root/arch/arm/mm/mmu.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. init_default_cache_policy
  2. early_cachepolicy
  3. early_nocache
  4. early_nowrite
  5. early_ecc
  6. early_cachepolicy
  7. noalign_setup
  8. get_mem_type
  9. __aligned
  10. pte_offset_late_fixmap
  11. fixmap_pmd
  12. early_fixmap_init
  13. __set_fixmap
  14. build_mem_type_table
  15. phys_mem_access_prot
  16. early_alloc
  17. late_alloc
  18. arm_pte_alloc
  19. early_pte_alloc
  20. alloc_init_pte
  21. __map_init_section
  22. alloc_init_pmd
  23. alloc_init_pud
  24. create_36bit_mapping
  25. __create_mapping
  26. create_mapping
  27. create_mapping_late
  28. iotable_init
  29. vm_reserve_area_early
  30. pmd_empty_section_gap
  31. fill_pmd_gaps
  32. pci_reserve_io
  33. debug_ll_io_init
  34. early_vmalloc
  35. adjust_lowmem_bounds
  36. prepare_page_table
  37. arm_mm_memblock_reserve
  38. devicemaps_init
  39. kmap_init
  40. map_lowmem
  41. early_paging_init
  42. early_paging_init
  43. early_fixmap_shutdown
  44. paging_init
  45. early_mm_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  linux/arch/arm/mm/mmu.c
   4  *
   5  *  Copyright (C) 1995-2005 Russell King
   6  */
   7 #include <linux/module.h>
   8 #include <linux/kernel.h>
   9 #include <linux/errno.h>
  10 #include <linux/init.h>
  11 #include <linux/mman.h>
  12 #include <linux/nodemask.h>
  13 #include <linux/memblock.h>
  14 #include <linux/fs.h>
  15 #include <linux/vmalloc.h>
  16 #include <linux/sizes.h>
  17 
  18 #include <asm/cp15.h>
  19 #include <asm/cputype.h>
  20 #include <asm/sections.h>
  21 #include <asm/cachetype.h>
  22 #include <asm/fixmap.h>
  23 #include <asm/sections.h>
  24 #include <asm/setup.h>
  25 #include <asm/smp_plat.h>
  26 #include <asm/tlb.h>
  27 #include <asm/highmem.h>
  28 #include <asm/system_info.h>
  29 #include <asm/traps.h>
  30 #include <asm/procinfo.h>
  31 #include <asm/memory.h>
  32 
  33 #include <asm/mach/arch.h>
  34 #include <asm/mach/map.h>
  35 #include <asm/mach/pci.h>
  36 #include <asm/fixmap.h>
  37 
  38 #include "fault.h"
  39 #include "mm.h"
  40 #include "tcm.h"
  41 
  42 /*
  43  * empty_zero_page is a special page that is used for
  44  * zero-initialized data and COW.
  45  */
  46 struct page *empty_zero_page;
  47 EXPORT_SYMBOL(empty_zero_page);
  48 
  49 /*
  50  * The pmd table for the upper-most set of pages.
  51  */
  52 pmd_t *top_pmd;
  53 
  54 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  55 
  56 #define CPOLICY_UNCACHED        0
  57 #define CPOLICY_BUFFERED        1
  58 #define CPOLICY_WRITETHROUGH    2
  59 #define CPOLICY_WRITEBACK       3
  60 #define CPOLICY_WRITEALLOC      4
  61 
  62 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  63 static unsigned int ecc_mask __initdata = 0;
  64 pgprot_t pgprot_user;
  65 pgprot_t pgprot_kernel;
  66 pgprot_t pgprot_hyp_device;
  67 pgprot_t pgprot_s2;
  68 pgprot_t pgprot_s2_device;
  69 
  70 EXPORT_SYMBOL(pgprot_user);
  71 EXPORT_SYMBOL(pgprot_kernel);
  72 
  73 struct cachepolicy {
  74         const char      policy[16];
  75         unsigned int    cr_mask;
  76         pmdval_t        pmd;
  77         pteval_t        pte;
  78         pteval_t        pte_s2;
  79 };
  80 
  81 #ifdef CONFIG_ARM_LPAE
  82 #define s2_policy(policy)       policy
  83 #else
  84 #define s2_policy(policy)       0
  85 #endif
  86 
  87 unsigned long kimage_voffset __ro_after_init;
  88 
  89 static struct cachepolicy cache_policies[] __initdata = {
  90         {
  91                 .policy         = "uncached",
  92                 .cr_mask        = CR_W|CR_C,
  93                 .pmd            = PMD_SECT_UNCACHED,
  94                 .pte            = L_PTE_MT_UNCACHED,
  95                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  96         }, {
  97                 .policy         = "buffered",
  98                 .cr_mask        = CR_C,
  99                 .pmd            = PMD_SECT_BUFFERED,
 100                 .pte            = L_PTE_MT_BUFFERABLE,
 101                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
 102         }, {
 103                 .policy         = "writethrough",
 104                 .cr_mask        = 0,
 105                 .pmd            = PMD_SECT_WT,
 106                 .pte            = L_PTE_MT_WRITETHROUGH,
 107                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 108         }, {
 109                 .policy         = "writeback",
 110                 .cr_mask        = 0,
 111                 .pmd            = PMD_SECT_WB,
 112                 .pte            = L_PTE_MT_WRITEBACK,
 113                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 114         }, {
 115                 .policy         = "writealloc",
 116                 .cr_mask        = 0,
 117                 .pmd            = PMD_SECT_WBWA,
 118                 .pte            = L_PTE_MT_WRITEALLOC,
 119                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 120         }
 121 };
 122 
 123 #ifdef CONFIG_CPU_CP15
 124 static unsigned long initial_pmd_value __initdata = 0;
 125 
 126 /*
 127  * Initialise the cache_policy variable with the initial state specified
 128  * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 129  * the C code sets the page tables up with the same policy as the head
 130  * assembly code, which avoids an illegal state where the TLBs can get
 131  * confused.  See comments in early_cachepolicy() for more information.
 132  */
 133 void __init init_default_cache_policy(unsigned long pmd)
 134 {
 135         int i;
 136 
 137         initial_pmd_value = pmd;
 138 
 139         pmd &= PMD_SECT_CACHE_MASK;
 140 
 141         for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 142                 if (cache_policies[i].pmd == pmd) {
 143                         cachepolicy = i;
 144                         break;
 145                 }
 146 
 147         if (i == ARRAY_SIZE(cache_policies))
 148                 pr_err("ERROR: could not find cache policy\n");
 149 }
 150 
 151 /*
 152  * These are useful for identifying cache coherency problems by allowing
 153  * the cache or the cache and writebuffer to be turned off.  (Note: the
 154  * write buffer should not be on and the cache off).
 155  */
 156 static int __init early_cachepolicy(char *p)
 157 {
 158         int i, selected = -1;
 159 
 160         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 161                 int len = strlen(cache_policies[i].policy);
 162 
 163                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
 164                         selected = i;
 165                         break;
 166                 }
 167         }
 168 
 169         if (selected == -1)
 170                 pr_err("ERROR: unknown or unsupported cache policy\n");
 171 
 172         /*
 173          * This restriction is partly to do with the way we boot; it is
 174          * unpredictable to have memory mapped using two different sets of
 175          * memory attributes (shared, type, and cache attribs).  We can not
 176          * change these attributes once the initial assembly has setup the
 177          * page tables.
 178          */
 179         if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 180                 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 181                         cache_policies[cachepolicy].policy);
 182                 return 0;
 183         }
 184 
 185         if (selected != cachepolicy) {
 186                 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 187                 cachepolicy = selected;
 188                 flush_cache_all();
 189                 set_cr(cr);
 190         }
 191         return 0;
 192 }
 193 early_param("cachepolicy", early_cachepolicy);
 194 
 195 static int __init early_nocache(char *__unused)
 196 {
 197         char *p = "buffered";
 198         pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 199         early_cachepolicy(p);
 200         return 0;
 201 }
 202 early_param("nocache", early_nocache);
 203 
 204 static int __init early_nowrite(char *__unused)
 205 {
 206         char *p = "uncached";
 207         pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 208         early_cachepolicy(p);
 209         return 0;
 210 }
 211 early_param("nowb", early_nowrite);
 212 
 213 #ifndef CONFIG_ARM_LPAE
 214 static int __init early_ecc(char *p)
 215 {
 216         if (memcmp(p, "on", 2) == 0)
 217                 ecc_mask = PMD_PROTECTION;
 218         else if (memcmp(p, "off", 3) == 0)
 219                 ecc_mask = 0;
 220         return 0;
 221 }
 222 early_param("ecc", early_ecc);
 223 #endif
 224 
 225 #else /* ifdef CONFIG_CPU_CP15 */
 226 
 227 static int __init early_cachepolicy(char *p)
 228 {
 229         pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 230 }
 231 early_param("cachepolicy", early_cachepolicy);
 232 
 233 static int __init noalign_setup(char *__unused)
 234 {
 235         pr_warn("noalign kernel parameter not supported without cp15\n");
 236 }
 237 __setup("noalign", noalign_setup);
 238 
 239 #endif /* ifdef CONFIG_CPU_CP15 / else */
 240 
 241 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 242 #define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 243 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 244 
 245 static struct mem_type mem_types[] __ro_after_init = {
 246         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 247                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 248                                   L_PTE_SHARED,
 249                 .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
 250                                   s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 251                                   L_PTE_SHARED,
 252                 .prot_l1        = PMD_TYPE_TABLE,
 253                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 254                 .domain         = DOMAIN_IO,
 255         },
 256         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 257                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 258                 .prot_l1        = PMD_TYPE_TABLE,
 259                 .prot_sect      = PROT_SECT_DEVICE,
 260                 .domain         = DOMAIN_IO,
 261         },
 262         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 263                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 264                 .prot_l1        = PMD_TYPE_TABLE,
 265                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 266                 .domain         = DOMAIN_IO,
 267         },
 268         [MT_DEVICE_WC] = {      /* ioremap_wc */
 269                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 270                 .prot_l1        = PMD_TYPE_TABLE,
 271                 .prot_sect      = PROT_SECT_DEVICE,
 272                 .domain         = DOMAIN_IO,
 273         },
 274         [MT_UNCACHED] = {
 275                 .prot_pte       = PROT_PTE_DEVICE,
 276                 .prot_l1        = PMD_TYPE_TABLE,
 277                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 278                 .domain         = DOMAIN_IO,
 279         },
 280         [MT_CACHECLEAN] = {
 281                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 282                 .domain    = DOMAIN_KERNEL,
 283         },
 284 #ifndef CONFIG_ARM_LPAE
 285         [MT_MINICLEAN] = {
 286                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 287                 .domain    = DOMAIN_KERNEL,
 288         },
 289 #endif
 290         [MT_LOW_VECTORS] = {
 291                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 292                                 L_PTE_RDONLY,
 293                 .prot_l1   = PMD_TYPE_TABLE,
 294                 .domain    = DOMAIN_VECTORS,
 295         },
 296         [MT_HIGH_VECTORS] = {
 297                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 298                                 L_PTE_USER | L_PTE_RDONLY,
 299                 .prot_l1   = PMD_TYPE_TABLE,
 300                 .domain    = DOMAIN_VECTORS,
 301         },
 302         [MT_MEMORY_RWX] = {
 303                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 304                 .prot_l1   = PMD_TYPE_TABLE,
 305                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306                 .domain    = DOMAIN_KERNEL,
 307         },
 308         [MT_MEMORY_RW] = {
 309                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 310                              L_PTE_XN,
 311                 .prot_l1   = PMD_TYPE_TABLE,
 312                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 313                 .domain    = DOMAIN_KERNEL,
 314         },
 315         [MT_ROM] = {
 316                 .prot_sect = PMD_TYPE_SECT,
 317                 .domain    = DOMAIN_KERNEL,
 318         },
 319         [MT_MEMORY_RWX_NONCACHED] = {
 320                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 321                                 L_PTE_MT_BUFFERABLE,
 322                 .prot_l1   = PMD_TYPE_TABLE,
 323                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 324                 .domain    = DOMAIN_KERNEL,
 325         },
 326         [MT_MEMORY_RW_DTCM] = {
 327                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 328                                 L_PTE_XN,
 329                 .prot_l1   = PMD_TYPE_TABLE,
 330                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 331                 .domain    = DOMAIN_KERNEL,
 332         },
 333         [MT_MEMORY_RWX_ITCM] = {
 334                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 335                 .prot_l1   = PMD_TYPE_TABLE,
 336                 .domain    = DOMAIN_KERNEL,
 337         },
 338         [MT_MEMORY_RW_SO] = {
 339                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 340                                 L_PTE_MT_UNCACHED | L_PTE_XN,
 341                 .prot_l1   = PMD_TYPE_TABLE,
 342                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 343                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
 344                 .domain    = DOMAIN_KERNEL,
 345         },
 346         [MT_MEMORY_DMA_READY] = {
 347                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 348                                 L_PTE_XN,
 349                 .prot_l1   = PMD_TYPE_TABLE,
 350                 .domain    = DOMAIN_KERNEL,
 351         },
 352 };
 353 
 354 const struct mem_type *get_mem_type(unsigned int type)
 355 {
 356         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 357 }
 358 EXPORT_SYMBOL(get_mem_type);
 359 
 360 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 361 
 362 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 363         __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 364 
 365 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 366 {
 367         return &bm_pte[pte_index(addr)];
 368 }
 369 
 370 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 371 {
 372         return pte_offset_kernel(dir, addr);
 373 }
 374 
 375 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 376 {
 377         pgd_t *pgd = pgd_offset_k(addr);
 378         pud_t *pud = pud_offset(pgd, addr);
 379         pmd_t *pmd = pmd_offset(pud, addr);
 380 
 381         return pmd;
 382 }
 383 
 384 void __init early_fixmap_init(void)
 385 {
 386         pmd_t *pmd;
 387 
 388         /*
 389          * The early fixmap range spans multiple pmds, for which
 390          * we are not prepared:
 391          */
 392         BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 393                      != FIXADDR_TOP >> PMD_SHIFT);
 394 
 395         pmd = fixmap_pmd(FIXADDR_TOP);
 396         pmd_populate_kernel(&init_mm, pmd, bm_pte);
 397 
 398         pte_offset_fixmap = pte_offset_early_fixmap;
 399 }
 400 
 401 /*
 402  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 403  * As a result, this can only be called with preemption disabled, as under
 404  * stop_machine().
 405  */
 406 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 407 {
 408         unsigned long vaddr = __fix_to_virt(idx);
 409         pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 410 
 411         /* Make sure fixmap region does not exceed available allocation. */
 412         BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 413                      FIXADDR_END);
 414         BUG_ON(idx >= __end_of_fixed_addresses);
 415 
 416         /* we only support device mappings until pgprot_kernel has been set */
 417         if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 418                     pgprot_val(pgprot_kernel) == 0))
 419                 return;
 420 
 421         if (pgprot_val(prot))
 422                 set_pte_at(NULL, vaddr, pte,
 423                         pfn_pte(phys >> PAGE_SHIFT, prot));
 424         else
 425                 pte_clear(NULL, vaddr, pte);
 426         local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 427 }
 428 
 429 /*
 430  * Adjust the PMD section entries according to the CPU in use.
 431  */
 432 static void __init build_mem_type_table(void)
 433 {
 434         struct cachepolicy *cp;
 435         unsigned int cr = get_cr();
 436         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 437         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 438         int cpu_arch = cpu_architecture();
 439         int i;
 440 
 441         if (cpu_arch < CPU_ARCH_ARMv6) {
 442 #if defined(CONFIG_CPU_DCACHE_DISABLE)
 443                 if (cachepolicy > CPOLICY_BUFFERED)
 444                         cachepolicy = CPOLICY_BUFFERED;
 445 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 446                 if (cachepolicy > CPOLICY_WRITETHROUGH)
 447                         cachepolicy = CPOLICY_WRITETHROUGH;
 448 #endif
 449         }
 450         if (cpu_arch < CPU_ARCH_ARMv5) {
 451                 if (cachepolicy >= CPOLICY_WRITEALLOC)
 452                         cachepolicy = CPOLICY_WRITEBACK;
 453                 ecc_mask = 0;
 454         }
 455 
 456         if (is_smp()) {
 457                 if (cachepolicy != CPOLICY_WRITEALLOC) {
 458                         pr_warn("Forcing write-allocate cache policy for SMP\n");
 459                         cachepolicy = CPOLICY_WRITEALLOC;
 460                 }
 461                 if (!(initial_pmd_value & PMD_SECT_S)) {
 462                         pr_warn("Forcing shared mappings for SMP\n");
 463                         initial_pmd_value |= PMD_SECT_S;
 464                 }
 465         }
 466 
 467         /*
 468          * Strip out features not present on earlier architectures.
 469          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 470          * without extended page tables don't have the 'Shared' bit.
 471          */
 472         if (cpu_arch < CPU_ARCH_ARMv5)
 473                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 474                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 475         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 476                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 477                         mem_types[i].prot_sect &= ~PMD_SECT_S;
 478 
 479         /*
 480          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 481          * "update-able on write" bit on ARM610).  However, Xscale and
 482          * Xscale3 require this bit to be cleared.
 483          */
 484         if (cpu_is_xscale_family()) {
 485                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 486                         mem_types[i].prot_sect &= ~PMD_BIT4;
 487                         mem_types[i].prot_l1 &= ~PMD_BIT4;
 488                 }
 489         } else if (cpu_arch < CPU_ARCH_ARMv6) {
 490                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 491                         if (mem_types[i].prot_l1)
 492                                 mem_types[i].prot_l1 |= PMD_BIT4;
 493                         if (mem_types[i].prot_sect)
 494                                 mem_types[i].prot_sect |= PMD_BIT4;
 495                 }
 496         }
 497 
 498         /*
 499          * Mark the device areas according to the CPU/architecture.
 500          */
 501         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 502                 if (!cpu_is_xsc3()) {
 503                         /*
 504                          * Mark device regions on ARMv6+ as execute-never
 505                          * to prevent speculative instruction fetches.
 506                          */
 507                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 508                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 509                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 510                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 511 
 512                         /* Also setup NX memory mapping */
 513                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 514                 }
 515                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 516                         /*
 517                          * For ARMv7 with TEX remapping,
 518                          * - shared device is SXCB=1100
 519                          * - nonshared device is SXCB=0100
 520                          * - write combine device mem is SXCB=0001
 521                          * (Uncached Normal memory)
 522                          */
 523                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 524                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 525                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 526                 } else if (cpu_is_xsc3()) {
 527                         /*
 528                          * For Xscale3,
 529                          * - shared device is TEXCB=00101
 530                          * - nonshared device is TEXCB=01000
 531                          * - write combine device mem is TEXCB=00100
 532                          * (Inner/Outer Uncacheable in xsc3 parlance)
 533                          */
 534                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 535                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 536                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 537                 } else {
 538                         /*
 539                          * For ARMv6 and ARMv7 without TEX remapping,
 540                          * - shared device is TEXCB=00001
 541                          * - nonshared device is TEXCB=01000
 542                          * - write combine device mem is TEXCB=00100
 543                          * (Uncached Normal in ARMv6 parlance).
 544                          */
 545                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 546                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 547                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 548                 }
 549         } else {
 550                 /*
 551                  * On others, write combining is "Uncached/Buffered"
 552                  */
 553                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 554         }
 555 
 556         /*
 557          * Now deal with the memory-type mappings
 558          */
 559         cp = &cache_policies[cachepolicy];
 560         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 561         s2_pgprot = cp->pte_s2;
 562         hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 563         s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 564 
 565 #ifndef CONFIG_ARM_LPAE
 566         /*
 567          * We don't use domains on ARMv6 (since this causes problems with
 568          * v6/v7 kernels), so we must use a separate memory type for user
 569          * r/o, kernel r/w to map the vectors page.
 570          */
 571         if (cpu_arch == CPU_ARCH_ARMv6)
 572                 vecs_pgprot |= L_PTE_MT_VECTORS;
 573 
 574         /*
 575          * Check is it with support for the PXN bit
 576          * in the Short-descriptor translation table format descriptors.
 577          */
 578         if (cpu_arch == CPU_ARCH_ARMv7 &&
 579                 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 580                 user_pmd_table |= PMD_PXNTABLE;
 581         }
 582 #endif
 583 
 584         /*
 585          * ARMv6 and above have extended page tables.
 586          */
 587         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 588 #ifndef CONFIG_ARM_LPAE
 589                 /*
 590                  * Mark cache clean areas and XIP ROM read only
 591                  * from SVC mode and no access from userspace.
 592                  */
 593                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 594                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 595                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 596 #endif
 597 
 598                 /*
 599                  * If the initial page tables were created with the S bit
 600                  * set, then we need to do the same here for the same
 601                  * reasons given in early_cachepolicy().
 602                  */
 603                 if (initial_pmd_value & PMD_SECT_S) {
 604                         user_pgprot |= L_PTE_SHARED;
 605                         kern_pgprot |= L_PTE_SHARED;
 606                         vecs_pgprot |= L_PTE_SHARED;
 607                         s2_pgprot |= L_PTE_SHARED;
 608                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 609                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 610                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 611                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 612                         mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 613                         mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 614                         mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 615                         mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 616                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 617                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 618                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 619                 }
 620         }
 621 
 622         /*
 623          * Non-cacheable Normal - intended for memory areas that must
 624          * not cause dirty cache line writebacks when used
 625          */
 626         if (cpu_arch >= CPU_ARCH_ARMv6) {
 627                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 628                         /* Non-cacheable Normal is XCB = 001 */
 629                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 630                                 PMD_SECT_BUFFERED;
 631                 } else {
 632                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
 633                         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 634                                 PMD_SECT_TEX(1);
 635                 }
 636         } else {
 637                 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 638         }
 639 
 640 #ifdef CONFIG_ARM_LPAE
 641         /*
 642          * Do not generate access flag faults for the kernel mappings.
 643          */
 644         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 645                 mem_types[i].prot_pte |= PTE_EXT_AF;
 646                 if (mem_types[i].prot_sect)
 647                         mem_types[i].prot_sect |= PMD_SECT_AF;
 648         }
 649         kern_pgprot |= PTE_EXT_AF;
 650         vecs_pgprot |= PTE_EXT_AF;
 651 
 652         /*
 653          * Set PXN for user mappings
 654          */
 655         user_pgprot |= PTE_EXT_PXN;
 656 #endif
 657 
 658         for (i = 0; i < 16; i++) {
 659                 pteval_t v = pgprot_val(protection_map[i]);
 660                 protection_map[i] = __pgprot(v | user_pgprot);
 661         }
 662 
 663         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 664         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 665 
 666         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 667         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 668                                  L_PTE_DIRTY | kern_pgprot);
 669         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 670         pgprot_s2_device  = __pgprot(s2_device_pgprot);
 671         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 672 
 673         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 674         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 675         mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 676         mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 677         mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 678         mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 679         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 680         mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 681         mem_types[MT_ROM].prot_sect |= cp->pmd;
 682 
 683         switch (cp->pmd) {
 684         case PMD_SECT_WT:
 685                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 686                 break;
 687         case PMD_SECT_WB:
 688         case PMD_SECT_WBWA:
 689                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 690                 break;
 691         }
 692         pr_info("Memory policy: %sData cache %s\n",
 693                 ecc_mask ? "ECC enabled, " : "", cp->policy);
 694 
 695         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 696                 struct mem_type *t = &mem_types[i];
 697                 if (t->prot_l1)
 698                         t->prot_l1 |= PMD_DOMAIN(t->domain);
 699                 if (t->prot_sect)
 700                         t->prot_sect |= PMD_DOMAIN(t->domain);
 701         }
 702 }
 703 
 704 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 705 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 706                               unsigned long size, pgprot_t vma_prot)
 707 {
 708         if (!pfn_valid(pfn))
 709                 return pgprot_noncached(vma_prot);
 710         else if (file->f_flags & O_SYNC)
 711                 return pgprot_writecombine(vma_prot);
 712         return vma_prot;
 713 }
 714 EXPORT_SYMBOL(phys_mem_access_prot);
 715 #endif
 716 
 717 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 718 
 719 static void __init *early_alloc(unsigned long sz)
 720 {
 721         void *ptr = memblock_alloc(sz, sz);
 722 
 723         if (!ptr)
 724                 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 725                       __func__, sz, sz);
 726 
 727         return ptr;
 728 }
 729 
 730 static void *__init late_alloc(unsigned long sz)
 731 {
 732         void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 733 
 734         if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
 735                 BUG();
 736         return ptr;
 737 }
 738 
 739 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 740                                 unsigned long prot,
 741                                 void *(*alloc)(unsigned long sz))
 742 {
 743         if (pmd_none(*pmd)) {
 744                 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 745                 __pmd_populate(pmd, __pa(pte), prot);
 746         }
 747         BUG_ON(pmd_bad(*pmd));
 748         return pte_offset_kernel(pmd, addr);
 749 }
 750 
 751 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 752                                       unsigned long prot)
 753 {
 754         return arm_pte_alloc(pmd, addr, prot, early_alloc);
 755 }
 756 
 757 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 758                                   unsigned long end, unsigned long pfn,
 759                                   const struct mem_type *type,
 760                                   void *(*alloc)(unsigned long sz),
 761                                   bool ng)
 762 {
 763         pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 764         do {
 765                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 766                             ng ? PTE_EXT_NG : 0);
 767                 pfn++;
 768         } while (pte++, addr += PAGE_SIZE, addr != end);
 769 }
 770 
 771 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 772                         unsigned long end, phys_addr_t phys,
 773                         const struct mem_type *type, bool ng)
 774 {
 775         pmd_t *p = pmd;
 776 
 777 #ifndef CONFIG_ARM_LPAE
 778         /*
 779          * In classic MMU format, puds and pmds are folded in to
 780          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 781          * group of L1 entries making up one logical pointer to
 782          * an L2 table (2MB), where as PMDs refer to the individual
 783          * L1 entries (1MB). Hence increment to get the correct
 784          * offset for odd 1MB sections.
 785          * (See arch/arm/include/asm/pgtable-2level.h)
 786          */
 787         if (addr & SECTION_SIZE)
 788                 pmd++;
 789 #endif
 790         do {
 791                 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 792                 phys += SECTION_SIZE;
 793         } while (pmd++, addr += SECTION_SIZE, addr != end);
 794 
 795         flush_pmd_entry(p);
 796 }
 797 
 798 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 799                                       unsigned long end, phys_addr_t phys,
 800                                       const struct mem_type *type,
 801                                       void *(*alloc)(unsigned long sz), bool ng)
 802 {
 803         pmd_t *pmd = pmd_offset(pud, addr);
 804         unsigned long next;
 805 
 806         do {
 807                 /*
 808                  * With LPAE, we must loop over to map
 809                  * all the pmds for the given range.
 810                  */
 811                 next = pmd_addr_end(addr, end);
 812 
 813                 /*
 814                  * Try a section mapping - addr, next and phys must all be
 815                  * aligned to a section boundary.
 816                  */
 817                 if (type->prot_sect &&
 818                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
 819                         __map_init_section(pmd, addr, next, phys, type, ng);
 820                 } else {
 821                         alloc_init_pte(pmd, addr, next,
 822                                        __phys_to_pfn(phys), type, alloc, ng);
 823                 }
 824 
 825                 phys += next - addr;
 826 
 827         } while (pmd++, addr = next, addr != end);
 828 }
 829 
 830 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 831                                   unsigned long end, phys_addr_t phys,
 832                                   const struct mem_type *type,
 833                                   void *(*alloc)(unsigned long sz), bool ng)
 834 {
 835         pud_t *pud = pud_offset(pgd, addr);
 836         unsigned long next;
 837 
 838         do {
 839                 next = pud_addr_end(addr, end);
 840                 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 841                 phys += next - addr;
 842         } while (pud++, addr = next, addr != end);
 843 }
 844 
 845 #ifndef CONFIG_ARM_LPAE
 846 static void __init create_36bit_mapping(struct mm_struct *mm,
 847                                         struct map_desc *md,
 848                                         const struct mem_type *type,
 849                                         bool ng)
 850 {
 851         unsigned long addr, length, end;
 852         phys_addr_t phys;
 853         pgd_t *pgd;
 854 
 855         addr = md->virtual;
 856         phys = __pfn_to_phys(md->pfn);
 857         length = PAGE_ALIGN(md->length);
 858 
 859         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 860                 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 861                        (long long)__pfn_to_phys((u64)md->pfn), addr);
 862                 return;
 863         }
 864 
 865         /* N.B. ARMv6 supersections are only defined to work with domain 0.
 866          *      Since domain assignments can in fact be arbitrary, the
 867          *      'domain == 0' check below is required to insure that ARMv6
 868          *      supersections are only allocated for domain 0 regardless
 869          *      of the actual domain assignments in use.
 870          */
 871         if (type->domain) {
 872                 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 873                        (long long)__pfn_to_phys((u64)md->pfn), addr);
 874                 return;
 875         }
 876 
 877         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 878                 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 879                        (long long)__pfn_to_phys((u64)md->pfn), addr);
 880                 return;
 881         }
 882 
 883         /*
 884          * Shift bits [35:32] of address into bits [23:20] of PMD
 885          * (See ARMv6 spec).
 886          */
 887         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 888 
 889         pgd = pgd_offset(mm, addr);
 890         end = addr + length;
 891         do {
 892                 pud_t *pud = pud_offset(pgd, addr);
 893                 pmd_t *pmd = pmd_offset(pud, addr);
 894                 int i;
 895 
 896                 for (i = 0; i < 16; i++)
 897                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 898                                        (ng ? PMD_SECT_nG : 0));
 899 
 900                 addr += SUPERSECTION_SIZE;
 901                 phys += SUPERSECTION_SIZE;
 902                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 903         } while (addr != end);
 904 }
 905 #endif  /* !CONFIG_ARM_LPAE */
 906 
 907 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 908                                     void *(*alloc)(unsigned long sz),
 909                                     bool ng)
 910 {
 911         unsigned long addr, length, end;
 912         phys_addr_t phys;
 913         const struct mem_type *type;
 914         pgd_t *pgd;
 915 
 916         type = &mem_types[md->type];
 917 
 918 #ifndef CONFIG_ARM_LPAE
 919         /*
 920          * Catch 36-bit addresses
 921          */
 922         if (md->pfn >= 0x100000) {
 923                 create_36bit_mapping(mm, md, type, ng);
 924                 return;
 925         }
 926 #endif
 927 
 928         addr = md->virtual & PAGE_MASK;
 929         phys = __pfn_to_phys(md->pfn);
 930         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 931 
 932         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 933                 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 934                         (long long)__pfn_to_phys(md->pfn), addr);
 935                 return;
 936         }
 937 
 938         pgd = pgd_offset(mm, addr);
 939         end = addr + length;
 940         do {
 941                 unsigned long next = pgd_addr_end(addr, end);
 942 
 943                 alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 944 
 945                 phys += next - addr;
 946                 addr = next;
 947         } while (pgd++, addr != end);
 948 }
 949 
 950 /*
 951  * Create the page directory entries and any necessary
 952  * page tables for the mapping specified by `md'.  We
 953  * are able to cope here with varying sizes and address
 954  * offsets, and we take full advantage of sections and
 955  * supersections.
 956  */
 957 static void __init create_mapping(struct map_desc *md)
 958 {
 959         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 960                 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 961                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 962                 return;
 963         }
 964 
 965         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 966             md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 967             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 968                 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 969                         (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 970         }
 971 
 972         __create_mapping(&init_mm, md, early_alloc, false);
 973 }
 974 
 975 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 976                                 bool ng)
 977 {
 978 #ifdef CONFIG_ARM_LPAE
 979         pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 980         if (WARN_ON(!pud))
 981                 return;
 982         pmd_alloc(mm, pud, 0);
 983 #endif
 984         __create_mapping(mm, md, late_alloc, ng);
 985 }
 986 
 987 /*
 988  * Create the architecture specific mappings
 989  */
 990 void __init iotable_init(struct map_desc *io_desc, int nr)
 991 {
 992         struct map_desc *md;
 993         struct vm_struct *vm;
 994         struct static_vm *svm;
 995 
 996         if (!nr)
 997                 return;
 998 
 999         svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1000         if (!svm)
1001                 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1002                       __func__, sizeof(*svm) * nr, __alignof__(*svm));
1003 
1004         for (md = io_desc; nr; md++, nr--) {
1005                 create_mapping(md);
1006 
1007                 vm = &svm->vm;
1008                 vm->addr = (void *)(md->virtual & PAGE_MASK);
1009                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1010                 vm->phys_addr = __pfn_to_phys(md->pfn);
1011                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1012                 vm->flags |= VM_ARM_MTYPE(md->type);
1013                 vm->caller = iotable_init;
1014                 add_static_vm_early(svm++);
1015         }
1016 }
1017 
1018 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1019                                   void *caller)
1020 {
1021         struct vm_struct *vm;
1022         struct static_vm *svm;
1023 
1024         svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1025         if (!svm)
1026                 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1027                       __func__, sizeof(*svm), __alignof__(*svm));
1028 
1029         vm = &svm->vm;
1030         vm->addr = (void *)addr;
1031         vm->size = size;
1032         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1033         vm->caller = caller;
1034         add_static_vm_early(svm);
1035 }
1036 
1037 #ifndef CONFIG_ARM_LPAE
1038 
1039 /*
1040  * The Linux PMD is made of two consecutive section entries covering 2MB
1041  * (see definition in include/asm/pgtable-2level.h).  However a call to
1042  * create_mapping() may optimize static mappings by using individual
1043  * 1MB section mappings.  This leaves the actual PMD potentially half
1044  * initialized if the top or bottom section entry isn't used, leaving it
1045  * open to problems if a subsequent ioremap() or vmalloc() tries to use
1046  * the virtual space left free by that unused section entry.
1047  *
1048  * Let's avoid the issue by inserting dummy vm entries covering the unused
1049  * PMD halves once the static mappings are in place.
1050  */
1051 
1052 static void __init pmd_empty_section_gap(unsigned long addr)
1053 {
1054         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1055 }
1056 
1057 static void __init fill_pmd_gaps(void)
1058 {
1059         struct static_vm *svm;
1060         struct vm_struct *vm;
1061         unsigned long addr, next = 0;
1062         pmd_t *pmd;
1063 
1064         list_for_each_entry(svm, &static_vmlist, list) {
1065                 vm = &svm->vm;
1066                 addr = (unsigned long)vm->addr;
1067                 if (addr < next)
1068                         continue;
1069 
1070                 /*
1071                  * Check if this vm starts on an odd section boundary.
1072                  * If so and the first section entry for this PMD is free
1073                  * then we block the corresponding virtual address.
1074                  */
1075                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1076                         pmd = pmd_off_k(addr);
1077                         if (pmd_none(*pmd))
1078                                 pmd_empty_section_gap(addr & PMD_MASK);
1079                 }
1080 
1081                 /*
1082                  * Then check if this vm ends on an odd section boundary.
1083                  * If so and the second section entry for this PMD is empty
1084                  * then we block the corresponding virtual address.
1085                  */
1086                 addr += vm->size;
1087                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1088                         pmd = pmd_off_k(addr) + 1;
1089                         if (pmd_none(*pmd))
1090                                 pmd_empty_section_gap(addr);
1091                 }
1092 
1093                 /* no need to look at any vm entry until we hit the next PMD */
1094                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1095         }
1096 }
1097 
1098 #else
1099 #define fill_pmd_gaps() do { } while (0)
1100 #endif
1101 
1102 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1103 static void __init pci_reserve_io(void)
1104 {
1105         struct static_vm *svm;
1106 
1107         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1108         if (svm)
1109                 return;
1110 
1111         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1112 }
1113 #else
1114 #define pci_reserve_io() do { } while (0)
1115 #endif
1116 
1117 #ifdef CONFIG_DEBUG_LL
1118 void __init debug_ll_io_init(void)
1119 {
1120         struct map_desc map;
1121 
1122         debug_ll_addr(&map.pfn, &map.virtual);
1123         if (!map.pfn || !map.virtual)
1124                 return;
1125         map.pfn = __phys_to_pfn(map.pfn);
1126         map.virtual &= PAGE_MASK;
1127         map.length = PAGE_SIZE;
1128         map.type = MT_DEVICE;
1129         iotable_init(&map, 1);
1130 }
1131 #endif
1132 
1133 static void * __initdata vmalloc_min =
1134         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1135 
1136 /*
1137  * vmalloc=size forces the vmalloc area to be exactly 'size'
1138  * bytes. This can be used to increase (or decrease) the vmalloc
1139  * area - the default is 240m.
1140  */
1141 static int __init early_vmalloc(char *arg)
1142 {
1143         unsigned long vmalloc_reserve = memparse(arg, NULL);
1144 
1145         if (vmalloc_reserve < SZ_16M) {
1146                 vmalloc_reserve = SZ_16M;
1147                 pr_warn("vmalloc area too small, limiting to %luMB\n",
1148                         vmalloc_reserve >> 20);
1149         }
1150 
1151         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1152                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1153                 pr_warn("vmalloc area is too big, limiting to %luMB\n",
1154                         vmalloc_reserve >> 20);
1155         }
1156 
1157         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1158         return 0;
1159 }
1160 early_param("vmalloc", early_vmalloc);
1161 
1162 phys_addr_t arm_lowmem_limit __initdata = 0;
1163 
1164 void __init adjust_lowmem_bounds(void)
1165 {
1166         phys_addr_t memblock_limit = 0;
1167         u64 vmalloc_limit;
1168         struct memblock_region *reg;
1169         phys_addr_t lowmem_limit = 0;
1170 
1171         /*
1172          * Let's use our own (unoptimized) equivalent of __pa() that is
1173          * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1174          * The result is used as the upper bound on physical memory address
1175          * and may itself be outside the valid range for which phys_addr_t
1176          * and therefore __pa() is defined.
1177          */
1178         vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1179 
1180         /*
1181          * The first usable region must be PMD aligned. Mark its start
1182          * as MEMBLOCK_NOMAP if it isn't
1183          */
1184         for_each_memblock(memory, reg) {
1185                 if (!memblock_is_nomap(reg)) {
1186                         if (!IS_ALIGNED(reg->base, PMD_SIZE)) {
1187                                 phys_addr_t len;
1188 
1189                                 len = round_up(reg->base, PMD_SIZE) - reg->base;
1190                                 memblock_mark_nomap(reg->base, len);
1191                         }
1192                         break;
1193                 }
1194         }
1195 
1196         for_each_memblock(memory, reg) {
1197                 phys_addr_t block_start = reg->base;
1198                 phys_addr_t block_end = reg->base + reg->size;
1199 
1200                 if (memblock_is_nomap(reg))
1201                         continue;
1202 
1203                 if (reg->base < vmalloc_limit) {
1204                         if (block_end > lowmem_limit)
1205                                 /*
1206                                  * Compare as u64 to ensure vmalloc_limit does
1207                                  * not get truncated. block_end should always
1208                                  * fit in phys_addr_t so there should be no
1209                                  * issue with assignment.
1210                                  */
1211                                 lowmem_limit = min_t(u64,
1212                                                          vmalloc_limit,
1213                                                          block_end);
1214 
1215                         /*
1216                          * Find the first non-pmd-aligned page, and point
1217                          * memblock_limit at it. This relies on rounding the
1218                          * limit down to be pmd-aligned, which happens at the
1219                          * end of this function.
1220                          *
1221                          * With this algorithm, the start or end of almost any
1222                          * bank can be non-pmd-aligned. The only exception is
1223                          * that the start of the bank 0 must be section-
1224                          * aligned, since otherwise memory would need to be
1225                          * allocated when mapping the start of bank 0, which
1226                          * occurs before any free memory is mapped.
1227                          */
1228                         if (!memblock_limit) {
1229                                 if (!IS_ALIGNED(block_start, PMD_SIZE))
1230                                         memblock_limit = block_start;
1231                                 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1232                                         memblock_limit = lowmem_limit;
1233                         }
1234 
1235                 }
1236         }
1237 
1238         arm_lowmem_limit = lowmem_limit;
1239 
1240         high_memory = __va(arm_lowmem_limit - 1) + 1;
1241 
1242         if (!memblock_limit)
1243                 memblock_limit = arm_lowmem_limit;
1244 
1245         /*
1246          * Round the memblock limit down to a pmd size.  This
1247          * helps to ensure that we will allocate memory from the
1248          * last full pmd, which should be mapped.
1249          */
1250         memblock_limit = round_down(memblock_limit, PMD_SIZE);
1251 
1252         if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1253                 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1254                         phys_addr_t end = memblock_end_of_DRAM();
1255 
1256                         pr_notice("Ignoring RAM at %pa-%pa\n",
1257                                   &memblock_limit, &end);
1258                         pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1259 
1260                         memblock_remove(memblock_limit, end - memblock_limit);
1261                 }
1262         }
1263 
1264         memblock_set_current_limit(memblock_limit);
1265 }
1266 
1267 static inline void prepare_page_table(void)
1268 {
1269         unsigned long addr;
1270         phys_addr_t end;
1271 
1272         /*
1273          * Clear out all the mappings below the kernel image.
1274          */
1275         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1276                 pmd_clear(pmd_off_k(addr));
1277 
1278 #ifdef CONFIG_XIP_KERNEL
1279         /* The XIP kernel is mapped in the module area -- skip over it */
1280         addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1281 #endif
1282         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1283                 pmd_clear(pmd_off_k(addr));
1284 
1285         /*
1286          * Find the end of the first block of lowmem.
1287          */
1288         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1289         if (end >= arm_lowmem_limit)
1290                 end = arm_lowmem_limit;
1291 
1292         /*
1293          * Clear out all the kernel space mappings, except for the first
1294          * memory bank, up to the vmalloc region.
1295          */
1296         for (addr = __phys_to_virt(end);
1297              addr < VMALLOC_START; addr += PMD_SIZE)
1298                 pmd_clear(pmd_off_k(addr));
1299 }
1300 
1301 #ifdef CONFIG_ARM_LPAE
1302 /* the first page is reserved for pgd */
1303 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1304                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1305 #else
1306 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1307 #endif
1308 
1309 /*
1310  * Reserve the special regions of memory
1311  */
1312 void __init arm_mm_memblock_reserve(void)
1313 {
1314         /*
1315          * Reserve the page tables.  These are already in use,
1316          * and can only be in node 0.
1317          */
1318         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1319 
1320 #ifdef CONFIG_SA1111
1321         /*
1322          * Because of the SA1111 DMA bug, we want to preserve our
1323          * precious DMA-able memory...
1324          */
1325         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1326 #endif
1327 }
1328 
1329 /*
1330  * Set up the device mappings.  Since we clear out the page tables for all
1331  * mappings above VMALLOC_START, except early fixmap, we might remove debug
1332  * device mappings.  This means earlycon can be used to debug this function
1333  * Any other function or debugging method which may touch any device _will_
1334  * crash the kernel.
1335  */
1336 static void __init devicemaps_init(const struct machine_desc *mdesc)
1337 {
1338         struct map_desc map;
1339         unsigned long addr;
1340         void *vectors;
1341 
1342         /*
1343          * Allocate the vector page early.
1344          */
1345         vectors = early_alloc(PAGE_SIZE * 2);
1346 
1347         early_trap_init(vectors);
1348 
1349         /*
1350          * Clear page table except top pmd used by early fixmaps
1351          */
1352         for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1353                 pmd_clear(pmd_off_k(addr));
1354 
1355         /*
1356          * Map the kernel if it is XIP.
1357          * It is always first in the modulearea.
1358          */
1359 #ifdef CONFIG_XIP_KERNEL
1360         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1361         map.virtual = MODULES_VADDR;
1362         map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1363         map.type = MT_ROM;
1364         create_mapping(&map);
1365 #endif
1366 
1367         /*
1368          * Map the cache flushing regions.
1369          */
1370 #ifdef FLUSH_BASE
1371         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1372         map.virtual = FLUSH_BASE;
1373         map.length = SZ_1M;
1374         map.type = MT_CACHECLEAN;
1375         create_mapping(&map);
1376 #endif
1377 #ifdef FLUSH_BASE_MINICACHE
1378         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1379         map.virtual = FLUSH_BASE_MINICACHE;
1380         map.length = SZ_1M;
1381         map.type = MT_MINICLEAN;
1382         create_mapping(&map);
1383 #endif
1384 
1385         /*
1386          * Create a mapping for the machine vectors at the high-vectors
1387          * location (0xffff0000).  If we aren't using high-vectors, also
1388          * create a mapping at the low-vectors virtual address.
1389          */
1390         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1391         map.virtual = 0xffff0000;
1392         map.length = PAGE_SIZE;
1393 #ifdef CONFIG_KUSER_HELPERS
1394         map.type = MT_HIGH_VECTORS;
1395 #else
1396         map.type = MT_LOW_VECTORS;
1397 #endif
1398         create_mapping(&map);
1399 
1400         if (!vectors_high()) {
1401                 map.virtual = 0;
1402                 map.length = PAGE_SIZE * 2;
1403                 map.type = MT_LOW_VECTORS;
1404                 create_mapping(&map);
1405         }
1406 
1407         /* Now create a kernel read-only mapping */
1408         map.pfn += 1;
1409         map.virtual = 0xffff0000 + PAGE_SIZE;
1410         map.length = PAGE_SIZE;
1411         map.type = MT_LOW_VECTORS;
1412         create_mapping(&map);
1413 
1414         /*
1415          * Ask the machine support to map in the statically mapped devices.
1416          */
1417         if (mdesc->map_io)
1418                 mdesc->map_io();
1419         else
1420                 debug_ll_io_init();
1421         fill_pmd_gaps();
1422 
1423         /* Reserve fixed i/o space in VMALLOC region */
1424         pci_reserve_io();
1425 
1426         /*
1427          * Finally flush the caches and tlb to ensure that we're in a
1428          * consistent state wrt the writebuffer.  This also ensures that
1429          * any write-allocated cache lines in the vector page are written
1430          * back.  After this point, we can start to touch devices again.
1431          */
1432         local_flush_tlb_all();
1433         flush_cache_all();
1434 
1435         /* Enable asynchronous aborts */
1436         early_abt_enable();
1437 }
1438 
1439 static void __init kmap_init(void)
1440 {
1441 #ifdef CONFIG_HIGHMEM
1442         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1443                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1444 #endif
1445 
1446         early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1447                         _PAGE_KERNEL_TABLE);
1448 }
1449 
1450 static void __init map_lowmem(void)
1451 {
1452         struct memblock_region *reg;
1453         phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1454         phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1455 
1456         /* Map all the lowmem memory banks. */
1457         for_each_memblock(memory, reg) {
1458                 phys_addr_t start = reg->base;
1459                 phys_addr_t end = start + reg->size;
1460                 struct map_desc map;
1461 
1462                 if (memblock_is_nomap(reg))
1463                         continue;
1464 
1465                 if (end > arm_lowmem_limit)
1466                         end = arm_lowmem_limit;
1467                 if (start >= end)
1468                         break;
1469 
1470                 if (end < kernel_x_start) {
1471                         map.pfn = __phys_to_pfn(start);
1472                         map.virtual = __phys_to_virt(start);
1473                         map.length = end - start;
1474                         map.type = MT_MEMORY_RWX;
1475 
1476                         create_mapping(&map);
1477                 } else if (start >= kernel_x_end) {
1478                         map.pfn = __phys_to_pfn(start);
1479                         map.virtual = __phys_to_virt(start);
1480                         map.length = end - start;
1481                         map.type = MT_MEMORY_RW;
1482 
1483                         create_mapping(&map);
1484                 } else {
1485                         /* This better cover the entire kernel */
1486                         if (start < kernel_x_start) {
1487                                 map.pfn = __phys_to_pfn(start);
1488                                 map.virtual = __phys_to_virt(start);
1489                                 map.length = kernel_x_start - start;
1490                                 map.type = MT_MEMORY_RW;
1491 
1492                                 create_mapping(&map);
1493                         }
1494 
1495                         map.pfn = __phys_to_pfn(kernel_x_start);
1496                         map.virtual = __phys_to_virt(kernel_x_start);
1497                         map.length = kernel_x_end - kernel_x_start;
1498                         map.type = MT_MEMORY_RWX;
1499 
1500                         create_mapping(&map);
1501 
1502                         if (kernel_x_end < end) {
1503                                 map.pfn = __phys_to_pfn(kernel_x_end);
1504                                 map.virtual = __phys_to_virt(kernel_x_end);
1505                                 map.length = end - kernel_x_end;
1506                                 map.type = MT_MEMORY_RW;
1507 
1508                                 create_mapping(&map);
1509                         }
1510                 }
1511         }
1512 }
1513 
1514 #ifdef CONFIG_ARM_PV_FIXUP
1515 extern unsigned long __atags_pointer;
1516 typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1517 pgtables_remap lpae_pgtables_remap_asm;
1518 
1519 /*
1520  * early_paging_init() recreates boot time page table setup, allowing machines
1521  * to switch over to a high (>4G) address space on LPAE systems
1522  */
1523 static void __init early_paging_init(const struct machine_desc *mdesc)
1524 {
1525         pgtables_remap *lpae_pgtables_remap;
1526         unsigned long pa_pgd;
1527         unsigned int cr, ttbcr;
1528         long long offset;
1529         void *boot_data;
1530 
1531         if (!mdesc->pv_fixup)
1532                 return;
1533 
1534         offset = mdesc->pv_fixup();
1535         if (offset == 0)
1536                 return;
1537 
1538         /*
1539          * Get the address of the remap function in the 1:1 identity
1540          * mapping setup by the early page table assembly code.  We
1541          * must get this prior to the pv update.  The following barrier
1542          * ensures that this is complete before we fixup any P:V offsets.
1543          */
1544         lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1545         pa_pgd = __pa(swapper_pg_dir);
1546         boot_data = __va(__atags_pointer);
1547         barrier();
1548 
1549         pr_info("Switching physical address space to 0x%08llx\n",
1550                 (u64)PHYS_OFFSET + offset);
1551 
1552         /* Re-set the phys pfn offset, and the pv offset */
1553         __pv_offset += offset;
1554         __pv_phys_pfn_offset += PFN_DOWN(offset);
1555 
1556         /* Run the patch stub to update the constants */
1557         fixup_pv_table(&__pv_table_begin,
1558                 (&__pv_table_end - &__pv_table_begin) << 2);
1559 
1560         /*
1561          * We changing not only the virtual to physical mapping, but also
1562          * the physical addresses used to access memory.  We need to flush
1563          * all levels of cache in the system with caching disabled to
1564          * ensure that all data is written back, and nothing is prefetched
1565          * into the caches.  We also need to prevent the TLB walkers
1566          * allocating into the caches too.  Note that this is ARMv7 LPAE
1567          * specific.
1568          */
1569         cr = get_cr();
1570         set_cr(cr & ~(CR_I | CR_C));
1571         asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1572         asm volatile("mcr p15, 0, %0, c2, c0, 2"
1573                 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1574         flush_cache_all();
1575 
1576         /*
1577          * Fixup the page tables - this must be in the idmap region as
1578          * we need to disable the MMU to do this safely, and hence it
1579          * needs to be assembly.  It's fairly simple, as we're using the
1580          * temporary tables setup by the initial assembly code.
1581          */
1582         lpae_pgtables_remap(offset, pa_pgd, boot_data);
1583 
1584         /* Re-enable the caches and cacheable TLB walks */
1585         asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1586         set_cr(cr);
1587 }
1588 
1589 #else
1590 
1591 static void __init early_paging_init(const struct machine_desc *mdesc)
1592 {
1593         long long offset;
1594 
1595         if (!mdesc->pv_fixup)
1596                 return;
1597 
1598         offset = mdesc->pv_fixup();
1599         if (offset == 0)
1600                 return;
1601 
1602         pr_crit("Physical address space modification is only to support Keystone2.\n");
1603         pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1604         pr_crit("feature. Your kernel may crash now, have a good day.\n");
1605         add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1606 }
1607 
1608 #endif
1609 
1610 static void __init early_fixmap_shutdown(void)
1611 {
1612         int i;
1613         unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1614 
1615         pte_offset_fixmap = pte_offset_late_fixmap;
1616         pmd_clear(fixmap_pmd(va));
1617         local_flush_tlb_kernel_page(va);
1618 
1619         for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1620                 pte_t *pte;
1621                 struct map_desc map;
1622 
1623                 map.virtual = fix_to_virt(i);
1624                 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1625 
1626                 /* Only i/o device mappings are supported ATM */
1627                 if (pte_none(*pte) ||
1628                     (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1629                         continue;
1630 
1631                 map.pfn = pte_pfn(*pte);
1632                 map.type = MT_DEVICE;
1633                 map.length = PAGE_SIZE;
1634 
1635                 create_mapping(&map);
1636         }
1637 }
1638 
1639 /*
1640  * paging_init() sets up the page tables, initialises the zone memory
1641  * maps, and sets up the zero page, bad page and bad page tables.
1642  */
1643 void __init paging_init(const struct machine_desc *mdesc)
1644 {
1645         void *zero_page;
1646 
1647         prepare_page_table();
1648         map_lowmem();
1649         memblock_set_current_limit(arm_lowmem_limit);
1650         dma_contiguous_remap();
1651         early_fixmap_shutdown();
1652         devicemaps_init(mdesc);
1653         kmap_init();
1654         tcm_init();
1655 
1656         top_pmd = pmd_off_k(0xffff0000);
1657 
1658         /* allocate the zero page. */
1659         zero_page = early_alloc(PAGE_SIZE);
1660 
1661         bootmem_init();
1662 
1663         empty_zero_page = virt_to_page(zero_page);
1664         __flush_dcache_page(NULL, empty_zero_page);
1665 
1666         /* Compute the virt/idmap offset, mostly for the sake of KVM */
1667         kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset);
1668 }
1669 
1670 void __init early_mm_init(const struct machine_desc *mdesc)
1671 {
1672         build_mem_type_table();
1673         early_paging_init(mdesc);
1674 }

/* [<][>][^][v][top][bottom][index][help] */