root/arch/arm/crypto/crct10dif-ce-core.S

/* [<][>][^][v][top][bottom][index][help] */
   1 //
   2 // Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
   3 //
   4 // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
   5 // Copyright (C) 2019 Google LLC <ebiggers@google.com>
   6 //
   7 // This program is free software; you can redistribute it and/or modify
   8 // it under the terms of the GNU General Public License version 2 as
   9 // published by the Free Software Foundation.
  10 //
  11 
  12 // Derived from the x86 version:
  13 //
  14 // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
  15 //
  16 // Copyright (c) 2013, Intel Corporation
  17 //
  18 // Authors:
  19 //     Erdinc Ozturk <erdinc.ozturk@intel.com>
  20 //     Vinodh Gopal <vinodh.gopal@intel.com>
  21 //     James Guilford <james.guilford@intel.com>
  22 //     Tim Chen <tim.c.chen@linux.intel.com>
  23 //
  24 // This software is available to you under a choice of one of two
  25 // licenses.  You may choose to be licensed under the terms of the GNU
  26 // General Public License (GPL) Version 2, available from the file
  27 // COPYING in the main directory of this source tree, or the
  28 // OpenIB.org BSD license below:
  29 //
  30 // Redistribution and use in source and binary forms, with or without
  31 // modification, are permitted provided that the following conditions are
  32 // met:
  33 //
  34 // * Redistributions of source code must retain the above copyright
  35 //   notice, this list of conditions and the following disclaimer.
  36 //
  37 // * Redistributions in binary form must reproduce the above copyright
  38 //   notice, this list of conditions and the following disclaimer in the
  39 //   documentation and/or other materials provided with the
  40 //   distribution.
  41 //
  42 // * Neither the name of the Intel Corporation nor the names of its
  43 //   contributors may be used to endorse or promote products derived from
  44 //   this software without specific prior written permission.
  45 //
  46 //
  47 // THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
  48 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  49 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  50 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
  51 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  52 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  53 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  54 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  55 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  56 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  57 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  58 //
  59 //       Reference paper titled "Fast CRC Computation for Generic
  60 //      Polynomials Using PCLMULQDQ Instruction"
  61 //       URL: http://www.intel.com/content/dam/www/public/us/en/documents
  62 //  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
  63 //
  64 
  65 #include <linux/linkage.h>
  66 #include <asm/assembler.h>
  67 
  68 #ifdef CONFIG_CPU_ENDIAN_BE8
  69 #define CPU_LE(code...)
  70 #else
  71 #define CPU_LE(code...)         code
  72 #endif
  73 
  74         .text
  75         .arch           armv7-a
  76         .fpu            crypto-neon-fp-armv8
  77 
  78         init_crc        .req    r0
  79         buf             .req    r1
  80         len             .req    r2
  81 
  82         fold_consts_ptr .req    ip
  83 
  84         q0l             .req    d0
  85         q0h             .req    d1
  86         q1l             .req    d2
  87         q1h             .req    d3
  88         q2l             .req    d4
  89         q2h             .req    d5
  90         q3l             .req    d6
  91         q3h             .req    d7
  92         q4l             .req    d8
  93         q4h             .req    d9
  94         q5l             .req    d10
  95         q5h             .req    d11
  96         q6l             .req    d12
  97         q6h             .req    d13
  98         q7l             .req    d14
  99         q7h             .req    d15
 100         q8l             .req    d16
 101         q8h             .req    d17
 102         q9l             .req    d18
 103         q9h             .req    d19
 104         q10l            .req    d20
 105         q10h            .req    d21
 106         q11l            .req    d22
 107         q11h            .req    d23
 108         q12l            .req    d24
 109         q12h            .req    d25
 110 
 111         FOLD_CONSTS     .req    q10
 112         FOLD_CONST_L    .req    q10l
 113         FOLD_CONST_H    .req    q10h
 114 
 115         // Fold reg1, reg2 into the next 32 data bytes, storing the result back
 116         // into reg1, reg2.
 117         .macro          fold_32_bytes, reg1, reg2
 118         vld1.64         {q11-q12}, [buf]!
 119 
 120         vmull.p64       q8, \reg1\()h, FOLD_CONST_H
 121         vmull.p64       \reg1, \reg1\()l, FOLD_CONST_L
 122         vmull.p64       q9, \reg2\()h, FOLD_CONST_H
 123         vmull.p64       \reg2, \reg2\()l, FOLD_CONST_L
 124 
 125 CPU_LE( vrev64.8        q11, q11        )
 126 CPU_LE( vrev64.8        q12, q12        )
 127         vswp            q11l, q11h
 128         vswp            q12l, q12h
 129 
 130         veor.8          \reg1, \reg1, q8
 131         veor.8          \reg2, \reg2, q9
 132         veor.8          \reg1, \reg1, q11
 133         veor.8          \reg2, \reg2, q12
 134         .endm
 135 
 136         // Fold src_reg into dst_reg, optionally loading the next fold constants
 137         .macro          fold_16_bytes, src_reg, dst_reg, load_next_consts
 138         vmull.p64       q8, \src_reg\()l, FOLD_CONST_L
 139         vmull.p64       \src_reg, \src_reg\()h, FOLD_CONST_H
 140         .ifnb           \load_next_consts
 141         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
 142         .endif
 143         veor.8          \dst_reg, \dst_reg, q8
 144         veor.8          \dst_reg, \dst_reg, \src_reg
 145         .endm
 146 
 147         .macro          __adrl, out, sym
 148         movw            \out, #:lower16:\sym
 149         movt            \out, #:upper16:\sym
 150         .endm
 151 
 152 //
 153 // u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
 154 //
 155 // Assumes len >= 16.
 156 //
 157 ENTRY(crc_t10dif_pmull)
 158 
 159         // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
 160         cmp             len, #256
 161         blt             .Lless_than_256_bytes
 162 
 163         __adrl          fold_consts_ptr, .Lfold_across_128_bytes_consts
 164 
 165         // Load the first 128 data bytes.  Byte swapping is necessary to make
 166         // the bit order match the polynomial coefficient order.
 167         vld1.64         {q0-q1}, [buf]!
 168         vld1.64         {q2-q3}, [buf]!
 169         vld1.64         {q4-q5}, [buf]!
 170         vld1.64         {q6-q7}, [buf]!
 171 CPU_LE( vrev64.8        q0, q0  )
 172 CPU_LE( vrev64.8        q1, q1  )
 173 CPU_LE( vrev64.8        q2, q2  )
 174 CPU_LE( vrev64.8        q3, q3  )
 175 CPU_LE( vrev64.8        q4, q4  )
 176 CPU_LE( vrev64.8        q5, q5  )
 177 CPU_LE( vrev64.8        q6, q6  )
 178 CPU_LE( vrev64.8        q7, q7  )
 179         vswp            q0l, q0h
 180         vswp            q1l, q1h
 181         vswp            q2l, q2h
 182         vswp            q3l, q3h
 183         vswp            q4l, q4h
 184         vswp            q5l, q5h
 185         vswp            q6l, q6h
 186         vswp            q7l, q7h
 187 
 188         // XOR the first 16 data *bits* with the initial CRC value.
 189         vmov.i8         q8h, #0
 190         vmov.u16        q8h[3], init_crc
 191         veor            q0h, q0h, q8h
 192 
 193         // Load the constants for folding across 128 bytes.
 194         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
 195 
 196         // Subtract 128 for the 128 data bytes just consumed.  Subtract another
 197         // 128 to simplify the termination condition of the following loop.
 198         sub             len, len, #256
 199 
 200         // While >= 128 data bytes remain (not counting q0-q7), fold the 128
 201         // bytes q0-q7 into them, storing the result back into q0-q7.
 202 .Lfold_128_bytes_loop:
 203         fold_32_bytes   q0, q1
 204         fold_32_bytes   q2, q3
 205         fold_32_bytes   q4, q5
 206         fold_32_bytes   q6, q7
 207         subs            len, len, #128
 208         bge             .Lfold_128_bytes_loop
 209 
 210         // Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
 211 
 212         // Fold across 64 bytes.
 213         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
 214         fold_16_bytes   q0, q4
 215         fold_16_bytes   q1, q5
 216         fold_16_bytes   q2, q6
 217         fold_16_bytes   q3, q7, 1
 218         // Fold across 32 bytes.
 219         fold_16_bytes   q4, q6
 220         fold_16_bytes   q5, q7, 1
 221         // Fold across 16 bytes.
 222         fold_16_bytes   q6, q7
 223 
 224         // Add 128 to get the correct number of data bytes remaining in 0...127
 225         // (not counting q7), following the previous extra subtraction by 128.
 226         // Then subtract 16 to simplify the termination condition of the
 227         // following loop.
 228         adds            len, len, #(128-16)
 229 
 230         // While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
 231         // into them, storing the result back into q7.
 232         blt             .Lfold_16_bytes_loop_done
 233 .Lfold_16_bytes_loop:
 234         vmull.p64       q8, q7l, FOLD_CONST_L
 235         vmull.p64       q7, q7h, FOLD_CONST_H
 236         veor.8          q7, q7, q8
 237         vld1.64         {q0}, [buf]!
 238 CPU_LE( vrev64.8        q0, q0  )
 239         vswp            q0l, q0h
 240         veor.8          q7, q7, q0
 241         subs            len, len, #16
 242         bge             .Lfold_16_bytes_loop
 243 
 244 .Lfold_16_bytes_loop_done:
 245         // Add 16 to get the correct number of data bytes remaining in 0...15
 246         // (not counting q7), following the previous extra subtraction by 16.
 247         adds            len, len, #16
 248         beq             .Lreduce_final_16_bytes
 249 
 250 .Lhandle_partial_segment:
 251         // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
 252         // 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
 253         // do this without needing a fold constant for each possible 'len',
 254         // redivide the bytes into a first chunk of 'len' bytes and a second
 255         // chunk of 16 bytes, then fold the first chunk into the second.
 256 
 257         // q0 = last 16 original data bytes
 258         add             buf, buf, len
 259         sub             buf, buf, #16
 260         vld1.64         {q0}, [buf]
 261 CPU_LE( vrev64.8        q0, q0  )
 262         vswp            q0l, q0h
 263 
 264         // q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
 265         __adrl          r3, .Lbyteshift_table + 16
 266         sub             r3, r3, len
 267         vld1.8          {q2}, [r3]
 268         vtbl.8          q1l, {q7l-q7h}, q2l
 269         vtbl.8          q1h, {q7l-q7h}, q2h
 270 
 271         // q3 = first chunk: q7 right-shifted by '16-len' bytes.
 272         vmov.i8         q3, #0x80
 273         veor.8          q2, q2, q3
 274         vtbl.8          q3l, {q7l-q7h}, q2l
 275         vtbl.8          q3h, {q7l-q7h}, q2h
 276 
 277         // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
 278         vshr.s8         q2, q2, #7
 279 
 280         // q2 = second chunk: 'len' bytes from q0 (low-order bytes),
 281         // then '16-len' bytes from q1 (high-order bytes).
 282         vbsl.8          q2, q1, q0
 283 
 284         // Fold the first chunk into the second chunk, storing the result in q7.
 285         vmull.p64       q0, q3l, FOLD_CONST_L
 286         vmull.p64       q7, q3h, FOLD_CONST_H
 287         veor.8          q7, q7, q0
 288         veor.8          q7, q7, q2
 289 
 290 .Lreduce_final_16_bytes:
 291         // Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
 292 
 293         // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
 294         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
 295 
 296         // Fold the high 64 bits into the low 64 bits, while also multiplying by
 297         // x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
 298         // whose low 48 bits are 0.
 299         vmull.p64       q0, q7h, FOLD_CONST_H   // high bits * x^48 * (x^80 mod G(x))
 300         veor.8          q0h, q0h, q7l           // + low bits * x^64
 301 
 302         // Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
 303         // value congruent to x^64 * M(x) and whose low 48 bits are 0.
 304         vmov.i8         q1, #0
 305         vmov            s4, s3                  // extract high 32 bits
 306         vmov            s3, s5                  // zero high 32 bits
 307         vmull.p64       q1, q1l, FOLD_CONST_L   // high 32 bits * x^48 * (x^48 mod G(x))
 308         veor.8          q0, q0, q1              // + low bits
 309 
 310         // Load G(x) and floor(x^48 / G(x)).
 311         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]
 312 
 313         // Use Barrett reduction to compute the final CRC value.
 314         vmull.p64       q1, q0h, FOLD_CONST_H   // high 32 bits * floor(x^48 / G(x))
 315         vshr.u64        q1l, q1l, #32           // /= x^32
 316         vmull.p64       q1, q1l, FOLD_CONST_L   // *= G(x)
 317         vshr.u64        q0l, q0l, #48
 318         veor.8          q0l, q0l, q1l           // + low 16 nonzero bits
 319         // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
 320 
 321         vmov.u16        r0, q0l[0]
 322         bx              lr
 323 
 324 .Lless_than_256_bytes:
 325         // Checksumming a buffer of length 16...255 bytes
 326 
 327         __adrl          fold_consts_ptr, .Lfold_across_16_bytes_consts
 328 
 329         // Load the first 16 data bytes.
 330         vld1.64         {q7}, [buf]!
 331 CPU_LE( vrev64.8        q7, q7  )
 332         vswp            q7l, q7h
 333 
 334         // XOR the first 16 data *bits* with the initial CRC value.
 335         vmov.i8         q0h, #0
 336         vmov.u16        q0h[3], init_crc
 337         veor.8          q7h, q7h, q0h
 338 
 339         // Load the fold-across-16-bytes constants.
 340         vld1.64         {FOLD_CONSTS}, [fold_consts_ptr, :128]!
 341 
 342         cmp             len, #16
 343         beq             .Lreduce_final_16_bytes         // len == 16
 344         subs            len, len, #32
 345         addlt           len, len, #16
 346         blt             .Lhandle_partial_segment        // 17 <= len <= 31
 347         b               .Lfold_16_bytes_loop            // 32 <= len <= 255
 348 ENDPROC(crc_t10dif_pmull)
 349 
 350         .section        ".rodata", "a"
 351         .align          4
 352 
 353 // Fold constants precomputed from the polynomial 0x18bb7
 354 // G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
 355 .Lfold_across_128_bytes_consts:
 356         .quad           0x0000000000006123      // x^(8*128)    mod G(x)
 357         .quad           0x0000000000002295      // x^(8*128+64) mod G(x)
 358 // .Lfold_across_64_bytes_consts:
 359         .quad           0x0000000000001069      // x^(4*128)    mod G(x)
 360         .quad           0x000000000000dd31      // x^(4*128+64) mod G(x)
 361 // .Lfold_across_32_bytes_consts:
 362         .quad           0x000000000000857d      // x^(2*128)    mod G(x)
 363         .quad           0x0000000000007acc      // x^(2*128+64) mod G(x)
 364 .Lfold_across_16_bytes_consts:
 365         .quad           0x000000000000a010      // x^(1*128)    mod G(x)
 366         .quad           0x0000000000001faa      // x^(1*128+64) mod G(x)
 367 // .Lfinal_fold_consts:
 368         .quad           0x1368000000000000      // x^48 * (x^48 mod G(x))
 369         .quad           0x2d56000000000000      // x^48 * (x^80 mod G(x))
 370 // .Lbarrett_reduction_consts:
 371         .quad           0x0000000000018bb7      // G(x)
 372         .quad           0x00000001f65a57f8      // floor(x^48 / G(x))
 373 
 374 // For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
 375 // len] is the index vector to shift left by 'len' bytes, and is also {0x80,
 376 // ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
 377 .Lbyteshift_table:
 378         .byte            0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
 379         .byte           0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
 380         .byte            0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
 381         .byte            0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0

/* [<][>][^][v][top][bottom][index][help] */