This source file includes following definitions.
- jit_udiv32
- jit_mod32
- _emit
- emit
- imm8m
- arm_bpf_ldst_imm12
- arm_bpf_ldst_imm8
- jit_fill_hole
- imm_offset
- bpf2a32_offset
- emit_mov_i_no8m
- emit_mov_i
- emit_bx_r
- emit_blx_r
- epilogue_offset
- emit_udivmod
- is_stacked
- arm_bpf_get_reg32
- arm_bpf_get_reg64
- arm_bpf_put_reg32
- arm_bpf_put_reg64
- emit_a32_mov_i
- emit_a32_mov_i64
- emit_a32_mov_se_i64
- emit_a32_add_r
- emit_a32_sub_r
- emit_alu_r
- emit_a32_alu_r
- emit_a32_alu_r64
- emit_a32_mov_r
- emit_a32_mov_r64
- emit_a32_alu_i
- emit_a32_neg64
- emit_a32_lsh_r64
- emit_a32_arsh_r64
- emit_a32_rsh_r64
- emit_a32_lsh_i64
- emit_a32_rsh_i64
- emit_a32_arsh_i64
- emit_a32_mul_r64
- is_ldst_imm
- emit_str_r
- emit_ldx_r
- emit_ar_r
- emit_bpf_tail_call
- emit_rev16
- emit_rev32
- emit_push_r64
- build_prologue
- build_epilogue
- build_insn
- build_body
- validate_code
- bpf_jit_compile
- bpf_jit_needs_zext
- bpf_int_jit_compile
1
2
3
4
5
6
7
8
9 #include <linux/bpf.h>
10 #include <linux/bitops.h>
11 #include <linux/compiler.h>
12 #include <linux/errno.h>
13 #include <linux/filter.h>
14 #include <linux/netdevice.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/if_vlan.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/hwcap.h>
21 #include <asm/opcodes.h>
22 #include <asm/system_info.h>
23
24 #include "bpf_jit_32.h"
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
68 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
69 1 << ARM_FP)
70 #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
71 #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
72
73 enum {
74
75 BPF_R2_HI,
76 BPF_R2_LO,
77 BPF_R3_HI,
78 BPF_R3_LO,
79 BPF_R4_HI,
80 BPF_R4_LO,
81 BPF_R5_HI,
82 BPF_R5_LO,
83 BPF_R7_HI,
84 BPF_R7_LO,
85 BPF_R8_HI,
86 BPF_R8_LO,
87 BPF_R9_HI,
88 BPF_R9_LO,
89 BPF_FP_HI,
90 BPF_FP_LO,
91 BPF_TC_HI,
92 BPF_TC_LO,
93 BPF_AX_HI,
94 BPF_AX_LO,
95
96
97
98
99 BPF_JIT_SCRATCH_REGS,
100 };
101
102
103
104
105
106 #define STACK_OFFSET(k) (-4 - (k) * 4)
107 #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
108
109 #ifdef CONFIG_FRAME_POINTER
110 #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
111 #else
112 #define EBPF_SCRATCH_TO_ARM_FP(x) (x)
113 #endif
114
115 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
116 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
117 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
118
119 #define FLAG_IMM_OVERFLOW (1 << 0)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 static const s8 bpf2a32[][2] = {
137
138 [BPF_REG_0] = {ARM_R1, ARM_R0},
139
140 [BPF_REG_1] = {ARM_R3, ARM_R2},
141
142 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
143 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
144 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
145 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
146
147 [BPF_REG_6] = {ARM_R5, ARM_R4},
148
149 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
150 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
151 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
152
153 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
154
155
156
157 [TMP_REG_1] = {ARM_R7, ARM_R6},
158 [TMP_REG_2] = {ARM_R9, ARM_R8},
159
160 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
161
162
163
164 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
165 };
166
167 #define dst_lo dst[1]
168 #define dst_hi dst[0]
169 #define src_lo src[1]
170 #define src_hi src[0]
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188 struct jit_ctx {
189 const struct bpf_prog *prog;
190 unsigned int idx;
191 unsigned int prologue_bytes;
192 unsigned int epilogue_offset;
193 unsigned int cpu_architecture;
194 u32 flags;
195 u32 *offsets;
196 u32 *target;
197 u32 stack_size;
198 #if __LINUX_ARM_ARCH__ < 7
199 u16 epilogue_bytes;
200 u16 imm_count;
201 u32 *imms;
202 #endif
203 };
204
205
206
207
208
209 static u32 jit_udiv32(u32 dividend, u32 divisor)
210 {
211 return dividend / divisor;
212 }
213
214 static u32 jit_mod32(u32 dividend, u32 divisor)
215 {
216 return dividend % divisor;
217 }
218
219 static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
220 {
221 inst |= (cond << 28);
222 inst = __opcode_to_mem_arm(inst);
223
224 if (ctx->target != NULL)
225 ctx->target[ctx->idx] = inst;
226
227 ctx->idx++;
228 }
229
230
231
232
233 static inline void emit(u32 inst, struct jit_ctx *ctx)
234 {
235 _emit(ARM_COND_AL, inst, ctx);
236 }
237
238
239
240
241
242
243
244 #define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
245 #define const_imm8m(x) \
246 ({ int r; \
247 u32 v = (x); \
248 if (!(v & ~0x000000ff)) \
249 r = imm12val(v, 0); \
250 else if (!(v & ~0xc000003f)) \
251 r = imm12val(v, 2); \
252 else if (!(v & ~0xf000000f)) \
253 r = imm12val(v, 4); \
254 else if (!(v & ~0xfc000003)) \
255 r = imm12val(v, 6); \
256 else if (!(v & ~0xff000000)) \
257 r = imm12val(v, 8); \
258 else if (!(v & ~0x3fc00000)) \
259 r = imm12val(v, 10); \
260 else if (!(v & ~0x0ff00000)) \
261 r = imm12val(v, 12); \
262 else if (!(v & ~0x03fc0000)) \
263 r = imm12val(v, 14); \
264 else if (!(v & ~0x00ff0000)) \
265 r = imm12val(v, 16); \
266 else if (!(v & ~0x003fc000)) \
267 r = imm12val(v, 18); \
268 else if (!(v & ~0x000ff000)) \
269 r = imm12val(v, 20); \
270 else if (!(v & ~0x0003fc00)) \
271 r = imm12val(v, 22); \
272 else if (!(v & ~0x0000ff00)) \
273 r = imm12val(v, 24); \
274 else if (!(v & ~0x00003fc0)) \
275 r = imm12val(v, 26); \
276 else if (!(v & ~0x00000ff0)) \
277 r = imm12val(v, 28); \
278 else if (!(v & ~0x000003fc)) \
279 r = imm12val(v, 30); \
280 else \
281 r = -1; \
282 r; })
283
284
285
286
287 static int imm8m(u32 x)
288 {
289 u32 rot;
290
291 for (rot = 0; rot < 16; rot++)
292 if ((x & ~ror32(0xff, 2 * rot)) == 0)
293 return rol32(x, 2 * rot) | (rot << 8);
294 return -1;
295 }
296
297 #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
298
299 static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
300 {
301 op |= rt << 12 | rn << 16;
302 if (imm12 >= 0)
303 op |= ARM_INST_LDST__U;
304 else
305 imm12 = -imm12;
306 return op | (imm12 & ARM_INST_LDST__IMM12);
307 }
308
309 static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
310 {
311 op |= rt << 12 | rn << 16;
312 if (imm8 >= 0)
313 op |= ARM_INST_LDST__U;
314 else
315 imm8 = -imm8;
316 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
317 }
318
319 #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
320 #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
321 #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
322 #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
323
324 #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
325 #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
326 #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
327 #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
328
329
330
331
332 static void jit_fill_hole(void *area, unsigned int size)
333 {
334 u32 *ptr;
335
336 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
337 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
338 }
339
340 #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
341
342 #define STACK_ALIGNMENT 8
343 #else
344
345 #define STACK_ALIGNMENT 4
346 #endif
347
348
349 #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
350 #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
351
352 #if __LINUX_ARM_ARCH__ < 7
353
354 static u16 imm_offset(u32 k, struct jit_ctx *ctx)
355 {
356 unsigned int i = 0, offset;
357 u16 imm;
358
359
360 if (ctx->target == NULL) {
361 ctx->imm_count++;
362 return 0;
363 }
364
365 while ((i < ctx->imm_count) && ctx->imms[i]) {
366 if (ctx->imms[i] == k)
367 break;
368 i++;
369 }
370
371 if (ctx->imms[i] == 0)
372 ctx->imms[i] = k;
373
374
375 offset = ctx->offsets[ctx->prog->len - 1] * 4;
376 offset += ctx->prologue_bytes;
377 offset += ctx->epilogue_bytes;
378 offset += i * 4;
379
380 ctx->target[offset / 4] = k;
381
382
383 imm = offset - (8 + ctx->idx * 4);
384
385 if (imm & ~0xfff) {
386
387
388
389
390 ctx->flags |= FLAG_IMM_OVERFLOW;
391 return 0;
392 }
393
394 return imm;
395 }
396
397 #endif
398
399 static inline int bpf2a32_offset(int bpf_to, int bpf_from,
400 const struct jit_ctx *ctx) {
401 int to, from;
402
403 if (ctx->target == NULL)
404 return 0;
405 to = ctx->offsets[bpf_to];
406 from = ctx->offsets[bpf_from];
407
408 return to - from - 1;
409 }
410
411
412
413
414 static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
415 {
416 #if __LINUX_ARM_ARCH__ < 7
417 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
418 #else
419 emit(ARM_MOVW(rd, val & 0xffff), ctx);
420 if (val > 0xffff)
421 emit(ARM_MOVT(rd, val >> 16), ctx);
422 #endif
423 }
424
425 static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
426 {
427 int imm12 = imm8m(val);
428
429 if (imm12 >= 0)
430 emit(ARM_MOV_I(rd, imm12), ctx);
431 else
432 emit_mov_i_no8m(rd, val, ctx);
433 }
434
435 static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
436 {
437 if (elf_hwcap & HWCAP_THUMB)
438 emit(ARM_BX(tgt_reg), ctx);
439 else
440 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
441 }
442
443 static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
444 {
445 #if __LINUX_ARM_ARCH__ < 5
446 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
447 emit_bx_r(tgt_reg, ctx);
448 #else
449 emit(ARM_BLX_R(tgt_reg), ctx);
450 #endif
451 }
452
453 static inline int epilogue_offset(const struct jit_ctx *ctx)
454 {
455 int to, from;
456
457 if (ctx->target == NULL)
458 return 0;
459 to = ctx->epilogue_offset;
460 from = ctx->idx;
461
462 return to - from - 2;
463 }
464
465 static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
466 {
467 const s8 *tmp = bpf2a32[TMP_REG_1];
468
469 #if __LINUX_ARM_ARCH__ == 7
470 if (elf_hwcap & HWCAP_IDIVA) {
471 if (op == BPF_DIV)
472 emit(ARM_UDIV(rd, rm, rn), ctx);
473 else {
474 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
475 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
476 }
477 return;
478 }
479 #endif
480
481
482
483
484
485
486
487
488
489 if (rn != ARM_R1) {
490 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
491 emit(ARM_MOV_R(ARM_R1, rn), ctx);
492 }
493 if (rm != ARM_R0) {
494 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
495 emit(ARM_MOV_R(ARM_R0, rm), ctx);
496 }
497
498
499 emit_mov_i(ARM_IP, op == BPF_DIV ?
500 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
501 emit_blx_r(ARM_IP, ctx);
502
503
504 if (rd != ARM_R0)
505 emit(ARM_MOV_R(rd, ARM_R0), ctx);
506
507
508 if (rn != ARM_R1)
509 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
510 if (rm != ARM_R0)
511 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
512 }
513
514
515 static bool is_stacked(s8 reg)
516 {
517 return reg < 0;
518 }
519
520
521
522
523
524 static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
525 {
526 if (is_stacked(reg)) {
527 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
528 reg = tmp;
529 }
530 return reg;
531 }
532
533 static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
534 struct jit_ctx *ctx)
535 {
536 if (is_stacked(reg[1])) {
537 if (__LINUX_ARM_ARCH__ >= 6 ||
538 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
539 emit(ARM_LDRD_I(tmp[1], ARM_FP,
540 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
541 } else {
542 emit(ARM_LDR_I(tmp[1], ARM_FP,
543 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
544 emit(ARM_LDR_I(tmp[0], ARM_FP,
545 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
546 }
547 reg = tmp;
548 }
549 return reg;
550 }
551
552
553
554
555
556 static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
557 {
558 if (is_stacked(reg))
559 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
560 else if (reg != src)
561 emit(ARM_MOV_R(reg, src), ctx);
562 }
563
564 static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
565 struct jit_ctx *ctx)
566 {
567 if (is_stacked(reg[1])) {
568 if (__LINUX_ARM_ARCH__ >= 6 ||
569 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
570 emit(ARM_STRD_I(src[1], ARM_FP,
571 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
572 } else {
573 emit(ARM_STR_I(src[1], ARM_FP,
574 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
575 emit(ARM_STR_I(src[0], ARM_FP,
576 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
577 }
578 } else {
579 if (reg[1] != src[1])
580 emit(ARM_MOV_R(reg[1], src[1]), ctx);
581 if (reg[0] != src[0])
582 emit(ARM_MOV_R(reg[0], src[0]), ctx);
583 }
584 }
585
586 static inline void emit_a32_mov_i(const s8 dst, const u32 val,
587 struct jit_ctx *ctx)
588 {
589 const s8 *tmp = bpf2a32[TMP_REG_1];
590
591 if (is_stacked(dst)) {
592 emit_mov_i(tmp[1], val, ctx);
593 arm_bpf_put_reg32(dst, tmp[1], ctx);
594 } else {
595 emit_mov_i(dst, val, ctx);
596 }
597 }
598
599 static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
600 {
601 const s8 *tmp = bpf2a32[TMP_REG_1];
602 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
603
604 emit_mov_i(rd[1], (u32)val, ctx);
605 emit_mov_i(rd[0], val >> 32, ctx);
606
607 arm_bpf_put_reg64(dst, rd, ctx);
608 }
609
610
611 static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
612 const u32 val, struct jit_ctx *ctx) {
613 u64 val64 = val;
614
615 if (is64 && (val & (1<<31)))
616 val64 |= 0xffffffff00000000ULL;
617 emit_a32_mov_i64(dst, val64, ctx);
618 }
619
620 static inline void emit_a32_add_r(const u8 dst, const u8 src,
621 const bool is64, const bool hi,
622 struct jit_ctx *ctx) {
623
624
625
626
627
628
629 if (!hi && is64)
630 emit(ARM_ADDS_R(dst, dst, src), ctx);
631 else if (hi && is64)
632 emit(ARM_ADC_R(dst, dst, src), ctx);
633 else
634 emit(ARM_ADD_R(dst, dst, src), ctx);
635 }
636
637 static inline void emit_a32_sub_r(const u8 dst, const u8 src,
638 const bool is64, const bool hi,
639 struct jit_ctx *ctx) {
640
641
642
643
644
645
646 if (!hi && is64)
647 emit(ARM_SUBS_R(dst, dst, src), ctx);
648 else if (hi && is64)
649 emit(ARM_SBC_R(dst, dst, src), ctx);
650 else
651 emit(ARM_SUB_R(dst, dst, src), ctx);
652 }
653
654 static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
655 const bool hi, const u8 op, struct jit_ctx *ctx){
656 switch (BPF_OP(op)) {
657
658 case BPF_ADD:
659 emit_a32_add_r(dst, src, is64, hi, ctx);
660 break;
661
662 case BPF_SUB:
663 emit_a32_sub_r(dst, src, is64, hi, ctx);
664 break;
665
666 case BPF_OR:
667 emit(ARM_ORR_R(dst, dst, src), ctx);
668 break;
669
670 case BPF_AND:
671 emit(ARM_AND_R(dst, dst, src), ctx);
672 break;
673
674 case BPF_XOR:
675 emit(ARM_EOR_R(dst, dst, src), ctx);
676 break;
677
678 case BPF_MUL:
679 emit(ARM_MUL(dst, dst, src), ctx);
680 break;
681
682 case BPF_LSH:
683 emit(ARM_LSL_R(dst, dst, src), ctx);
684 break;
685
686 case BPF_RSH:
687 emit(ARM_LSR_R(dst, dst, src), ctx);
688 break;
689
690 case BPF_ARSH:
691 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
692 break;
693 }
694 }
695
696
697
698
699 static inline void emit_a32_alu_r(const s8 dst, const s8 src,
700 struct jit_ctx *ctx, const bool is64,
701 const bool hi, const u8 op) {
702 const s8 *tmp = bpf2a32[TMP_REG_1];
703 s8 rn, rd;
704
705 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
706 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
707
708 emit_alu_r(rd, rn, is64, hi, op, ctx);
709 arm_bpf_put_reg32(dst, rd, ctx);
710 }
711
712
713 static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
714 const s8 src[], struct jit_ctx *ctx,
715 const u8 op) {
716 const s8 *tmp = bpf2a32[TMP_REG_1];
717 const s8 *tmp2 = bpf2a32[TMP_REG_2];
718 const s8 *rd;
719
720 rd = arm_bpf_get_reg64(dst, tmp, ctx);
721 if (is64) {
722 const s8 *rs;
723
724 rs = arm_bpf_get_reg64(src, tmp2, ctx);
725
726
727 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
728 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
729 } else {
730 s8 rs;
731
732 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
733
734
735 emit_alu_r(rd[1], rs, true, false, op, ctx);
736 if (!ctx->prog->aux->verifier_zext)
737 emit_a32_mov_i(rd[0], 0, ctx);
738 }
739
740 arm_bpf_put_reg64(dst, rd, ctx);
741 }
742
743
744 static inline void emit_a32_mov_r(const s8 dst, const s8 src,
745 struct jit_ctx *ctx) {
746 const s8 *tmp = bpf2a32[TMP_REG_1];
747 s8 rt;
748
749 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
750 arm_bpf_put_reg32(dst, rt, ctx);
751 }
752
753
754 static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
755 const s8 src[],
756 struct jit_ctx *ctx) {
757 if (!is64) {
758 emit_a32_mov_r(dst_lo, src_lo, ctx);
759 if (!ctx->prog->aux->verifier_zext)
760
761 emit_a32_mov_i(dst_hi, 0, ctx);
762 } else if (__LINUX_ARM_ARCH__ < 6 &&
763 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
764
765 emit_a32_mov_r(dst_lo, src_lo, ctx);
766 emit_a32_mov_r(dst_hi, src_hi, ctx);
767 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
768 const u8 *tmp = bpf2a32[TMP_REG_1];
769
770 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
771 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
772 } else if (is_stacked(src_lo)) {
773 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
774 } else if (is_stacked(dst_lo)) {
775 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
776 } else {
777 emit(ARM_MOV_R(dst[0], src[0]), ctx);
778 emit(ARM_MOV_R(dst[1], src[1]), ctx);
779 }
780 }
781
782
783 static inline void emit_a32_alu_i(const s8 dst, const u32 val,
784 struct jit_ctx *ctx, const u8 op) {
785 const s8 *tmp = bpf2a32[TMP_REG_1];
786 s8 rd;
787
788 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
789
790
791 switch (op) {
792 case BPF_LSH:
793 emit(ARM_LSL_I(rd, rd, val), ctx);
794 break;
795 case BPF_RSH:
796 emit(ARM_LSR_I(rd, rd, val), ctx);
797 break;
798 case BPF_NEG:
799 emit(ARM_RSB_I(rd, rd, val), ctx);
800 break;
801 }
802
803 arm_bpf_put_reg32(dst, rd, ctx);
804 }
805
806
807 static inline void emit_a32_neg64(const s8 dst[],
808 struct jit_ctx *ctx){
809 const s8 *tmp = bpf2a32[TMP_REG_1];
810 const s8 *rd;
811
812
813 rd = arm_bpf_get_reg64(dst, tmp, ctx);
814
815
816 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
817 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
818
819 arm_bpf_put_reg64(dst, rd, ctx);
820 }
821
822
823 static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
824 struct jit_ctx *ctx) {
825 const s8 *tmp = bpf2a32[TMP_REG_1];
826 const s8 *tmp2 = bpf2a32[TMP_REG_2];
827 const s8 *rd;
828 s8 rt;
829
830
831 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
832 rd = arm_bpf_get_reg64(dst, tmp, ctx);
833
834
835 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
836 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
837 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
838 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
839 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
840 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
841
842 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
843 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
844 }
845
846
847 static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
848 struct jit_ctx *ctx) {
849 const s8 *tmp = bpf2a32[TMP_REG_1];
850 const s8 *tmp2 = bpf2a32[TMP_REG_2];
851 const s8 *rd;
852 s8 rt;
853
854
855 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
856 rd = arm_bpf_get_reg64(dst, tmp, ctx);
857
858
859 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
860 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
861 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
862 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
863 _emit(ARM_COND_MI, ARM_B(0), ctx);
864 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
865 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
866
867 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
868 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
869 }
870
871
872 static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
873 struct jit_ctx *ctx) {
874 const s8 *tmp = bpf2a32[TMP_REG_1];
875 const s8 *tmp2 = bpf2a32[TMP_REG_2];
876 const s8 *rd;
877 s8 rt;
878
879
880 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
881 rd = arm_bpf_get_reg64(dst, tmp, ctx);
882
883
884 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
885 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
886 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
887 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
888 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
889 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
890
891 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
892 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
893 }
894
895
896 static inline void emit_a32_lsh_i64(const s8 dst[],
897 const u32 val, struct jit_ctx *ctx){
898 const s8 *tmp = bpf2a32[TMP_REG_1];
899 const s8 *tmp2 = bpf2a32[TMP_REG_2];
900 const s8 *rd;
901
902
903 rd = arm_bpf_get_reg64(dst, tmp, ctx);
904
905
906 if (val < 32) {
907 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
908 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
909 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
910 } else {
911 if (val == 32)
912 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
913 else
914 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
915 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
916 }
917
918 arm_bpf_put_reg64(dst, rd, ctx);
919 }
920
921
922 static inline void emit_a32_rsh_i64(const s8 dst[],
923 const u32 val, struct jit_ctx *ctx) {
924 const s8 *tmp = bpf2a32[TMP_REG_1];
925 const s8 *tmp2 = bpf2a32[TMP_REG_2];
926 const s8 *rd;
927
928
929 rd = arm_bpf_get_reg64(dst, tmp, ctx);
930
931
932 if (val == 0) {
933
934
935
936 } else if (val < 32) {
937 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
938 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
939 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
940 } else if (val == 32) {
941 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
942 emit(ARM_MOV_I(rd[0], 0), ctx);
943 } else {
944 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
945 emit(ARM_MOV_I(rd[0], 0), ctx);
946 }
947
948 arm_bpf_put_reg64(dst, rd, ctx);
949 }
950
951
952 static inline void emit_a32_arsh_i64(const s8 dst[],
953 const u32 val, struct jit_ctx *ctx){
954 const s8 *tmp = bpf2a32[TMP_REG_1];
955 const s8 *tmp2 = bpf2a32[TMP_REG_2];
956 const s8 *rd;
957
958
959 rd = arm_bpf_get_reg64(dst, tmp, ctx);
960
961
962 if (val == 0) {
963
964
965
966 } else if (val < 32) {
967 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
968 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
969 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
970 } else if (val == 32) {
971 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
972 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
973 } else {
974 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
975 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
976 }
977
978 arm_bpf_put_reg64(dst, rd, ctx);
979 }
980
981 static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
982 struct jit_ctx *ctx) {
983 const s8 *tmp = bpf2a32[TMP_REG_1];
984 const s8 *tmp2 = bpf2a32[TMP_REG_2];
985 const s8 *rd, *rt;
986
987
988 rd = arm_bpf_get_reg64(dst, tmp, ctx);
989 rt = arm_bpf_get_reg64(src, tmp2, ctx);
990
991
992 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
993 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
994 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
995
996 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
997 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
998
999 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1000 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1001 }
1002
1003 static bool is_ldst_imm(s16 off, const u8 size)
1004 {
1005 s16 off_max = 0;
1006
1007 switch (size) {
1008 case BPF_B:
1009 case BPF_W:
1010 off_max = 0xfff;
1011 break;
1012 case BPF_H:
1013 off_max = 0xff;
1014 break;
1015 case BPF_DW:
1016
1017 off_max = 0xfff - 4;
1018 break;
1019 }
1020 return -off_max <= off && off <= off_max;
1021 }
1022
1023
1024 static inline void emit_str_r(const s8 dst, const s8 src[],
1025 s16 off, struct jit_ctx *ctx, const u8 sz){
1026 const s8 *tmp = bpf2a32[TMP_REG_1];
1027 s8 rd;
1028
1029 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1030
1031 if (!is_ldst_imm(off, sz)) {
1032 emit_a32_mov_i(tmp[0], off, ctx);
1033 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1034 rd = tmp[0];
1035 off = 0;
1036 }
1037 switch (sz) {
1038 case BPF_B:
1039
1040 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1041 break;
1042 case BPF_H:
1043
1044 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1045 break;
1046 case BPF_W:
1047
1048 emit(ARM_STR_I(src_lo, rd, off), ctx);
1049 break;
1050 case BPF_DW:
1051
1052 emit(ARM_STR_I(src_lo, rd, off), ctx);
1053 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1054 break;
1055 }
1056 }
1057
1058
1059 static inline void emit_ldx_r(const s8 dst[], const s8 src,
1060 s16 off, struct jit_ctx *ctx, const u8 sz){
1061 const s8 *tmp = bpf2a32[TMP_REG_1];
1062 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1063 s8 rm = src;
1064
1065 if (!is_ldst_imm(off, sz)) {
1066 emit_a32_mov_i(tmp[0], off, ctx);
1067 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1068 rm = tmp[0];
1069 off = 0;
1070 } else if (rd[1] == rm) {
1071 emit(ARM_MOV_R(tmp[0], rm), ctx);
1072 rm = tmp[0];
1073 }
1074 switch (sz) {
1075 case BPF_B:
1076
1077 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1078 if (!ctx->prog->aux->verifier_zext)
1079 emit_a32_mov_i(rd[0], 0, ctx);
1080 break;
1081 case BPF_H:
1082
1083 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1084 if (!ctx->prog->aux->verifier_zext)
1085 emit_a32_mov_i(rd[0], 0, ctx);
1086 break;
1087 case BPF_W:
1088
1089 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1090 if (!ctx->prog->aux->verifier_zext)
1091 emit_a32_mov_i(rd[0], 0, ctx);
1092 break;
1093 case BPF_DW:
1094
1095 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1096 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1097 break;
1098 }
1099 arm_bpf_put_reg64(dst, rd, ctx);
1100 }
1101
1102
1103 static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1104 const u8 rn, struct jit_ctx *ctx, u8 op,
1105 bool is_jmp64) {
1106 switch (op) {
1107 case BPF_JSET:
1108 if (is_jmp64) {
1109 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1110 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1111 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1112 } else {
1113 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1114 }
1115 break;
1116 case BPF_JEQ:
1117 case BPF_JNE:
1118 case BPF_JGT:
1119 case BPF_JGE:
1120 case BPF_JLE:
1121 case BPF_JLT:
1122 if (is_jmp64) {
1123 emit(ARM_CMP_R(rd, rm), ctx);
1124
1125 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1126 } else {
1127 emit(ARM_CMP_R(rt, rn), ctx);
1128 }
1129 break;
1130 case BPF_JSLE:
1131 case BPF_JSGT:
1132 emit(ARM_CMP_R(rn, rt), ctx);
1133 if (is_jmp64)
1134 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1135 break;
1136 case BPF_JSLT:
1137 case BPF_JSGE:
1138 emit(ARM_CMP_R(rt, rn), ctx);
1139 if (is_jmp64)
1140 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1141 break;
1142 }
1143 }
1144
1145 static int out_offset = -1;
1146 static int emit_bpf_tail_call(struct jit_ctx *ctx)
1147 {
1148
1149
1150 const s8 *r2 = bpf2a32[BPF_REG_2];
1151 const s8 *r3 = bpf2a32[BPF_REG_3];
1152 const s8 *tmp = bpf2a32[TMP_REG_1];
1153 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1154 const s8 *tcc = bpf2a32[TCALL_CNT];
1155 const s8 *tc;
1156 const int idx0 = ctx->idx;
1157 #define cur_offset (ctx->idx - idx0)
1158 #define jmp_offset (out_offset - (cur_offset) - 2)
1159 u32 lo, hi;
1160 s8 r_array, r_index;
1161 int off;
1162
1163
1164
1165
1166 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1167 ARM_INST_LDST__IMM12);
1168 off = offsetof(struct bpf_array, map.max_entries);
1169 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1170
1171 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1172
1173 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1174
1175 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1176 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1177
1178
1179
1180
1181
1182
1183
1184 lo = (u32)MAX_TAIL_CALL_CNT;
1185 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1186 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1187 emit(ARM_CMP_I(tc[0], hi), ctx);
1188 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1189 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1190 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1191 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1192 arm_bpf_put_reg64(tcc, tmp, ctx);
1193
1194
1195
1196
1197
1198 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1199 off = imm8m(offsetof(struct bpf_array, ptrs));
1200 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1201 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1202 emit(ARM_CMP_I(tmp[1], 0), ctx);
1203 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1204
1205
1206 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1207 ARM_INST_LDST__IMM12);
1208 off = offsetof(struct bpf_prog, bpf_func);
1209 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1210 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1211 emit_bx_r(tmp[1], ctx);
1212
1213
1214 if (out_offset == -1)
1215 out_offset = cur_offset;
1216 if (cur_offset != out_offset) {
1217 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1218 cur_offset, out_offset);
1219 return -1;
1220 }
1221 return 0;
1222 #undef cur_offset
1223 #undef jmp_offset
1224 }
1225
1226
1227 static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1228 {
1229 #if __LINUX_ARM_ARCH__ < 6
1230 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1231
1232 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1233 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1234 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1235 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1236 #else
1237 emit(ARM_REV16(rd, rn), ctx);
1238 #endif
1239 }
1240
1241
1242 static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1243 {
1244 #if __LINUX_ARM_ARCH__ < 6
1245 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1246
1247 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1248 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1249 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1250
1251 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1252 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1253 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1254 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1255 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1256 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1257 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1258
1259 #else
1260 emit(ARM_REV(rd, rn), ctx);
1261 #endif
1262 }
1263
1264
1265 static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1266 {
1267 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1268 const s8 *rt;
1269 u16 reg_set = 0;
1270
1271 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1272
1273 reg_set = (1 << rt[1]) | (1 << rt[0]);
1274 emit(ARM_PUSH(reg_set), ctx);
1275 }
1276
1277 static void build_prologue(struct jit_ctx *ctx)
1278 {
1279 const s8 r0 = bpf2a32[BPF_REG_0][1];
1280 const s8 r2 = bpf2a32[BPF_REG_1][1];
1281 const s8 r3 = bpf2a32[BPF_REG_1][0];
1282 const s8 r4 = bpf2a32[BPF_REG_6][1];
1283 const s8 fplo = bpf2a32[BPF_REG_FP][1];
1284 const s8 fphi = bpf2a32[BPF_REG_FP][0];
1285 const s8 *tcc = bpf2a32[TCALL_CNT];
1286
1287
1288 #ifdef CONFIG_FRAME_POINTER
1289 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1290 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1291 emit(ARM_PUSH(reg_set), ctx);
1292 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1293 #else
1294 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1295 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1296 #endif
1297
1298 emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
1299
1300 ctx->stack_size = imm8m(STACK_SIZE);
1301
1302
1303 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1304
1305
1306 emit_a32_mov_r(fplo, ARM_IP, ctx);
1307 emit_a32_mov_i(fphi, 0, ctx);
1308
1309
1310 emit(ARM_MOV_I(r4, 0), ctx);
1311
1312
1313 emit(ARM_MOV_R(r3, r4), ctx);
1314 emit(ARM_MOV_R(r2, r0), ctx);
1315
1316 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
1317 emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
1318
1319 }
1320
1321
1322 static void build_epilogue(struct jit_ctx *ctx)
1323 {
1324 #ifdef CONFIG_FRAME_POINTER
1325
1326
1327 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1328 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1329 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1330 #else
1331
1332 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1333 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1334 #endif
1335 }
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1346 {
1347 const u8 code = insn->code;
1348 const s8 *dst = bpf2a32[insn->dst_reg];
1349 const s8 *src = bpf2a32[insn->src_reg];
1350 const s8 *tmp = bpf2a32[TMP_REG_1];
1351 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1352 const s16 off = insn->off;
1353 const s32 imm = insn->imm;
1354 const int i = insn - ctx->prog->insnsi;
1355 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1356 const s8 *rd, *rs;
1357 s8 rd_lo, rt, rm, rn;
1358 s32 jmp_offset;
1359
1360 #define check_imm(bits, imm) do { \
1361 if ((imm) >= (1 << ((bits) - 1)) || \
1362 (imm) < -(1 << ((bits) - 1))) { \
1363 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1364 i, imm, imm); \
1365 return -EINVAL; \
1366 } \
1367 } while (0)
1368 #define check_imm24(imm) check_imm(24, imm)
1369
1370 switch (code) {
1371
1372
1373
1374 case BPF_ALU | BPF_MOV | BPF_K:
1375 case BPF_ALU | BPF_MOV | BPF_X:
1376 case BPF_ALU64 | BPF_MOV | BPF_K:
1377 case BPF_ALU64 | BPF_MOV | BPF_X:
1378 switch (BPF_SRC(code)) {
1379 case BPF_X:
1380 if (imm == 1) {
1381
1382 emit_a32_mov_i(dst_hi, 0, ctx);
1383 break;
1384 }
1385 emit_a32_mov_r64(is64, dst, src, ctx);
1386 break;
1387 case BPF_K:
1388
1389 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1390 break;
1391 }
1392 break;
1393
1394
1395
1396
1397
1398
1399
1400
1401 case BPF_ALU | BPF_ADD | BPF_K:
1402 case BPF_ALU | BPF_ADD | BPF_X:
1403 case BPF_ALU | BPF_SUB | BPF_K:
1404 case BPF_ALU | BPF_SUB | BPF_X:
1405 case BPF_ALU | BPF_OR | BPF_K:
1406 case BPF_ALU | BPF_OR | BPF_X:
1407 case BPF_ALU | BPF_AND | BPF_K:
1408 case BPF_ALU | BPF_AND | BPF_X:
1409 case BPF_ALU | BPF_XOR | BPF_K:
1410 case BPF_ALU | BPF_XOR | BPF_X:
1411 case BPF_ALU | BPF_MUL | BPF_K:
1412 case BPF_ALU | BPF_MUL | BPF_X:
1413 case BPF_ALU | BPF_LSH | BPF_X:
1414 case BPF_ALU | BPF_RSH | BPF_X:
1415 case BPF_ALU | BPF_ARSH | BPF_K:
1416 case BPF_ALU | BPF_ARSH | BPF_X:
1417 case BPF_ALU64 | BPF_ADD | BPF_K:
1418 case BPF_ALU64 | BPF_ADD | BPF_X:
1419 case BPF_ALU64 | BPF_SUB | BPF_K:
1420 case BPF_ALU64 | BPF_SUB | BPF_X:
1421 case BPF_ALU64 | BPF_OR | BPF_K:
1422 case BPF_ALU64 | BPF_OR | BPF_X:
1423 case BPF_ALU64 | BPF_AND | BPF_K:
1424 case BPF_ALU64 | BPF_AND | BPF_X:
1425 case BPF_ALU64 | BPF_XOR | BPF_K:
1426 case BPF_ALU64 | BPF_XOR | BPF_X:
1427 switch (BPF_SRC(code)) {
1428 case BPF_X:
1429 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1430 break;
1431 case BPF_K:
1432
1433
1434
1435
1436
1437
1438 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1439 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1440 break;
1441 }
1442 break;
1443
1444
1445 case BPF_ALU | BPF_DIV | BPF_K:
1446 case BPF_ALU | BPF_DIV | BPF_X:
1447 case BPF_ALU | BPF_MOD | BPF_K:
1448 case BPF_ALU | BPF_MOD | BPF_X:
1449 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1450 switch (BPF_SRC(code)) {
1451 case BPF_X:
1452 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1453 break;
1454 case BPF_K:
1455 rt = tmp2[0];
1456 emit_a32_mov_i(rt, imm, ctx);
1457 break;
1458 default:
1459 rt = src_lo;
1460 break;
1461 }
1462 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1463 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1464 if (!ctx->prog->aux->verifier_zext)
1465 emit_a32_mov_i(dst_hi, 0, ctx);
1466 break;
1467 case BPF_ALU64 | BPF_DIV | BPF_K:
1468 case BPF_ALU64 | BPF_DIV | BPF_X:
1469 case BPF_ALU64 | BPF_MOD | BPF_K:
1470 case BPF_ALU64 | BPF_MOD | BPF_X:
1471 goto notyet;
1472
1473
1474 case BPF_ALU | BPF_RSH | BPF_K:
1475 case BPF_ALU | BPF_LSH | BPF_K:
1476 if (unlikely(imm > 31))
1477 return -EINVAL;
1478 if (imm)
1479 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1480 if (!ctx->prog->aux->verifier_zext)
1481 emit_a32_mov_i(dst_hi, 0, ctx);
1482 break;
1483
1484 case BPF_ALU64 | BPF_LSH | BPF_K:
1485 if (unlikely(imm > 63))
1486 return -EINVAL;
1487 emit_a32_lsh_i64(dst, imm, ctx);
1488 break;
1489
1490 case BPF_ALU64 | BPF_RSH | BPF_K:
1491 if (unlikely(imm > 63))
1492 return -EINVAL;
1493 emit_a32_rsh_i64(dst, imm, ctx);
1494 break;
1495
1496 case BPF_ALU64 | BPF_LSH | BPF_X:
1497 emit_a32_lsh_r64(dst, src, ctx);
1498 break;
1499
1500 case BPF_ALU64 | BPF_RSH | BPF_X:
1501 emit_a32_rsh_r64(dst, src, ctx);
1502 break;
1503
1504 case BPF_ALU64 | BPF_ARSH | BPF_X:
1505 emit_a32_arsh_r64(dst, src, ctx);
1506 break;
1507
1508 case BPF_ALU64 | BPF_ARSH | BPF_K:
1509 if (unlikely(imm > 63))
1510 return -EINVAL;
1511 emit_a32_arsh_i64(dst, imm, ctx);
1512 break;
1513
1514 case BPF_ALU | BPF_NEG:
1515 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1516 if (!ctx->prog->aux->verifier_zext)
1517 emit_a32_mov_i(dst_hi, 0, ctx);
1518 break;
1519
1520 case BPF_ALU64 | BPF_NEG:
1521 emit_a32_neg64(dst, ctx);
1522 break;
1523
1524 case BPF_ALU64 | BPF_MUL | BPF_X:
1525 case BPF_ALU64 | BPF_MUL | BPF_K:
1526 switch (BPF_SRC(code)) {
1527 case BPF_X:
1528 emit_a32_mul_r64(dst, src, ctx);
1529 break;
1530 case BPF_K:
1531
1532
1533
1534
1535
1536
1537 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1538 emit_a32_mul_r64(dst, tmp2, ctx);
1539 break;
1540 }
1541 break;
1542
1543
1544 case BPF_ALU | BPF_END | BPF_FROM_LE:
1545 case BPF_ALU | BPF_END | BPF_FROM_BE:
1546 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1547 if (BPF_SRC(code) == BPF_FROM_LE)
1548 goto emit_bswap_uxt;
1549 switch (imm) {
1550 case 16:
1551 emit_rev16(rd[1], rd[1], ctx);
1552 goto emit_bswap_uxt;
1553 case 32:
1554 emit_rev32(rd[1], rd[1], ctx);
1555 goto emit_bswap_uxt;
1556 case 64:
1557 emit_rev32(ARM_LR, rd[1], ctx);
1558 emit_rev32(rd[1], rd[0], ctx);
1559 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1560 break;
1561 }
1562 goto exit;
1563 emit_bswap_uxt:
1564 switch (imm) {
1565 case 16:
1566
1567 #if __LINUX_ARM_ARCH__ < 6
1568 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1569 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1570 #else
1571 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1572 #endif
1573 if (!ctx->prog->aux->verifier_zext)
1574 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1575 break;
1576 case 32:
1577
1578 if (!ctx->prog->aux->verifier_zext)
1579 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1580 break;
1581 case 64:
1582
1583 break;
1584 }
1585 exit:
1586 arm_bpf_put_reg64(dst, rd, ctx);
1587 break;
1588
1589 case BPF_LD | BPF_IMM | BPF_DW:
1590 {
1591 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1592
1593 emit_a32_mov_i64(dst, val, ctx);
1594
1595 return 1;
1596 }
1597
1598 case BPF_LDX | BPF_MEM | BPF_W:
1599 case BPF_LDX | BPF_MEM | BPF_H:
1600 case BPF_LDX | BPF_MEM | BPF_B:
1601 case BPF_LDX | BPF_MEM | BPF_DW:
1602 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1603 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1604 break;
1605
1606 case BPF_ST | BPF_MEM | BPF_W:
1607 case BPF_ST | BPF_MEM | BPF_H:
1608 case BPF_ST | BPF_MEM | BPF_B:
1609 case BPF_ST | BPF_MEM | BPF_DW:
1610 switch (BPF_SIZE(code)) {
1611 case BPF_DW:
1612
1613 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1614 break;
1615 case BPF_W:
1616 case BPF_H:
1617 case BPF_B:
1618 emit_a32_mov_i(tmp2[1], imm, ctx);
1619 break;
1620 }
1621 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1622 break;
1623
1624 case BPF_STX | BPF_XADD | BPF_W:
1625
1626 case BPF_STX | BPF_XADD | BPF_DW:
1627 goto notyet;
1628
1629 case BPF_STX | BPF_MEM | BPF_W:
1630 case BPF_STX | BPF_MEM | BPF_H:
1631 case BPF_STX | BPF_MEM | BPF_B:
1632 case BPF_STX | BPF_MEM | BPF_DW:
1633 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1634 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1635 break;
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647 case BPF_JMP | BPF_JEQ | BPF_X:
1648 case BPF_JMP | BPF_JGT | BPF_X:
1649 case BPF_JMP | BPF_JGE | BPF_X:
1650 case BPF_JMP | BPF_JNE | BPF_X:
1651 case BPF_JMP | BPF_JSGT | BPF_X:
1652 case BPF_JMP | BPF_JSGE | BPF_X:
1653 case BPF_JMP | BPF_JSET | BPF_X:
1654 case BPF_JMP | BPF_JLE | BPF_X:
1655 case BPF_JMP | BPF_JLT | BPF_X:
1656 case BPF_JMP | BPF_JSLT | BPF_X:
1657 case BPF_JMP | BPF_JSLE | BPF_X:
1658 case BPF_JMP32 | BPF_JEQ | BPF_X:
1659 case BPF_JMP32 | BPF_JGT | BPF_X:
1660 case BPF_JMP32 | BPF_JGE | BPF_X:
1661 case BPF_JMP32 | BPF_JNE | BPF_X:
1662 case BPF_JMP32 | BPF_JSGT | BPF_X:
1663 case BPF_JMP32 | BPF_JSGE | BPF_X:
1664 case BPF_JMP32 | BPF_JSET | BPF_X:
1665 case BPF_JMP32 | BPF_JLE | BPF_X:
1666 case BPF_JMP32 | BPF_JLT | BPF_X:
1667 case BPF_JMP32 | BPF_JSLT | BPF_X:
1668 case BPF_JMP32 | BPF_JSLE | BPF_X:
1669
1670 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1671 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1672 goto go_jmp;
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684 case BPF_JMP | BPF_JEQ | BPF_K:
1685 case BPF_JMP | BPF_JGT | BPF_K:
1686 case BPF_JMP | BPF_JGE | BPF_K:
1687 case BPF_JMP | BPF_JNE | BPF_K:
1688 case BPF_JMP | BPF_JSGT | BPF_K:
1689 case BPF_JMP | BPF_JSGE | BPF_K:
1690 case BPF_JMP | BPF_JSET | BPF_K:
1691 case BPF_JMP | BPF_JLT | BPF_K:
1692 case BPF_JMP | BPF_JLE | BPF_K:
1693 case BPF_JMP | BPF_JSLT | BPF_K:
1694 case BPF_JMP | BPF_JSLE | BPF_K:
1695 case BPF_JMP32 | BPF_JEQ | BPF_K:
1696 case BPF_JMP32 | BPF_JGT | BPF_K:
1697 case BPF_JMP32 | BPF_JGE | BPF_K:
1698 case BPF_JMP32 | BPF_JNE | BPF_K:
1699 case BPF_JMP32 | BPF_JSGT | BPF_K:
1700 case BPF_JMP32 | BPF_JSGE | BPF_K:
1701 case BPF_JMP32 | BPF_JSET | BPF_K:
1702 case BPF_JMP32 | BPF_JLT | BPF_K:
1703 case BPF_JMP32 | BPF_JLE | BPF_K:
1704 case BPF_JMP32 | BPF_JSLT | BPF_K:
1705 case BPF_JMP32 | BPF_JSLE | BPF_K:
1706 if (off == 0)
1707 break;
1708 rm = tmp2[0];
1709 rn = tmp2[1];
1710
1711 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1712 go_jmp:
1713
1714 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1715
1716
1717 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1718 BPF_CLASS(code) == BPF_JMP);
1719
1720
1721 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1722 switch (BPF_OP(code)) {
1723 case BPF_JNE:
1724 case BPF_JSET:
1725 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1726 break;
1727 case BPF_JEQ:
1728 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1729 break;
1730 case BPF_JGT:
1731 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1732 break;
1733 case BPF_JGE:
1734 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1735 break;
1736 case BPF_JSGT:
1737 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1738 break;
1739 case BPF_JSGE:
1740 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1741 break;
1742 case BPF_JLE:
1743 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1744 break;
1745 case BPF_JLT:
1746 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1747 break;
1748 case BPF_JSLT:
1749 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1750 break;
1751 case BPF_JSLE:
1752 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1753 break;
1754 }
1755 break;
1756
1757 case BPF_JMP | BPF_JA:
1758 {
1759 if (off == 0)
1760 break;
1761 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1762 check_imm24(jmp_offset);
1763 emit(ARM_B(jmp_offset), ctx);
1764 break;
1765 }
1766
1767 case BPF_JMP | BPF_TAIL_CALL:
1768 if (emit_bpf_tail_call(ctx))
1769 return -EFAULT;
1770 break;
1771
1772 case BPF_JMP | BPF_CALL:
1773 {
1774 const s8 *r0 = bpf2a32[BPF_REG_0];
1775 const s8 *r1 = bpf2a32[BPF_REG_1];
1776 const s8 *r2 = bpf2a32[BPF_REG_2];
1777 const s8 *r3 = bpf2a32[BPF_REG_3];
1778 const s8 *r4 = bpf2a32[BPF_REG_4];
1779 const s8 *r5 = bpf2a32[BPF_REG_5];
1780 const u32 func = (u32)__bpf_call_base + (u32)imm;
1781
1782 emit_a32_mov_r64(true, r0, r1, ctx);
1783 emit_a32_mov_r64(true, r1, r2, ctx);
1784 emit_push_r64(r5, ctx);
1785 emit_push_r64(r4, ctx);
1786 emit_push_r64(r3, ctx);
1787
1788 emit_a32_mov_i(tmp[1], func, ctx);
1789 emit_blx_r(tmp[1], ctx);
1790
1791 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx);
1792 break;
1793 }
1794
1795 case BPF_JMP | BPF_EXIT:
1796
1797
1798
1799 if (i == ctx->prog->len - 1)
1800 break;
1801 jmp_offset = epilogue_offset(ctx);
1802 check_imm24(jmp_offset);
1803 emit(ARM_B(jmp_offset), ctx);
1804 break;
1805 notyet:
1806 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1807 return -EFAULT;
1808 default:
1809 pr_err_once("unknown opcode %02x\n", code);
1810 return -EINVAL;
1811 }
1812
1813 if (ctx->flags & FLAG_IMM_OVERFLOW)
1814
1815
1816
1817
1818
1819 return -1;
1820 return 0;
1821 }
1822
1823 static int build_body(struct jit_ctx *ctx)
1824 {
1825 const struct bpf_prog *prog = ctx->prog;
1826 unsigned int i;
1827
1828 for (i = 0; i < prog->len; i++) {
1829 const struct bpf_insn *insn = &(prog->insnsi[i]);
1830 int ret;
1831
1832 ret = build_insn(insn, ctx);
1833
1834
1835 if (ret > 0) {
1836 i++;
1837 if (ctx->target == NULL)
1838 ctx->offsets[i] = ctx->idx;
1839 continue;
1840 }
1841
1842 if (ctx->target == NULL)
1843 ctx->offsets[i] = ctx->idx;
1844
1845
1846 if (ret)
1847 return ret;
1848 }
1849 return 0;
1850 }
1851
1852 static int validate_code(struct jit_ctx *ctx)
1853 {
1854 int i;
1855
1856 for (i = 0; i < ctx->idx; i++) {
1857 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1858 return -1;
1859 }
1860
1861 return 0;
1862 }
1863
1864 void bpf_jit_compile(struct bpf_prog *prog)
1865 {
1866
1867 }
1868
1869 bool bpf_jit_needs_zext(void)
1870 {
1871 return true;
1872 }
1873
1874 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1875 {
1876 struct bpf_prog *tmp, *orig_prog = prog;
1877 struct bpf_binary_header *header;
1878 bool tmp_blinded = false;
1879 struct jit_ctx ctx;
1880 unsigned int tmp_idx;
1881 unsigned int image_size;
1882 u8 *image_ptr;
1883
1884
1885
1886
1887 if (!prog->jit_requested)
1888 return orig_prog;
1889
1890
1891
1892
1893
1894 tmp = bpf_jit_blind_constants(prog);
1895
1896 if (IS_ERR(tmp))
1897 return orig_prog;
1898 if (tmp != prog) {
1899 tmp_blinded = true;
1900 prog = tmp;
1901 }
1902
1903 memset(&ctx, 0, sizeof(ctx));
1904 ctx.prog = prog;
1905 ctx.cpu_architecture = cpu_architecture();
1906
1907
1908
1909
1910 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1911 if (ctx.offsets == NULL) {
1912 prog = orig_prog;
1913 goto out;
1914 }
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926 if (build_body(&ctx)) {
1927 prog = orig_prog;
1928 goto out_off;
1929 }
1930
1931 tmp_idx = ctx.idx;
1932 build_prologue(&ctx);
1933 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1934
1935 ctx.epilogue_offset = ctx.idx;
1936
1937 #if __LINUX_ARM_ARCH__ < 7
1938 tmp_idx = ctx.idx;
1939 build_epilogue(&ctx);
1940 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1941
1942 ctx.idx += ctx.imm_count;
1943 if (ctx.imm_count) {
1944 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1945 if (ctx.imms == NULL) {
1946 prog = orig_prog;
1947 goto out_off;
1948 }
1949 }
1950 #else
1951
1952 build_epilogue(&ctx);
1953 #endif
1954
1955
1956
1957
1958
1959
1960
1961
1962 image_size = sizeof(u32) * ctx.idx;
1963
1964
1965 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1966 sizeof(u32), jit_fill_hole);
1967
1968
1969
1970 if (header == NULL) {
1971 prog = orig_prog;
1972 goto out_imms;
1973 }
1974
1975
1976 ctx.target = (u32 *) image_ptr;
1977 ctx.idx = 0;
1978
1979 build_prologue(&ctx);
1980
1981
1982
1983
1984 if (build_body(&ctx) < 0) {
1985 image_ptr = NULL;
1986 bpf_jit_binary_free(header);
1987 prog = orig_prog;
1988 goto out_imms;
1989 }
1990 build_epilogue(&ctx);
1991
1992
1993 if (validate_code(&ctx)) {
1994 image_ptr = NULL;
1995 bpf_jit_binary_free(header);
1996 prog = orig_prog;
1997 goto out_imms;
1998 }
1999 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2000
2001 if (bpf_jit_enable > 1)
2002
2003 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2004
2005 bpf_jit_binary_lock_ro(header);
2006 prog->bpf_func = (void *)ctx.target;
2007 prog->jited = 1;
2008 prog->jited_len = image_size;
2009
2010 out_imms:
2011 #if __LINUX_ARM_ARCH__ < 7
2012 if (ctx.imm_count)
2013 kfree(ctx.imms);
2014 #endif
2015 out_off:
2016 kfree(ctx.offsets);
2017 out:
2018 if (tmp_blinded)
2019 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2020 tmp : orig_prog);
2021 return prog;
2022 }
2023