root/arch/arm/mach-tegra/platsmp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. tegra_secondary_init
  2. tegra20_boot_secondary
  3. tegra30_boot_secondary
  4. tegra114_boot_secondary
  5. tegra_boot_secondary
  6. tegra_smp_prepare_cpus

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  linux/arch/arm/mach-tegra/platsmp.c
   4  *
   5  *  Copyright (C) 2002 ARM Ltd.
   6  *  All Rights Reserved
   7  *
   8  *  Copyright (C) 2009 Palm
   9  *  All Rights Reserved
  10  */
  11 
  12 #include <linux/clk/tegra.h>
  13 #include <linux/delay.h>
  14 #include <linux/device.h>
  15 #include <linux/errno.h>
  16 #include <linux/init.h>
  17 #include <linux/io.h>
  18 #include <linux/jiffies.h>
  19 #include <linux/smp.h>
  20 
  21 #include <soc/tegra/flowctrl.h>
  22 #include <soc/tegra/fuse.h>
  23 #include <soc/tegra/pmc.h>
  24 
  25 #include <asm/cacheflush.h>
  26 #include <asm/mach-types.h>
  27 #include <asm/smp_plat.h>
  28 #include <asm/smp_scu.h>
  29 
  30 #include "common.h"
  31 #include "iomap.h"
  32 #include "reset.h"
  33 
  34 static cpumask_t tegra_cpu_init_mask;
  35 
  36 static void tegra_secondary_init(unsigned int cpu)
  37 {
  38         cpumask_set_cpu(cpu, &tegra_cpu_init_mask);
  39 }
  40 
  41 
  42 static int tegra20_boot_secondary(unsigned int cpu, struct task_struct *idle)
  43 {
  44         cpu = cpu_logical_map(cpu);
  45 
  46         /*
  47          * Force the CPU into reset. The CPU must remain in reset when
  48          * the flow controller state is cleared (which will cause the
  49          * flow controller to stop driving reset if the CPU has been
  50          * power-gated via the flow controller). This will have no
  51          * effect on first boot of the CPU since it should already be
  52          * in reset.
  53          */
  54         tegra_put_cpu_in_reset(cpu);
  55 
  56         /*
  57          * Unhalt the CPU. If the flow controller was used to
  58          * power-gate the CPU this will cause the flow controller to
  59          * stop driving reset. The CPU will remain in reset because the
  60          * clock and reset block is now driving reset.
  61          */
  62         flowctrl_write_cpu_halt(cpu, 0);
  63 
  64         tegra_enable_cpu_clock(cpu);
  65         flowctrl_write_cpu_csr(cpu, 0); /* Clear flow controller CSR. */
  66         tegra_cpu_out_of_reset(cpu);
  67         return 0;
  68 }
  69 
  70 static int tegra30_boot_secondary(unsigned int cpu, struct task_struct *idle)
  71 {
  72         int ret;
  73         unsigned long timeout;
  74 
  75         cpu = cpu_logical_map(cpu);
  76         tegra_put_cpu_in_reset(cpu);
  77         flowctrl_write_cpu_halt(cpu, 0);
  78 
  79         /*
  80          * The power up sequence of cold boot CPU and warm boot CPU
  81          * was different.
  82          *
  83          * For warm boot CPU that was resumed from CPU hotplug, the
  84          * power will be resumed automatically after un-halting the
  85          * flow controller of the warm boot CPU. We need to wait for
  86          * the confirmaiton that the CPU is powered then removing
  87          * the IO clamps.
  88          * For cold boot CPU, do not wait. After the cold boot CPU be
  89          * booted, it will run to tegra_secondary_init() and set
  90          * tegra_cpu_init_mask which influences what tegra30_boot_secondary()
  91          * next time around.
  92          */
  93         if (cpumask_test_cpu(cpu, &tegra_cpu_init_mask)) {
  94                 timeout = jiffies + msecs_to_jiffies(50);
  95                 do {
  96                         if (tegra_pmc_cpu_is_powered(cpu))
  97                                 goto remove_clamps;
  98                         udelay(10);
  99                 } while (time_before(jiffies, timeout));
 100         }
 101 
 102         /*
 103          * The power status of the cold boot CPU is power gated as
 104          * default. To power up the cold boot CPU, the power should
 105          * be un-gated by un-toggling the power gate register
 106          * manually.
 107          */
 108         ret = tegra_pmc_cpu_power_on(cpu);
 109         if (ret)
 110                 return ret;
 111 
 112 remove_clamps:
 113         /* CPU partition is powered. Enable the CPU clock. */
 114         tegra_enable_cpu_clock(cpu);
 115         udelay(10);
 116 
 117         /* Remove I/O clamps. */
 118         ret = tegra_pmc_cpu_remove_clamping(cpu);
 119         if (ret)
 120                 return ret;
 121 
 122         udelay(10);
 123 
 124         flowctrl_write_cpu_csr(cpu, 0); /* Clear flow controller CSR. */
 125         tegra_cpu_out_of_reset(cpu);
 126         return 0;
 127 }
 128 
 129 static int tegra114_boot_secondary(unsigned int cpu, struct task_struct *idle)
 130 {
 131         int ret = 0;
 132 
 133         cpu = cpu_logical_map(cpu);
 134 
 135         if (cpumask_test_cpu(cpu, &tegra_cpu_init_mask)) {
 136                 /*
 137                  * Warm boot flow
 138                  * The flow controller in charge of the power state and
 139                  * control for each CPU.
 140                  */
 141                 /* set SCLK as event trigger for flow controller */
 142                 flowctrl_write_cpu_csr(cpu, 1);
 143                 flowctrl_write_cpu_halt(cpu,
 144                                 FLOW_CTRL_WAITEVENT | FLOW_CTRL_SCLK_RESUME);
 145         } else {
 146                 /*
 147                  * Cold boot flow
 148                  * The CPU is powered up by toggling PMC directly. It will
 149                  * also initial power state in flow controller. After that,
 150                  * the CPU's power state is maintained by flow controller.
 151                  */
 152                 ret = tegra_pmc_cpu_power_on(cpu);
 153         }
 154 
 155         return ret;
 156 }
 157 
 158 static int tegra_boot_secondary(unsigned int cpu,
 159                                           struct task_struct *idle)
 160 {
 161         if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && tegra_get_chip_id() == TEGRA20)
 162                 return tegra20_boot_secondary(cpu, idle);
 163         if (IS_ENABLED(CONFIG_ARCH_TEGRA_3x_SOC) && tegra_get_chip_id() == TEGRA30)
 164                 return tegra30_boot_secondary(cpu, idle);
 165         if (IS_ENABLED(CONFIG_ARCH_TEGRA_114_SOC) && tegra_get_chip_id() == TEGRA114)
 166                 return tegra114_boot_secondary(cpu, idle);
 167         if (IS_ENABLED(CONFIG_ARCH_TEGRA_124_SOC) && tegra_get_chip_id() == TEGRA124)
 168                 return tegra114_boot_secondary(cpu, idle);
 169 
 170         return -EINVAL;
 171 }
 172 
 173 static void __init tegra_smp_prepare_cpus(unsigned int max_cpus)
 174 {
 175         /* Always mark the boot CPU (CPU0) as initialized. */
 176         cpumask_set_cpu(0, &tegra_cpu_init_mask);
 177 
 178         if (scu_a9_has_base())
 179                 scu_enable(IO_ADDRESS(scu_a9_get_base()));
 180 }
 181 
 182 const struct smp_operations tegra_smp_ops __initconst = {
 183         .smp_prepare_cpus       = tegra_smp_prepare_cpus,
 184         .smp_secondary_init     = tegra_secondary_init,
 185         .smp_boot_secondary     = tegra_boot_secondary,
 186 #ifdef CONFIG_HOTPLUG_CPU
 187         .cpu_kill               = tegra_cpu_kill,
 188         .cpu_die                = tegra_cpu_die,
 189 #endif
 190 };

/* [<][>][^][v][top][bottom][index][help] */