1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * arch/arm/probes/decode.h 4 * 5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. 6 * 7 * Some contents moved here from arch/arm/include/asm/kprobes.h which is 8 * Copyright (C) 2006, 2007 Motorola Inc. 9 */ 10 11 #ifndef _ARM_KERNEL_PROBES_H 12 #define _ARM_KERNEL_PROBES_H 13 14 #include <linux/types.h> 15 #include <linux/stddef.h> 16 #include <asm/probes.h> 17 #include <asm/kprobes.h> 18 19 void __init arm_probes_decode_init(void); 20 21 extern probes_check_cc * const probes_condition_checks[16]; 22 23 #if __LINUX_ARM_ARCH__ >= 7 24 25 /* str_pc_offset is architecturally defined from ARMv7 onwards */ 26 #define str_pc_offset 8 27 #define find_str_pc_offset() 28 29 #else /* __LINUX_ARM_ARCH__ < 7 */ 30 31 /* We need a run-time check to determine str_pc_offset */ 32 extern int str_pc_offset; 33 void __init find_str_pc_offset(void); 34 35 #endif 36 37 38 /* 39 * Update ITSTATE after normal execution of an IT block instruction. 40 * 41 * The 8 IT state bits are split into two parts in CPSR: 42 * ITSTATE<1:0> are in CPSR<26:25> 43 * ITSTATE<7:2> are in CPSR<15:10> 44 */ 45 static inline unsigned long it_advance(unsigned long cpsr) 46 { 47 if ((cpsr & 0x06000400) == 0) { 48 /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ 49 cpsr &= ~PSR_IT_MASK; 50 } else { 51 /* We need to shift left ITSTATE<4:0> */ 52 const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */ 53 unsigned long it = cpsr & mask; 54 it <<= 1; 55 it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */ 56 it &= mask; 57 cpsr &= ~mask; 58 cpsr |= it; 59 } 60 return cpsr; 61 } 62 63 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) 64 { 65 long cpsr = regs->ARM_cpsr; 66 if (pcv & 0x1) { 67 cpsr |= PSR_T_BIT; 68 pcv &= ~0x1; 69 } else { 70 cpsr &= ~PSR_T_BIT; 71 pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ 72 } 73 regs->ARM_cpsr = cpsr; 74 regs->ARM_pc = pcv; 75 } 76 77 78 #if __LINUX_ARM_ARCH__ >= 6 79 80 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ 81 #define load_write_pc_interworks true 82 #define test_load_write_pc_interworking() 83 84 #else /* __LINUX_ARM_ARCH__ < 6 */ 85 86 /* We need run-time testing to determine if load_write_pc() should interwork. */ 87 extern bool load_write_pc_interworks; 88 void __init test_load_write_pc_interworking(void); 89 90 #endif 91 92 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) 93 { 94 if (load_write_pc_interworks) 95 bx_write_pc(pcv, regs); 96 else 97 regs->ARM_pc = pcv; 98 } 99 100 101 #if __LINUX_ARM_ARCH__ >= 7 102 103 #define alu_write_pc_interworks true 104 #define test_alu_write_pc_interworking() 105 106 #elif __LINUX_ARM_ARCH__ <= 5 107 108 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ 109 #define alu_write_pc_interworks false 110 #define test_alu_write_pc_interworking() 111 112 #else /* __LINUX_ARM_ARCH__ == 6 */ 113 114 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ 115 extern bool alu_write_pc_interworks; 116 void __init test_alu_write_pc_interworking(void); 117 118 #endif /* __LINUX_ARM_ARCH__ == 6 */ 119 120 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) 121 { 122 if (alu_write_pc_interworks) 123 bx_write_pc(pcv, regs); 124 else 125 regs->ARM_pc = pcv; 126 } 127 128 129 /* 130 * Test if load/store instructions writeback the address register. 131 * if P (bit 24) == 0 or W (bit 21) == 1 132 */ 133 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) 134 135 /* 136 * The following definitions and macros are used to build instruction 137 * decoding tables for use by probes_decode_insn. 138 * 139 * These tables are a concatenation of entries each of which consist of one of 140 * the decode_* structs. All of the fields in every type of decode structure 141 * are of the union type decode_item, therefore the entire decode table can be 142 * viewed as an array of these and declared like: 143 * 144 * static const union decode_item table_name[] = {}; 145 * 146 * In order to construct each entry in the table, macros are used to 147 * initialise a number of sequential decode_item values in a layout which 148 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct 149 * decode_simulate by initialising four decode_item objects like this... 150 * 151 * {.bits = _type}, 152 * {.bits = _mask}, 153 * {.bits = _value}, 154 * {.action = _handler}, 155 * 156 * Initialising a specified member of the union means that the compiler 157 * will produce a warning if the argument is of an incorrect type. 158 * 159 * Below is a list of each of the macros used to initialise entries and a 160 * description of the action performed when that entry is matched to an 161 * instruction. A match is found when (instruction & mask) == value. 162 * 163 * DECODE_TABLE(mask, value, table) 164 * Instruction decoding jumps to parsing the new sub-table 'table'. 165 * 166 * DECODE_CUSTOM(mask, value, decoder) 167 * The value of 'decoder' is used as an index into the array of 168 * action functions, and the retrieved decoder function is invoked 169 * to complete decoding of the instruction. 170 * 171 * DECODE_SIMULATE(mask, value, handler) 172 * The probes instruction handler is set to the value found by 173 * indexing into the action array using the value of 'handler'. This 174 * will be used to simulate the instruction when the probe is hit. 175 * Decoding returns with INSN_GOOD_NO_SLOT. 176 * 177 * DECODE_EMULATE(mask, value, handler) 178 * The probes instruction handler is set to the value found by 179 * indexing into the action array using the value of 'handler'. This 180 * will be used to emulate the instruction when the probe is hit. The 181 * modified instruction (see below) is placed in the probes instruction 182 * slot so it may be called by the emulation code. Decoding returns 183 * with INSN_GOOD. 184 * 185 * DECODE_REJECT(mask, value) 186 * Instruction decoding fails with INSN_REJECTED 187 * 188 * DECODE_OR(mask, value) 189 * This allows the mask/value test of multiple table entries to be 190 * logically ORed. Once an 'or' entry is matched the decoding action to 191 * be performed is that of the next entry which isn't an 'or'. E.g. 192 * 193 * DECODE_OR (mask1, value1) 194 * DECODE_OR (mask2, value2) 195 * DECODE_SIMULATE (mask3, value3, simulation_handler) 196 * 197 * This means that if any of the three mask/value pairs match the 198 * instruction being decoded, then 'simulation_handler' will be used 199 * for it. 200 * 201 * Both the SIMULATE and EMULATE macros have a second form which take an 202 * additional 'regs' argument. 203 * 204 * DECODE_SIMULATEX(mask, value, handler, regs) 205 * DECODE_EMULATEX (mask, value, handler, regs) 206 * 207 * These are used to specify what kind of CPU register is encoded in each of the 208 * least significant 5 nibbles of the instruction being decoded. The regs value 209 * is specified using the REGS macro, this takes any of the REG_TYPE_* values 210 * from enum decode_reg_type as arguments; only the '*' part of the name is 211 * given. E.g. 212 * 213 * REGS(0, ANY, NOPC, 0, ANY) 214 * 215 * This indicates an instruction is encoded like: 216 * 217 * bits 19..16 ignore 218 * bits 15..12 any register allowed here 219 * bits 11.. 8 any register except PC allowed here 220 * bits 7.. 4 ignore 221 * bits 3.. 0 any register allowed here 222 * 223 * This register specification is checked after a decode table entry is found to 224 * match an instruction (through the mask/value test). Any invalid register then 225 * found in the instruction will cause decoding to fail with INSN_REJECTED. In 226 * the above example this would happen if bits 11..8 of the instruction were 227 * 1111, indicating R15 or PC. 228 * 229 * As well as checking for legal combinations of registers, this data is also 230 * used to modify the registers encoded in the instructions so that an 231 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) 232 * 233 * Here is a real example which matches ARM instructions of the form 234 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" 235 * 236 * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG, 237 * REGS(ANY, ANY, NOPC, 0, ANY)), 238 * ^ ^ ^ ^ 239 * Rn Rd Rs Rm 240 * 241 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because 242 * Rs == R15 243 * 244 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the 245 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into 246 * the kprobes instruction slot. This can then be called later by the handler 247 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from 248 * the indicated slot in the action array), in order to simulate the instruction. 249 */ 250 251 enum decode_type { 252 DECODE_TYPE_END, 253 DECODE_TYPE_TABLE, 254 DECODE_TYPE_CUSTOM, 255 DECODE_TYPE_SIMULATE, 256 DECODE_TYPE_EMULATE, 257 DECODE_TYPE_OR, 258 DECODE_TYPE_REJECT, 259 NUM_DECODE_TYPES /* Must be last enum */ 260 }; 261 262 #define DECODE_TYPE_BITS 4 263 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) 264 265 enum decode_reg_type { 266 REG_TYPE_NONE = 0, /* Not a register, ignore */ 267 REG_TYPE_ANY, /* Any register allowed */ 268 REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ 269 REG_TYPE_SP, /* Register must be SP */ 270 REG_TYPE_PC, /* Register must be PC */ 271 REG_TYPE_NOSP, /* Register must not be SP */ 272 REG_TYPE_NOSPPC, /* Register must not be SP or PC */ 273 REG_TYPE_NOPC, /* Register must not be PC */ 274 REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ 275 276 /* The following types are used when the encoding for PC indicates 277 * another instruction form. This distiction only matters for test 278 * case coverage checks. 279 */ 280 REG_TYPE_NOPCX, /* Register must not be PC */ 281 REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ 282 283 /* Alias to allow '0' arg to be used in REGS macro. */ 284 REG_TYPE_0 = REG_TYPE_NONE 285 }; 286 287 #define REGS(r16, r12, r8, r4, r0) \ 288 (((REG_TYPE_##r16) << 16) + \ 289 ((REG_TYPE_##r12) << 12) + \ 290 ((REG_TYPE_##r8) << 8) + \ 291 ((REG_TYPE_##r4) << 4) + \ 292 (REG_TYPE_##r0)) 293 294 union decode_item { 295 u32 bits; 296 const union decode_item *table; 297 int action; 298 }; 299 300 struct decode_header; 301 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t, 302 struct arch_probes_insn *, 303 const struct decode_header *); 304 305 union decode_action { 306 probes_insn_handler_t *handler; 307 probes_custom_decode_t *decoder; 308 }; 309 310 typedef enum probes_insn (probes_check_t)(probes_opcode_t, 311 struct arch_probes_insn *, 312 const struct decode_header *); 313 314 struct decode_checker { 315 probes_check_t *checker; 316 }; 317 318 #define DECODE_END \ 319 {.bits = DECODE_TYPE_END} 320 321 322 struct decode_header { 323 union decode_item type_regs; 324 union decode_item mask; 325 union decode_item value; 326 }; 327 328 #define DECODE_HEADER(_type, _mask, _value, _regs) \ 329 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ 330 {.bits = (_mask)}, \ 331 {.bits = (_value)} 332 333 334 struct decode_table { 335 struct decode_header header; 336 union decode_item table; 337 }; 338 339 #define DECODE_TABLE(_mask, _value, _table) \ 340 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ 341 {.table = (_table)} 342 343 344 struct decode_custom { 345 struct decode_header header; 346 union decode_item decoder; 347 }; 348 349 #define DECODE_CUSTOM(_mask, _value, _decoder) \ 350 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ 351 {.action = (_decoder)} 352 353 354 struct decode_simulate { 355 struct decode_header header; 356 union decode_item handler; 357 }; 358 359 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ 360 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ 361 {.action = (_handler)} 362 363 #define DECODE_SIMULATE(_mask, _value, _handler) \ 364 DECODE_SIMULATEX(_mask, _value, _handler, 0) 365 366 367 struct decode_emulate { 368 struct decode_header header; 369 union decode_item handler; 370 }; 371 372 #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ 373 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ 374 {.action = (_handler)} 375 376 #define DECODE_EMULATE(_mask, _value, _handler) \ 377 DECODE_EMULATEX(_mask, _value, _handler, 0) 378 379 380 struct decode_or { 381 struct decode_header header; 382 }; 383 384 #define DECODE_OR(_mask, _value) \ 385 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) 386 387 enum probes_insn { 388 INSN_REJECTED, 389 INSN_GOOD, 390 INSN_GOOD_NO_SLOT 391 }; 392 393 struct decode_reject { 394 struct decode_header header; 395 }; 396 397 #define DECODE_REJECT(_mask, _value) \ 398 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) 399 400 probes_insn_handler_t probes_simulate_nop; 401 probes_insn_handler_t probes_emulate_none; 402 403 int __kprobes 404 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi, 405 const union decode_item *table, bool thumb, bool emulate, 406 const union decode_action *actions, 407 const struct decode_checker **checkers); 408 409 #endif