;
 874                         vp->dev->stats.rx_packets++;
 875                         netif_rx(skb);
 876                 } else {
 877                         dev_kfree_skb_irq(skb);
 878                 }
 879         }
 880         return pkt_len;
 881 }
 882 
 883 /*
 884  * Packet at a time TX which falls back to vector TX if the
 885  * underlying transport is busy.
 886  */
 887 
 888 
 889 
 890 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
 891 {
 892         struct iovec iov[3 + MAX_IOV_SIZE];
 893         int iov_count, pkt_len = 0;
 894 
 895         iov[0].iov_base = vp->header_txbuffer;
 896         iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
 897 
 898         if (iov_count < 1)
 899                 goto drop;
 900 
 901         pkt_len = uml_vector_writev(
 902                 vp->fds->tx_fd,
 903                 (struct iovec *) &iov,
 904                 iov_count
 905         );
 906 
 907         if (pkt_len < 0)
 908                 goto drop;
 909 
 910         netif_trans_update(vp->dev);
 911         netif_wake_queue(vp->dev);
 912 
 913         if (pkt_len > 0) {
 914                 vp->dev->stats.tx_bytes += skb->len;
 915                 vp->dev->stats.tx_packets++;
 916         } else {
 917                 vp->dev->stats.tx_dropped++;
 918         }
 919         consume_skb(skb);
 920         return pkt_len;
 921 drop:
 922         vp->dev->stats.tx_dropped++;
 923         consume_skb(skb);
 924         if (pkt_len < 0)
 925                 vp->in_error = true;
 926         return pkt_len;
 927 }
 928 
 929 /*
 930  * Receive as many messages as we can in one call using the special
 931  * mmsg vector matched to an skb vector which we prepared earlier.
 932  */
 933 
 934 static int vector_mmsg_rx(struct vector_private *vp)
 935 {
 936         int packet_count, i;
 937         struct vector_queue *qi = vp->rx_queue;
 938         struct sk_buff *skb;
 939         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 940         void **skbuff_vector = qi->skbuff_vector;
 941         int header_check;
 942 
 943         /* Refresh the vector and make sure it is with new skbs and the
 944          * iovs are updated to point to them.
 945          */
 946 
 947         prep_queue_for_rx(qi);
 948 
 949         /* Fire the Lazy Gun - get as many packets as we can in one go. */
 950 
 951         packet_count = uml_vector_recvmmsg(
 952                 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
 953 
 954         if (packet_count < 0)
 955                 vp->in_error = true;
 956 
 957         if (packet_count <= 0)
 958                 return packet_count;
 959 
 960         /* We treat packet processing as enqueue, buffer refresh as dequeue
 961          * The queue_depth tells us how many buffers have been used and how
 962          * many do we need to prep the next time prep_queue_for_rx() is called.
 963          */
 964 
 965         qi->queue_depth = packet_count;
 966 
 967         for (i = 0; i < packet_count; i++) {
 968                 skb = (*skbuff_vector);
 969                 if (mmsg_vector->msg_len > vp->header_size) {
 970                         if (vp->header_size > 0) {
 971                                 header_check = vp->verify_header(
 972                                         mmsg_vector->msg_hdr.msg_iov->iov_base,
 973                                         skb,
 974                                         vp
 975                                 );
 976                                 if (header_check < 0) {
 977                                 /* Overlay header failed to verify - discard.
 978                                  * We can actually keep this skb and reuse it,
 979                                  * but that will make the prep logic too
 980                                  * complex.
 981                                  */
 982                                         dev_kfree_skb_irq(skb);
 983                                         vp->estats.rx_encaps_errors++;
 984                                         continue;
 985                                 }
 986                                 if (header_check > 0) {
 987                                         vp->estats.rx_csum_offload_good++;
 988                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
 989                                 }
 990                         }
 991                         pskb_trim(skb,
 992                                 mmsg_vector->msg_len - vp->rx_header_size);
 993                         skb->protocol = eth_type_trans(skb, skb->dev);
 994                         /*
 995                          * We do not need to lock on updating stats here
 996                          * The interrupt loop is non-reentrant.
 997                          */
 998                         vp->dev->stats.rx_bytes += skb->len;
 999                         vp->dev->stats.rx_packets++;
1000                         netif_rx(skb);
1001                 } else {
1002                         /* Overlay header too short to do anything - discard.
1003                          * We can actually keep this skb and reuse it,
1004                          * but that will make the prep logic too complex.
1005                          */
1006                         if (skb != NULL)
1007                                 dev_kfree_skb_irq(skb);
1008                 }
1009                 (*skbuff_vector) = NULL;
1010                 /* Move to the next buffer element */
1011                 mmsg_vector++;
1012                 skbuff_vector++;
1013         }
1014         if (packet_count > 0) {
1015                 if (vp->estats.rx_queue_max < packet_count)
1016                         vp->estats.rx_queue_max = packet_count;
1017                 vp->estats.rx_queue_running_average =
1018                         (vp->estats.rx_queue_running_average + packet_count) >> 1;
1019         }
1020         return packet_count;
1021 }
1022 
1023 static void vector_rx(struct vector_private *vp)
1024 {
1025         int err;
1026         int iter = 0;
1027 
1028         if ((vp->options & VECTOR_RX) > 0)
1029                 while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1030                         iter++;
1031         else
1032                 while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1033                         iter++;
1034         if ((err != 0) && net_ratelimit())
1035                 netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1036         if (iter == MAX_ITERATIONS)
1037                 netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n");
1038 }
1039 
1040 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1041 {
1042         struct vector_private *vp = netdev_priv(dev);
1043         int queue_depth = 0;
1044 
1045         if (vp->in_error) {
1046                 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1047                 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1048                         deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1049                 return NETDEV_TX_BUSY;
1050         }
1051 
1052         if ((vp->options & VECTOR_TX) == 0) {
1053                 writev_tx(vp, skb);
1054                 return NETDEV_TX_OK;
1055         }
1056 
1057         /* We do BQL only in the vector path, no point doing it in
1058          * packet at a time mode as there is no device queue
1059          */
1060 
1061         netdev_sent_queue(vp->dev, skb->len);
1062         queue_depth = vector_enqueue(vp->tx_queue, skb);
1063 
1064         /* if the device queue is full, stop the upper layers and
1065          * flush it.
1066          */
1067 
1068         if (queue_depth >= vp->tx_queue->max_depth - 1) {
1069                 vp->estats.tx_kicks++;
1070                 netif_stop_queue(dev);
1071                 vector_send(vp->tx_queue);
1072                 return NETDEV_TX_OK;
1073         }
1074         if (netdev_xmit_more()) {
1075                 mod_timer(&vp->tl, vp->coalesce);
1076                 return NETDEV_TX_OK;
1077         }
1078         if (skb->len < TX_SMALL_PACKET) {
1079                 vp->estats.tx_kicks++;
1080                 vector_send(vp->tx_queue);
1081         } else
1082                 tasklet_schedule(&vp->tx_poll);
1083         return NETDEV_TX_OK;
1084 }
1085 
1086 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1087 {
1088         struct net_device *dev = dev_id;
1089         struct vector_private *vp = netdev_priv(dev);
1090 
1091         if (!netif_running(dev))
1092                 return IRQ_NONE;
1093         vector_rx(vp);
1094         return IRQ_HANDLED;
1095 
1096 }
1097 
1098 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1099 {
1100         struct net_device *dev = dev_id;
1101         struct vector_private *vp = netdev_priv(dev);
1102 
1103         if (!netif_running(dev))
1104                 return IRQ_NONE;
1105         /* We need to pay attention to it only if we got
1106          * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1107          * we ignore it. In the future, it may be worth
1108          * it to improve the IRQ controller a bit to make
1109          * tweaking the IRQ mask less costly
1110          */
1111 
1112         if (vp->in_write_poll)
1113                 tasklet_schedule(&vp->tx_poll);
1114         return IRQ_HANDLED;
1115 
1116 }
1117 
1118 static int irq_rr;
1119 
1120 static int vector_net_close(struct net_device *dev)
1121 {
1122         struct vector_private *vp = netdev_priv(dev);
1123         unsigned long flags;
1124 
1125         netif_stop_queue(dev);
1126         del_timer(&vp->tl);
1127 
1128         if (vp->fds == NULL)
1129                 return 0;
1130 
1131         /* Disable and free all IRQS */
1132         if (vp->rx_irq > 0) {
1133                 um_free_irq(vp->rx_irq, dev);
1134                 vp->rx_irq = 0;
1135         }
1136         if (vp->tx_irq > 0) {
1137                 um_free_irq(vp->tx_irq, dev);
1138                 vp->tx_irq = 0;
1139         }
1140         tasklet_kill(&vp->tx_poll);
1141         if (vp->fds->rx_fd > 0) {
1142                 os_close_file(vp->fds->rx_fd);
1143                 vp->fds->rx_fd = -1;
1144         }
1145         if (vp->fds->tx_fd > 0) {
1146                 os_close_file(vp->fds->tx_fd);
1147                 vp->fds->tx_fd = -1;
1148         }
1149         kfree(vp->bpf);
1150         kfree(vp->fds->remote_addr);
1151         kfree(vp->transport_data);
1152         kfree(vp->header_rxbuffer);
1153         kfree(vp->header_txbuffer);
1154         if (vp->rx_queue != NULL)
1155                 destroy_queue(vp->rx_queue);
1156         if (vp->tx_queue != NULL)
1157                 destroy_queue(vp->tx_queue);
1158         kfree(vp->fds);
1159         vp->fds = NULL;
1160         spin_lock_irqsave(&vp->lock, flags);
1161         vp->opened = false;
1162         vp->in_error = false;
1163         spin_unlock_irqrestore(&vp->lock, flags);
1164         return 0;
1165 }
1166 
1167 /* TX tasklet */
1168 
1169 static void vector_tx_poll(unsigned long data)
1170 {
1171         struct vector_private *vp = (struct vector_private *)data;
1172 
1173         vp->estats.tx_kicks++;
1174         vector_send(vp->tx_queue);
1175 }
1176 static void vector_reset_tx(struct work_struct *work)
1177 {
1178         struct vector_private *vp =
1179                 container_of(work, struct vector_private, reset_tx);
1180         netdev_reset_queue(vp->dev);
1181         netif_start_queue(vp->dev);
1182         netif_wake_queue(vp->dev);
1183 }
1184 static int vector_net_open(struct net_device *dev)
1185 {
1186         struct vector_private *vp = netdev_priv(dev);
1187         unsigned long flags;
1188         int err = -EINVAL;
1189         struct vector_device *vdevice;
1190 
1191         spin_lock_irqsave(&vp->lock, flags);
1192         if (vp->opened) {
1193                 spin_unlock_irqrestore(&vp->lock, flags);
1194                 return -ENXIO;
1195         }
1196         vp->opened = true;
1197         spin_unlock_irqrestore(&vp->lock, flags);
1198 
1199         vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1200 
1201         if (vp->fds == NULL)
1202                 goto out_close;
1203 
1204         if (build_transport_data(vp) < 0)
1205                 goto out_close;
1206 
1207         if ((vp->options & VECTOR_RX) > 0) {
1208                 vp->rx_queue = create_queue(
1209                         vp,
1210                         get_depth(vp->parsed),
1211                         vp->rx_header_size,
1212                         MAX_IOV_SIZE
1213                 );
1214                 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1215         } else {
1216                 vp->header_rxbuffer = kmalloc(
1217                         vp->rx_header_size,
1218                         GFP_KERNEL
1219                 );
1220                 if (vp->header_rxbuffer == NULL)
1221                         goto out_close;
1222         }
1223         if ((vp->options & VECTOR_TX) > 0) {
1224                 vp->tx_queue = create_queue(
1225                         vp,
1226                         get_depth(vp->parsed),
1227                         vp->header_size,
1228                         MAX_IOV_SIZE
1229                 );
1230         } else {
1231                 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1232                 if (vp->header_txbuffer == NULL)
1233                         goto out_close;
1234         }
1235 
1236         /* READ IRQ */
1237         err = um_request_irq(
1238                 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1239                         IRQ_READ, vector_rx_interrupt,
1240                         IRQF_SHARED, dev->name, dev);
1241         if (err != 0) {
1242                 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1243                 err = -ENETUNREACH;
1244                 goto out_close;
1245         }
1246         vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1247         dev->irq = irq_rr + VECTOR_BASE_IRQ;
1248         irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1249 
1250         /* WRITE IRQ - we need it only if we have vector TX */
1251         if ((vp->options & VECTOR_TX) > 0) {
1252                 err = um_request_irq(
1253                         irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1254                                 IRQ_WRITE, vector_tx_interrupt,
1255                                 IRQF_SHARED, dev->name, dev);
1256                 if (err != 0) {
1257                         netdev_err(dev,
1258                                 "vector_open: failed to get tx irq(%d)\n", err);
1259                         err = -ENETUNREACH;
1260                         goto out_close;
1261                 }
1262                 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1263                 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1264         }
1265 
1266         if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1267                 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1268                         vp->options |= VECTOR_BPF;
1269         }
1270         if ((vp->options & VECTOR_BPF) != 0)
1271                 vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr);
1272 
1273         netif_start_queue(dev);
1274 
1275         /* clear buffer - it can happen that the host side of the interface
1276          * is full when we get here. In this case, new data is never queued,
1277          * SIGIOs never arrive, and the net never works.
1278          */
1279 
1280         vector_rx(vp);
1281 
1282         vector_reset_stats(vp);
1283         vdevice = find_device(vp->unit);
1284         vdevice->opened = 1;
1285 
1286         if ((vp->options & VECTOR_TX) != 0)
1287                 add_timer(&vp->tl);
1288         return 0;
1289 out_close:
1290         vector_net_close(dev);
1291         return err;
1292 }
1293 
1294 
1295 static void vector_net_set_multicast_list(struct net_device *dev)
1296 {
1297         /* TODO: - we can do some BPF games here */
1298         return;
1299 }
1300 
1301 static void vector_net_tx_timeout(struct net_device *dev)
1302 {
1303         struct vector_private *vp = netdev_priv(dev);
1304 
1305         vp->estats.tx_timeout_count++;
1306         netif_trans_update(dev);
1307         schedule_work(&vp->reset_tx);
1308 }
1309 
1310 static netdev_features_t vector_fix_features(struct net_device *dev,
1311         netdev_features_t features)
1312 {
1313         features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1314         return features;
1315 }
1316 
1317 static int vector_set_features(struct net_device *dev,
1318         netdev_features_t features)
1319 {
1320         struct vector_private *vp = netdev_priv(dev);
1321         /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1322          * no way to negotiate it on raw sockets, so we can change
1323          * only our side.
1324          */
1325         if (features & NETIF_F_GRO)
1326                 /* All new frame buffers will be GRO-sized */
1327                 vp->req_size = 65536;
1328         else
1329                 /* All new frame buffers will be normal sized */
1330                 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1331         return 0;
1332 }
1333 
1334 #ifdef CONFIG_NET_POLL_CONTROLLER
1335 static void vector_net_poll_controller(struct net_device *dev)
1336 {
1337         disable_irq(dev->irq);
1338         vector_rx_interrupt(dev->irq, dev);
1339         enable_irq(dev->irq);
1340 }
1341 #endif
1342 
1343 static void vector_net_get_drvinfo(struct net_device *dev,
1344                                 struct ethtool_drvinfo *info)
1345 {
1346         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1347         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1348 }
1349 
1350 static void vector_get_ringparam(struct net_device *netdev,
1351                                 struct ethtool_ringparam *ring)
1352 {
1353         struct vector_private *vp = netdev_priv(netdev);
1354 
1355         ring->rx_max_pending = vp->rx_queue->max_depth;
1356         ring->tx_max_pending = vp->tx_queue->max_depth;
1357         ring->rx_pending = vp->rx_queue->max_depth;
1358         ring->tx_pending = vp->tx_queue->max_depth;
1359 }
1360 
1361 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1362 {
1363         switch (stringset) {
1364         case ETH_SS_TEST:
1365                 *buf = '\0';
1366                 break;
1367         case ETH_SS_STATS:
1368                 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1369                 break;
1370         default:
1371                 WARN_ON(1);
1372                 break;
1373         }
1374 }
1375 
1376 static int vector_get_sset_count(struct net_device *dev, int sset)
1377 {
1378         switch (sset) {
1379         case ETH_SS_TEST:
1380                 return 0;
1381         case ETH_SS_STATS:
1382                 return VECTOR_NUM_STATS;
1383         default:
1384                 return -EOPNOTSUPP;
1385         }
1386 }
1387 
1388 static void vector_get_ethtool_stats(struct net_device *dev,
1389         struct ethtool_stats *estats,
1390         u64 *tmp_stats)
1391 {
1392         struct vector_private *vp = netdev_priv(dev);
1393 
1394         memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1395 }
1396 
1397 static int vector_get_coalesce(struct net_device *netdev,
1398                                         struct ethtool_coalesce *ec)
1399 {
1400         struct vector_private *vp = netdev_priv(netdev);
1401 
1402         ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1403         return 0;
1404 }
1405 
1406 static int vector_set_coalesce(struct net_device *netdev,
1407                                         struct ethtool_coalesce *ec)
1408 {
1409         struct vector_private *vp = netdev_priv(netdev);
1410 
1411         vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1412         if (vp->coalesce == 0)
1413                 vp->coalesce = 1;
1414         return 0;
1415 }
1416 
1417 static const struct ethtool_ops vector_net_ethtool_ops = {
1418         .get_drvinfo    = vector_net_get_drvinfo,
1419         .get_link       = ethtool_op_get_link,
1420         .get_ts_info    = ethtool_op_get_ts_info,
1421         .get_ringparam  = vector_get_ringparam,
1422         .get_strings    = vector_get_strings,
1423         .get_sset_count = vector_get_sset_count,
1424         .get_ethtool_stats = vector_get_ethtool_stats,
1425         .get_coalesce   = vector_get_coalesce,
1426         .set_coalesce   = vector_set_coalesce,
1427 };
1428 
1429 
1430 static const struct net_device_ops vector_netdev_ops = {
1431         .ndo_open               = vector_net_open,
1432         .ndo_stop               = vector_net_close,
1433         .ndo_start_xmit         = vector_net_start_xmit,
1434         .ndo_set_rx_mode        = vector_net_set_multicast_list,
1435         .ndo_tx_timeout         = vector_net_tx_timeout,
1436         .ndo_set_mac_address    = eth_mac_addr,
1437         .ndo_validate_addr      = eth_validate_addr,
1438         .ndo_fix_features       = vector_fix_features,
1439         .ndo_set_features       = vector_set_features,
1440 #ifdef CONFIG_NET_POLL_CONTROLLER
1441         .ndo_poll_controller = vector_net_poll_controller,
1442 #endif
1443 };
1444 
1445 
1446 static void vector_timer_expire(struct timer_list *t)
1447 {
1448         struct vector_private *vp = from_timer(vp, t, tl);
1449 
1450         vp->estats.tx_kicks++;
1451         vector_send(vp->tx_queue);
1452 }
1453 
1454 static void vector_eth_configure(
1455                 int n,
1456                 struct arglist *def
1457         )
1458 {
1459         struct vector_device *device;
1460         struct net_device *dev;
1461         struct vector_private *vp;
1462         int err;
1463 
1464         device = kzalloc(sizeof(*device), GFP_KERNEL);
1465         if (device == NULL) {
1466                 printk(KERN_ERR "eth_configure failed to allocate struct "
1467                                  "vector_device\n");
1468                 return;
1469         }
1470         dev = alloc_etherdev(sizeof(struct vector_private));
1471         if (dev == NULL) {
1472                 printk(KERN_ERR "eth_configure: failed to allocate struct "
1473                                  "net_device for vec%d\n", n);
1474                 goto out_free_device;
1475         }
1476 
1477         dev->mtu = get_mtu(def);
1478 
1479         INIT_LIST_HEAD(&device->list);
1480         device->unit = n;
1481 
1482         /* If this name ends up conflicting with an existing registered
1483          * netdevice, that is OK, register_netdev{,ice}() will notice this
1484          * and fail.
1485          */
1486         snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1487         uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1488         vp = netdev_priv(dev);
1489 
1490         /* sysfs register */
1491         if (!driver_registered) {
1492                 platform_driver_register(&uml_net_driver);
1493                 driver_registered = 1;
1494         }
1495         device->pdev.id = n;
1496         device->pdev.name = DRIVER_NAME;
1497         device->pdev.dev.release = vector_device_release;
1498         dev_set_drvdata(&device->pdev.dev, device);
1499         if (platform_device_register(&device->pdev))
1500                 goto out_free_netdev;
1501         SET_NETDEV_DEV(dev, &device->pdev.dev);
1502 
1503         device->dev = dev;
1504 
1505         *vp = ((struct vector_private)
1506                 {
1507                 .list                   = LIST_HEAD_INIT(vp->list),
1508                 .dev                    = dev,
1509                 .unit                   = n,
1510                 .options                = get_transport_options(def),
1511                 .rx_irq                 = 0,
1512                 .tx_irq                 = 0,
1513                 .parsed                 = def,
1514                 .max_packet             = get_mtu(def) + ETH_HEADER_OTHER,
1515                 /* TODO - we need to calculate headroom so that ip header
1516                  * is 16 byte aligned all the time
1517                  */
1518                 .headroom               = get_headroom(def),
1519                 .form_header            = NULL,
1520                 .verify_header          = NULL,
1521                 .header_rxbuffer        = NULL,
1522                 .header_txbuffer        = NULL,
1523                 .header_size            = 0,
1524                 .rx_header_size         = 0,
1525                 .rexmit_scheduled       = false,
1526                 .opened                 = false,
1527                 .transport_data         = NULL,
1528                 .in_write_poll          = false,
1529                 .coalesce               = 2,
1530                 .req_size               = get_req_size(def),
1531                 .in_error               = false
1532                 });
1533 
1534         dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1535         tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1536         INIT_WORK(&vp->reset_tx, vector_reset_tx);
1537 
1538         timer_setup(&vp->tl, vector_timer_expire, 0);
1539         spin_lock_init(&vp->lock);
1540 
1541         /* FIXME */
1542         dev->netdev_ops = &vector_netdev_ops;
1543         dev->ethtool_ops = &vector_net_ethtool_ops;
1544         dev->watchdog_timeo = (HZ >> 1);
1545         /* primary IRQ - fixme */
1546         dev->irq = 0; /* we will adjust this once opened */
1547 
1548         rtnl_lock();
1549         err = register_netdevice(dev);
1550         rtnl_unlock();
1551         if (err)
1552                 goto out_undo_user_init;
1553 
1554         spin_lock(&vector_devices_lock);
1555         list_add(&device->list, &vector_devices);
1556         spin_unlock(&vector_devices_lock);
1557 
1558         return;
1559 
1560 out_undo_user_init:
1561         return;
1562 out_free_netdev:
1563         free_netdev(dev);
1564 out_free_device:
1565         kfree(device);
1566 }
1567 
1568 
1569 
1570 
1571 /*
1572  * Invoked late in the init
1573  */
1574 
1575 static int __init vector_init(void)
1576 {
1577         struct list_head *ele;
1578         struct vector_cmd_line_arg *def;
1579         struct arglist *parsed;
1580 
1581         list_for_each(ele, &vec_cmd_line) {
1582                 def = list_entry(ele, struct vector_cmd_line_arg, list);
1583                 parsed = uml_parse_vector_ifspec(def->arguments);
1584                 if (parsed != NULL)
1585                         vector_eth_configure(def->unit, parsed);
1586         }
1587         return 0;
1588 }
1589 
1590 
1591 /* Invoked at initial argument parsing, only stores
1592  * arguments until a proper vector_init is called
1593  * later
1594  */
1595 
1596 static int __init vector_setup(char *str)
1597 {
1598         char *error;
1599         int n, err;
1600         struct vector_cmd_line_arg *new;
1601 
1602         err = vector_parse(str, &n, &str, &error);
1603         if (err) {
1604                 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1605                                  str, error);
1606                 return 1;
1607         }
1608         new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1609         if (!new)
1610                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1611                       sizeof(*new));
1612         INIT_LIST_HEAD(&new->list);
1613         new->unit = n;
1614         new->arguments = str;
1615         list_add_tail(&new->list, &vec_cmd_line);
1616         return 1;
1617 }
1618 
1619 __setup("vec", vector_setup);
1620 __uml_help(vector_setup,
1621 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1622 "        Configure a vector io network device.\n\n"
1623 );
1624 
1625 late_initcall(vector_init);
1626 
1627 static struct mc_device vector_mc = {
1628         .list           = LIST_HEAD_INIT(vector_mc.list),
1629         .name           = "vec",
1630         .config         = vector_config,
1631         .get_config     = NULL,
1632         .id             = vector_id,
1633         .remove         = vector_remove,
1634 };
1635 
1636 #ifdef CONFIG_INET
1637 static int vector_inetaddr_event(
1638         struct notifier_block *this,
1639         unsigned long event,
1640         void *ptr)
1641 {
1642         return NOTIFY_DONE;
1643 }
1644 
1645 static struct notifier_block vector_inetaddr_notifier = {
1646         .notifier_call          = vector_inetaddr_event,
1647 };
1648 
1649 static void inet_register(void)
1650 {
1651         register_inetaddr_notifier(&vector_inetaddr_notifier);
1652 }
1653 #else
1654 static inline void inet_register(void)
1655 {
1656 }
1657 #endif
1658 
1659 static int vector_net_init(void)
1660 {
1661         mconsole_register_dev(&vector_mc);
1662         inet_register();
1663         return 0;
1664 }
1665 
1666 __initcall(vector_net_init);
1667 
1668 
1669 

/* [<][>][^][v][top][bottom][index][help] */