root/arch/arm/mach-bcm/platsmp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. scu_a9_enable
  2. secondary_boot_addr_for
  3. nsp_write_lut
  4. bcm_smp_prepare_cpus
  5. kona_boot_secondary
  6. bcm23550_boot_secondary
  7. nsp_boot_secondary
  8. bcm2836_boot_secondary

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) 2014-2015 Broadcom Corporation
   4  * Copyright 2014 Linaro Limited
   5  */
   6 
   7 #include <linux/cpumask.h>
   8 #include <linux/delay.h>
   9 #include <linux/errno.h>
  10 #include <linux/init.h>
  11 #include <linux/io.h>
  12 #include <linux/irqchip/irq-bcm2836.h>
  13 #include <linux/jiffies.h>
  14 #include <linux/of.h>
  15 #include <linux/of_address.h>
  16 #include <linux/sched.h>
  17 #include <linux/sched/clock.h>
  18 #include <linux/smp.h>
  19 
  20 #include <asm/cacheflush.h>
  21 #include <asm/smp.h>
  22 #include <asm/smp_plat.h>
  23 #include <asm/smp_scu.h>
  24 
  25 /* Size of mapped Cortex A9 SCU address space */
  26 #define CORTEX_A9_SCU_SIZE      0x58
  27 
  28 #define SECONDARY_TIMEOUT_NS    NSEC_PER_MSEC   /* 1 msec (in nanoseconds) */
  29 #define BOOT_ADDR_CPUID_MASK    0x3
  30 
  31 /* Name of device node property defining secondary boot register location */
  32 #define OF_SECONDARY_BOOT       "secondary-boot-reg"
  33 #define MPIDR_CPUID_BITMASK     0x3
  34 
  35 /*
  36  * Enable the Cortex A9 Snoop Control Unit
  37  *
  38  * By the time this is called we already know there are multiple
  39  * cores present.  We assume we're running on a Cortex A9 processor,
  40  * so any trouble getting the base address register or getting the
  41  * SCU base is a problem.
  42  *
  43  * Return 0 if successful or an error code otherwise.
  44  */
  45 static int __init scu_a9_enable(void)
  46 {
  47         unsigned long config_base;
  48         void __iomem *scu_base;
  49 
  50         if (!scu_a9_has_base()) {
  51                 pr_err("no configuration base address register!\n");
  52                 return -ENXIO;
  53         }
  54 
  55         /* Config base address register value is zero for uniprocessor */
  56         config_base = scu_a9_get_base();
  57         if (!config_base) {
  58                 pr_err("hardware reports only one core\n");
  59                 return -ENOENT;
  60         }
  61 
  62         scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
  63         if (!scu_base) {
  64                 pr_err("failed to remap config base (%lu/%u) for SCU\n",
  65                         config_base, CORTEX_A9_SCU_SIZE);
  66                 return -ENOMEM;
  67         }
  68 
  69         scu_enable(scu_base);
  70 
  71         iounmap(scu_base);      /* That's the last we'll need of this */
  72 
  73         return 0;
  74 }
  75 
  76 static u32 secondary_boot_addr_for(unsigned int cpu)
  77 {
  78         u32 secondary_boot_addr = 0;
  79         struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
  80 
  81         if (!cpu_node) {
  82                 pr_err("Failed to find device tree node for CPU%u\n", cpu);
  83                 return 0;
  84         }
  85 
  86         if (of_property_read_u32(cpu_node,
  87                                  OF_SECONDARY_BOOT,
  88                                  &secondary_boot_addr))
  89                 pr_err("required secondary boot register not specified for CPU%u\n",
  90                         cpu);
  91 
  92         of_node_put(cpu_node);
  93 
  94         return secondary_boot_addr;
  95 }
  96 
  97 static int nsp_write_lut(unsigned int cpu)
  98 {
  99         void __iomem *sku_rom_lut;
 100         phys_addr_t secondary_startup_phy;
 101         const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
 102 
 103         if (!secondary_boot_addr)
 104                 return -EINVAL;
 105 
 106         sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 107                                       sizeof(phys_addr_t));
 108         if (!sku_rom_lut) {
 109                 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
 110                 return -ENOMEM;
 111         }
 112 
 113         secondary_startup_phy = __pa_symbol(secondary_startup);
 114         BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
 115 
 116         writel_relaxed(secondary_startup_phy, sku_rom_lut);
 117 
 118         /* Ensure the write is visible to the secondary core */
 119         smp_wmb();
 120 
 121         iounmap(sku_rom_lut);
 122 
 123         return 0;
 124 }
 125 
 126 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
 127 {
 128         const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
 129 
 130         /* Enable the SCU on Cortex A9 based SoCs */
 131         if (scu_a9_enable()) {
 132                 /* Update the CPU present map to reflect uniprocessor mode */
 133                 pr_warn("failed to enable A9 SCU - disabling SMP\n");
 134                 init_cpu_present(&only_cpu_0);
 135         }
 136 }
 137 
 138 /*
 139  * The ROM code has the secondary cores looping, waiting for an event.
 140  * When an event occurs each core examines the bottom two bits of the
 141  * secondary boot register.  When a core finds those bits contain its
 142  * own core id, it performs initialization, including computing its boot
 143  * address by clearing the boot register value's bottom two bits.  The
 144  * core signals that it is beginning its execution by writing its boot
 145  * address back to the secondary boot register, and finally jumps to
 146  * that address.
 147  *
 148  * So to start a core executing we need to:
 149  * - Encode the (hardware) CPU id with the bottom bits of the secondary
 150  *   start address.
 151  * - Write that value into the secondary boot register.
 152  * - Generate an event to wake up the secondary CPU(s).
 153  * - Wait for the secondary boot register to be re-written, which
 154  *   indicates the secondary core has started.
 155  */
 156 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
 157 {
 158         void __iomem *boot_reg;
 159         phys_addr_t boot_func;
 160         u64 start_clock;
 161         u32 cpu_id;
 162         u32 boot_val;
 163         bool timeout = false;
 164         const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
 165 
 166         cpu_id = cpu_logical_map(cpu);
 167         if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
 168                 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
 169                 return -EINVAL;
 170         }
 171 
 172         if (!secondary_boot_addr)
 173                 return -EINVAL;
 174 
 175         boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
 176                                    sizeof(phys_addr_t));
 177         if (!boot_reg) {
 178                 pr_err("unable to map boot register for cpu %u\n", cpu_id);
 179                 return -ENOMEM;
 180         }
 181 
 182         /*
 183          * Secondary cores will start in secondary_startup(),
 184          * defined in "arch/arm/kernel/head.S"
 185          */
 186         boot_func = __pa_symbol(secondary_startup);
 187         BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
 188         BUG_ON(boot_func > (phys_addr_t)U32_MAX);
 189 
 190         /* The core to start is encoded in the low bits */
 191         boot_val = (u32)boot_func | cpu_id;
 192         writel_relaxed(boot_val, boot_reg);
 193 
 194         sev();
 195 
 196         /* The low bits will be cleared once the core has started */
 197         start_clock = local_clock();
 198         while (!timeout && readl_relaxed(boot_reg) == boot_val)
 199                 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
 200 
 201         iounmap(boot_reg);
 202 
 203         if (!timeout)
 204                 return 0;
 205 
 206         pr_err("timeout waiting for cpu %u to start\n", cpu_id);
 207 
 208         return -ENXIO;
 209 }
 210 
 211 /* Cluster Dormant Control command to bring CPU into a running state */
 212 #define CDC_CMD                 6
 213 #define CDC_CMD_OFFSET          0
 214 #define CDC_CMD_REG(cpu)        (CDC_CMD_OFFSET + 4*(cpu))
 215 
 216 /*
 217  * BCM23550 has a Cluster Dormant Control block that keeps the core in
 218  * idle state. A command needs to be sent to the block to bring the CPU
 219  * into running state.
 220  */
 221 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
 222 {
 223         void __iomem *cdc_base;
 224         struct device_node *dn;
 225         char *name;
 226         int ret;
 227 
 228         /* Make sure a CDC node exists before booting the
 229          * secondary core.
 230          */
 231         name = "brcm,bcm23550-cdc";
 232         dn = of_find_compatible_node(NULL, NULL, name);
 233         if (!dn) {
 234                 pr_err("unable to find cdc node\n");
 235                 return -ENODEV;
 236         }
 237 
 238         cdc_base = of_iomap(dn, 0);
 239         of_node_put(dn);
 240 
 241         if (!cdc_base) {
 242                 pr_err("unable to remap cdc base register\n");
 243                 return -ENOMEM;
 244         }
 245 
 246         /* Boot the secondary core */
 247         ret = kona_boot_secondary(cpu, idle);
 248         if (ret)
 249                 goto out;
 250 
 251         /* Bring this CPU to RUN state so that nIRQ nFIQ
 252          * signals are unblocked.
 253          */
 254         writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
 255 
 256 out:
 257         iounmap(cdc_base);
 258 
 259         return ret;
 260 }
 261 
 262 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
 263 {
 264         int ret;
 265 
 266         /*
 267          * After wake up, secondary core branches to the startup
 268          * address programmed at SKU ROM LUT location.
 269          */
 270         ret = nsp_write_lut(cpu);
 271         if (ret) {
 272                 pr_err("unable to write startup addr to SKU ROM LUT\n");
 273                 goto out;
 274         }
 275 
 276         /* Send a CPU wakeup interrupt to the secondary core */
 277         arch_send_wakeup_ipi_mask(cpumask_of(cpu));
 278 
 279 out:
 280         return ret;
 281 }
 282 
 283 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
 284 {
 285         void __iomem *intc_base;
 286         struct device_node *dn;
 287         char *name;
 288 
 289         name = "brcm,bcm2836-l1-intc";
 290         dn = of_find_compatible_node(NULL, NULL, name);
 291         if (!dn) {
 292                 pr_err("unable to find intc node\n");
 293                 return -ENODEV;
 294         }
 295 
 296         intc_base = of_iomap(dn, 0);
 297         of_node_put(dn);
 298 
 299         if (!intc_base) {
 300                 pr_err("unable to remap intc base register\n");
 301                 return -ENOMEM;
 302         }
 303 
 304         writel(virt_to_phys(secondary_startup),
 305                intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
 306 
 307         dsb(sy);
 308         sev();
 309 
 310         iounmap(intc_base);
 311 
 312         return 0;
 313 }
 314 
 315 static const struct smp_operations kona_smp_ops __initconst = {
 316         .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 317         .smp_boot_secondary     = kona_boot_secondary,
 318 };
 319 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
 320                         &kona_smp_ops);
 321 
 322 static const struct smp_operations bcm23550_smp_ops __initconst = {
 323         .smp_boot_secondary     = bcm23550_boot_secondary,
 324 };
 325 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
 326                         &bcm23550_smp_ops);
 327 
 328 static const struct smp_operations nsp_smp_ops __initconst = {
 329         .smp_prepare_cpus       = bcm_smp_prepare_cpus,
 330         .smp_boot_secondary     = nsp_boot_secondary,
 331 };
 332 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
 333 
 334 const struct smp_operations bcm2836_smp_ops __initconst = {
 335         .smp_boot_secondary     = bcm2836_boot_secondary,
 336 };
 337 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);

/* [<][>][^][v][top][bottom][index][help] */