This source file includes following definitions.
- aesbs_setkey
- __ecb_crypt
- ecb_encrypt
- ecb_decrypt
- aesbs_cbc_setkey
- cbc_encrypt_one
- cbc_encrypt
- cbc_decrypt
- cbc_init
- cbc_exit
- aesbs_ctr_setkey_sync
- ctr_encrypt
- ctr_encrypt_one
- ctr_encrypt_sync
- aesbs_xts_setkey
- xts_init
- xts_exit
- __xts_crypt
- xts_encrypt
- xts_decrypt
- aes_exit
- aes_init
1
2
3
4
5
6
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/cbc.h>
12 #include <crypto/ctr.h>
13 #include <crypto/internal/simd.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <crypto/xts.h>
17 #include <linux/module.h>
18
19 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
20 MODULE_LICENSE("GPL v2");
21
22 MODULE_ALIAS_CRYPTO("ecb(aes)");
23 MODULE_ALIAS_CRYPTO("cbc(aes)");
24 MODULE_ALIAS_CRYPTO("ctr(aes)");
25 MODULE_ALIAS_CRYPTO("xts(aes)");
26
27 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
28
29 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
30 int rounds, int blocks);
31 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
32 int rounds, int blocks);
33
34 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
35 int rounds, int blocks, u8 iv[]);
36
37 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
38 int rounds, int blocks, u8 ctr[], u8 final[]);
39
40 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
41 int rounds, int blocks, u8 iv[], int);
42 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
43 int rounds, int blocks, u8 iv[], int);
44
45 struct aesbs_ctx {
46 int rounds;
47 u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE);
48 };
49
50 struct aesbs_cbc_ctx {
51 struct aesbs_ctx key;
52 struct crypto_cipher *enc_tfm;
53 };
54
55 struct aesbs_xts_ctx {
56 struct aesbs_ctx key;
57 struct crypto_cipher *cts_tfm;
58 struct crypto_cipher *tweak_tfm;
59 };
60
61 struct aesbs_ctr_ctx {
62 struct aesbs_ctx key;
63 struct crypto_aes_ctx fallback;
64 };
65
66 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
67 unsigned int key_len)
68 {
69 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
70 struct crypto_aes_ctx rk;
71 int err;
72
73 err = aes_expandkey(&rk, in_key, key_len);
74 if (err)
75 return err;
76
77 ctx->rounds = 6 + key_len / 4;
78
79 kernel_neon_begin();
80 aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
81 kernel_neon_end();
82
83 return 0;
84 }
85
86 static int __ecb_crypt(struct skcipher_request *req,
87 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
88 int rounds, int blocks))
89 {
90 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
91 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
92 struct skcipher_walk walk;
93 int err;
94
95 err = skcipher_walk_virt(&walk, req, false);
96
97 while (walk.nbytes >= AES_BLOCK_SIZE) {
98 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
99
100 if (walk.nbytes < walk.total)
101 blocks = round_down(blocks,
102 walk.stride / AES_BLOCK_SIZE);
103
104 kernel_neon_begin();
105 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
106 ctx->rounds, blocks);
107 kernel_neon_end();
108 err = skcipher_walk_done(&walk,
109 walk.nbytes - blocks * AES_BLOCK_SIZE);
110 }
111
112 return err;
113 }
114
115 static int ecb_encrypt(struct skcipher_request *req)
116 {
117 return __ecb_crypt(req, aesbs_ecb_encrypt);
118 }
119
120 static int ecb_decrypt(struct skcipher_request *req)
121 {
122 return __ecb_crypt(req, aesbs_ecb_decrypt);
123 }
124
125 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
126 unsigned int key_len)
127 {
128 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
129 struct crypto_aes_ctx rk;
130 int err;
131
132 err = aes_expandkey(&rk, in_key, key_len);
133 if (err)
134 return err;
135
136 ctx->key.rounds = 6 + key_len / 4;
137
138 kernel_neon_begin();
139 aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
140 kernel_neon_end();
141
142 return crypto_cipher_setkey(ctx->enc_tfm, in_key, key_len);
143 }
144
145 static void cbc_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
146 {
147 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
148
149 crypto_cipher_encrypt_one(ctx->enc_tfm, dst, src);
150 }
151
152 static int cbc_encrypt(struct skcipher_request *req)
153 {
154 return crypto_cbc_encrypt_walk(req, cbc_encrypt_one);
155 }
156
157 static int cbc_decrypt(struct skcipher_request *req)
158 {
159 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
160 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 struct skcipher_walk walk;
162 int err;
163
164 err = skcipher_walk_virt(&walk, req, false);
165
166 while (walk.nbytes >= AES_BLOCK_SIZE) {
167 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
168
169 if (walk.nbytes < walk.total)
170 blocks = round_down(blocks,
171 walk.stride / AES_BLOCK_SIZE);
172
173 kernel_neon_begin();
174 aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
175 ctx->key.rk, ctx->key.rounds, blocks,
176 walk.iv);
177 kernel_neon_end();
178 err = skcipher_walk_done(&walk,
179 walk.nbytes - blocks * AES_BLOCK_SIZE);
180 }
181
182 return err;
183 }
184
185 static int cbc_init(struct crypto_tfm *tfm)
186 {
187 struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
188
189 ctx->enc_tfm = crypto_alloc_cipher("aes", 0, 0);
190
191 return PTR_ERR_OR_ZERO(ctx->enc_tfm);
192 }
193
194 static void cbc_exit(struct crypto_tfm *tfm)
195 {
196 struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
197
198 crypto_free_cipher(ctx->enc_tfm);
199 }
200
201 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
202 unsigned int key_len)
203 {
204 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
205 int err;
206
207 err = aes_expandkey(&ctx->fallback, in_key, key_len);
208 if (err)
209 return err;
210
211 ctx->key.rounds = 6 + key_len / 4;
212
213 kernel_neon_begin();
214 aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
215 kernel_neon_end();
216
217 return 0;
218 }
219
220 static int ctr_encrypt(struct skcipher_request *req)
221 {
222 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
223 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
224 struct skcipher_walk walk;
225 u8 buf[AES_BLOCK_SIZE];
226 int err;
227
228 err = skcipher_walk_virt(&walk, req, false);
229
230 while (walk.nbytes > 0) {
231 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
232 u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
233
234 if (walk.nbytes < walk.total) {
235 blocks = round_down(blocks,
236 walk.stride / AES_BLOCK_SIZE);
237 final = NULL;
238 }
239
240 kernel_neon_begin();
241 aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
242 ctx->rk, ctx->rounds, blocks, walk.iv, final);
243 kernel_neon_end();
244
245 if (final) {
246 u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
247 u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
248
249 crypto_xor_cpy(dst, src, final,
250 walk.total % AES_BLOCK_SIZE);
251
252 err = skcipher_walk_done(&walk, 0);
253 break;
254 }
255 err = skcipher_walk_done(&walk,
256 walk.nbytes - blocks * AES_BLOCK_SIZE);
257 }
258
259 return err;
260 }
261
262 static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
263 {
264 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
265 unsigned long flags;
266
267
268
269
270
271
272 local_irq_save(flags);
273 aes_encrypt(&ctx->fallback, dst, src);
274 local_irq_restore(flags);
275 }
276
277 static int ctr_encrypt_sync(struct skcipher_request *req)
278 {
279 if (!crypto_simd_usable())
280 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
281
282 return ctr_encrypt(req);
283 }
284
285 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
286 unsigned int key_len)
287 {
288 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
289 int err;
290
291 err = xts_verify_key(tfm, in_key, key_len);
292 if (err)
293 return err;
294
295 key_len /= 2;
296 err = crypto_cipher_setkey(ctx->cts_tfm, in_key, key_len);
297 if (err)
298 return err;
299 err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len);
300 if (err)
301 return err;
302
303 return aesbs_setkey(tfm, in_key, key_len);
304 }
305
306 static int xts_init(struct crypto_tfm *tfm)
307 {
308 struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
309
310 ctx->cts_tfm = crypto_alloc_cipher("aes", 0, 0);
311 if (IS_ERR(ctx->cts_tfm))
312 return PTR_ERR(ctx->cts_tfm);
313
314 ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0);
315 if (IS_ERR(ctx->tweak_tfm))
316 crypto_free_cipher(ctx->cts_tfm);
317
318 return PTR_ERR_OR_ZERO(ctx->tweak_tfm);
319 }
320
321 static void xts_exit(struct crypto_tfm *tfm)
322 {
323 struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
324
325 crypto_free_cipher(ctx->tweak_tfm);
326 crypto_free_cipher(ctx->cts_tfm);
327 }
328
329 static int __xts_crypt(struct skcipher_request *req, bool encrypt,
330 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
331 int rounds, int blocks, u8 iv[], int))
332 {
333 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
334 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
335 int tail = req->cryptlen % AES_BLOCK_SIZE;
336 struct skcipher_request subreq;
337 u8 buf[2 * AES_BLOCK_SIZE];
338 struct skcipher_walk walk;
339 int err;
340
341 if (req->cryptlen < AES_BLOCK_SIZE)
342 return -EINVAL;
343
344 if (unlikely(tail)) {
345 skcipher_request_set_tfm(&subreq, tfm);
346 skcipher_request_set_callback(&subreq,
347 skcipher_request_flags(req),
348 NULL, NULL);
349 skcipher_request_set_crypt(&subreq, req->src, req->dst,
350 req->cryptlen - tail, req->iv);
351 req = &subreq;
352 }
353
354 err = skcipher_walk_virt(&walk, req, true);
355 if (err)
356 return err;
357
358 crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv);
359
360 while (walk.nbytes >= AES_BLOCK_SIZE) {
361 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
362 int reorder_last_tweak = !encrypt && tail > 0;
363
364 if (walk.nbytes < walk.total) {
365 blocks = round_down(blocks,
366 walk.stride / AES_BLOCK_SIZE);
367 reorder_last_tweak = 0;
368 }
369
370 kernel_neon_begin();
371 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
372 ctx->key.rounds, blocks, walk.iv, reorder_last_tweak);
373 kernel_neon_end();
374 err = skcipher_walk_done(&walk,
375 walk.nbytes - blocks * AES_BLOCK_SIZE);
376 }
377
378 if (err || likely(!tail))
379 return err;
380
381
382 scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
383 AES_BLOCK_SIZE, 0);
384 memcpy(buf + AES_BLOCK_SIZE, buf, tail);
385 scatterwalk_map_and_copy(buf, req->src, req->cryptlen, tail, 0);
386
387 crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
388
389 if (encrypt)
390 crypto_cipher_encrypt_one(ctx->cts_tfm, buf, buf);
391 else
392 crypto_cipher_decrypt_one(ctx->cts_tfm, buf, buf);
393
394 crypto_xor(buf, req->iv, AES_BLOCK_SIZE);
395
396 scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE,
397 AES_BLOCK_SIZE + tail, 1);
398 return 0;
399 }
400
401 static int xts_encrypt(struct skcipher_request *req)
402 {
403 return __xts_crypt(req, true, aesbs_xts_encrypt);
404 }
405
406 static int xts_decrypt(struct skcipher_request *req)
407 {
408 return __xts_crypt(req, false, aesbs_xts_decrypt);
409 }
410
411 static struct skcipher_alg aes_algs[] = { {
412 .base.cra_name = "__ecb(aes)",
413 .base.cra_driver_name = "__ecb-aes-neonbs",
414 .base.cra_priority = 250,
415 .base.cra_blocksize = AES_BLOCK_SIZE,
416 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
417 .base.cra_module = THIS_MODULE,
418 .base.cra_flags = CRYPTO_ALG_INTERNAL,
419
420 .min_keysize = AES_MIN_KEY_SIZE,
421 .max_keysize = AES_MAX_KEY_SIZE,
422 .walksize = 8 * AES_BLOCK_SIZE,
423 .setkey = aesbs_setkey,
424 .encrypt = ecb_encrypt,
425 .decrypt = ecb_decrypt,
426 }, {
427 .base.cra_name = "__cbc(aes)",
428 .base.cra_driver_name = "__cbc-aes-neonbs",
429 .base.cra_priority = 250,
430 .base.cra_blocksize = AES_BLOCK_SIZE,
431 .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx),
432 .base.cra_module = THIS_MODULE,
433 .base.cra_flags = CRYPTO_ALG_INTERNAL,
434 .base.cra_init = cbc_init,
435 .base.cra_exit = cbc_exit,
436
437 .min_keysize = AES_MIN_KEY_SIZE,
438 .max_keysize = AES_MAX_KEY_SIZE,
439 .walksize = 8 * AES_BLOCK_SIZE,
440 .ivsize = AES_BLOCK_SIZE,
441 .setkey = aesbs_cbc_setkey,
442 .encrypt = cbc_encrypt,
443 .decrypt = cbc_decrypt,
444 }, {
445 .base.cra_name = "__ctr(aes)",
446 .base.cra_driver_name = "__ctr-aes-neonbs",
447 .base.cra_priority = 250,
448 .base.cra_blocksize = 1,
449 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
450 .base.cra_module = THIS_MODULE,
451 .base.cra_flags = CRYPTO_ALG_INTERNAL,
452
453 .min_keysize = AES_MIN_KEY_SIZE,
454 .max_keysize = AES_MAX_KEY_SIZE,
455 .chunksize = AES_BLOCK_SIZE,
456 .walksize = 8 * AES_BLOCK_SIZE,
457 .ivsize = AES_BLOCK_SIZE,
458 .setkey = aesbs_setkey,
459 .encrypt = ctr_encrypt,
460 .decrypt = ctr_encrypt,
461 }, {
462 .base.cra_name = "ctr(aes)",
463 .base.cra_driver_name = "ctr-aes-neonbs-sync",
464 .base.cra_priority = 250 - 1,
465 .base.cra_blocksize = 1,
466 .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
467 .base.cra_module = THIS_MODULE,
468
469 .min_keysize = AES_MIN_KEY_SIZE,
470 .max_keysize = AES_MAX_KEY_SIZE,
471 .chunksize = AES_BLOCK_SIZE,
472 .walksize = 8 * AES_BLOCK_SIZE,
473 .ivsize = AES_BLOCK_SIZE,
474 .setkey = aesbs_ctr_setkey_sync,
475 .encrypt = ctr_encrypt_sync,
476 .decrypt = ctr_encrypt_sync,
477 }, {
478 .base.cra_name = "__xts(aes)",
479 .base.cra_driver_name = "__xts-aes-neonbs",
480 .base.cra_priority = 250,
481 .base.cra_blocksize = AES_BLOCK_SIZE,
482 .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx),
483 .base.cra_module = THIS_MODULE,
484 .base.cra_flags = CRYPTO_ALG_INTERNAL,
485 .base.cra_init = xts_init,
486 .base.cra_exit = xts_exit,
487
488 .min_keysize = 2 * AES_MIN_KEY_SIZE,
489 .max_keysize = 2 * AES_MAX_KEY_SIZE,
490 .walksize = 8 * AES_BLOCK_SIZE,
491 .ivsize = AES_BLOCK_SIZE,
492 .setkey = aesbs_xts_setkey,
493 .encrypt = xts_encrypt,
494 .decrypt = xts_decrypt,
495 } };
496
497 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
498
499 static void aes_exit(void)
500 {
501 int i;
502
503 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
504 if (aes_simd_algs[i])
505 simd_skcipher_free(aes_simd_algs[i]);
506
507 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
508 }
509
510 static int __init aes_init(void)
511 {
512 struct simd_skcipher_alg *simd;
513 const char *basename;
514 const char *algname;
515 const char *drvname;
516 int err;
517 int i;
518
519 if (!(elf_hwcap & HWCAP_NEON))
520 return -ENODEV;
521
522 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
523 if (err)
524 return err;
525
526 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
527 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
528 continue;
529
530 algname = aes_algs[i].base.cra_name + 2;
531 drvname = aes_algs[i].base.cra_driver_name + 2;
532 basename = aes_algs[i].base.cra_driver_name;
533 simd = simd_skcipher_create_compat(algname, drvname, basename);
534 err = PTR_ERR(simd);
535 if (IS_ERR(simd))
536 goto unregister_simds;
537
538 aes_simd_algs[i] = simd;
539 }
540 return 0;
541
542 unregister_simds:
543 aes_exit();
544 return err;
545 }
546
547 late_initcall(aes_init);
548 module_exit(aes_exit);