root/arch/xtensa/kernel/vectors.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /*
   2  * arch/xtensa/kernel/vectors.S
   3  *
   4  * This file contains all exception vectors (user, kernel, and double),
   5  * as well as the window vectors (overflow and underflow), and the debug
   6  * vector. These are the primary vectors executed by the processor if an
   7  * exception occurs.
   8  *
   9  * This file is subject to the terms and conditions of the GNU General
  10  * Public License.  See the file "COPYING" in the main directory of
  11  * this archive for more details.
  12  *
  13  * Copyright (C) 2005 - 2008 Tensilica, Inc.
  14  *
  15  * Chris Zankel <chris@zankel.net>
  16  *
  17  */
  18 
  19 /*
  20  * We use a two-level table approach. The user and kernel exception vectors
  21  * use a first-level dispatch table to dispatch the exception to a registered
  22  * fast handler or the default handler, if no fast handler was registered.
  23  * The default handler sets up a C-stack and dispatches the exception to a
  24  * registerd C handler in the second-level dispatch table.
  25  *
  26  * Fast handler entry condition:
  27  *
  28  *   a0:        trashed, original value saved on stack (PT_AREG0)
  29  *   a1:        a1
  30  *   a2:        new stack pointer, original value in depc
  31  *   a3:        dispatch table
  32  *   depc:      a2, original value saved on stack (PT_DEPC)
  33  *   excsave_1: a3
  34  *
  35  * The value for PT_DEPC saved to stack also functions as a boolean to
  36  * indicate that the exception is either a double or a regular exception:
  37  *
  38  *   PT_DEPC    >= VALID_DOUBLE_EXCEPTION_ADDRESS: double exception
  39  *              <  VALID_DOUBLE_EXCEPTION_ADDRESS: regular exception
  40  *
  41  * Note:  Neither the kernel nor the user exception handler generate literals.
  42  *
  43  */
  44 
  45 #include <linux/linkage.h>
  46 #include <asm/ptrace.h>
  47 #include <asm/current.h>
  48 #include <asm/asm-offsets.h>
  49 #include <asm/pgtable.h>
  50 #include <asm/processor.h>
  51 #include <asm/page.h>
  52 #include <asm/thread_info.h>
  53 #include <asm/vectors.h>
  54 
  55 #define WINDOW_VECTORS_SIZE   0x180
  56 
  57 
  58 /*
  59  * User exception vector. (Exceptions with PS.UM == 1, PS.EXCM == 0)
  60  *
  61  * We get here when an exception occurred while we were in userland.
  62  * We switch to the kernel stack and jump to the first level handler
  63  * associated to the exception cause.
  64  *
  65  * Note: the saved kernel stack pointer (EXC_TABLE_KSTK) is already
  66  *       decremented by PT_USER_SIZE.
  67  */
  68 
  69         .section .UserExceptionVector.text, "ax"
  70 
  71 ENTRY(_UserExceptionVector)
  72 
  73         xsr     a3, excsave1            # save a3 and get dispatch table
  74         wsr     a2, depc                # save a2
  75         l32i    a2, a3, EXC_TABLE_KSTK  # load kernel stack to a2
  76         s32i    a0, a2, PT_AREG0        # save a0 to ESF
  77         rsr     a0, exccause            # retrieve exception cause
  78         s32i    a0, a2, PT_DEPC         # mark it as a regular exception
  79         addx4   a0, a0, a3              # find entry in table
  80         l32i    a0, a0, EXC_TABLE_FAST_USER     # load handler
  81         xsr     a3, excsave1            # restore a3 and dispatch table
  82         jx      a0
  83 
  84 ENDPROC(_UserExceptionVector)
  85 
  86 /*
  87  * Kernel exception vector. (Exceptions with PS.UM == 0, PS.EXCM == 0)
  88  *
  89  * We get this exception when we were already in kernel space.
  90  * We decrement the current stack pointer (kernel) by PT_SIZE and
  91  * jump to the first-level handler associated with the exception cause.
  92  *
  93  * Note: we need to preserve space for the spill region.
  94  */
  95 
  96         .section .KernelExceptionVector.text, "ax"
  97 
  98 ENTRY(_KernelExceptionVector)
  99 
 100         xsr     a3, excsave1            # save a3, and get dispatch table
 101         wsr     a2, depc                # save a2
 102         addi    a2, a1, -16-PT_SIZE     # adjust stack pointer
 103         s32i    a0, a2, PT_AREG0        # save a0 to ESF
 104         rsr     a0, exccause            # retrieve exception cause
 105         s32i    a0, a2, PT_DEPC         # mark it as a regular exception
 106         addx4   a0, a0, a3              # find entry in table
 107         l32i    a0, a0, EXC_TABLE_FAST_KERNEL   # load handler address
 108         xsr     a3, excsave1            # restore a3 and dispatch table
 109         jx      a0
 110 
 111 ENDPROC(_KernelExceptionVector)
 112 
 113 /*
 114  * Double exception vector (Exceptions with PS.EXCM == 1)
 115  * We get this exception when another exception occurs while were are
 116  * already in an exception, such as window overflow/underflow exception,
 117  * or 'expected' exceptions, for example memory exception when we were trying
 118  * to read data from an invalid address in user space.
 119  *
 120  * Note that this vector is never invoked for level-1 interrupts, because such
 121  * interrupts are disabled (masked) when PS.EXCM is set.
 122  *
 123  * We decode the exception and take the appropriate action.  However, the
 124  * double exception vector is much more careful, because a lot more error
 125  * cases go through the double exception vector than through the user and
 126  * kernel exception vectors.
 127  *
 128  * Occasionally, the kernel expects a double exception to occur.  This usually
 129  * happens when accessing user-space memory with the user's permissions
 130  * (l32e/s32e instructions).  The kernel state, though, is not always suitable
 131  * for immediate transfer of control to handle_double, where "normal" exception
 132  * processing occurs. Also in kernel mode, TLB misses can occur if accessing
 133  * vmalloc memory, possibly requiring repair in a double exception handler.
 134  *
 135  * The variable at TABLE_FIXUP offset from the pointer in EXCSAVE_1 doubles as
 136  * a boolean variable and a pointer to a fixup routine. If the variable
 137  * EXC_TABLE_FIXUP is non-zero, this handler jumps to that address. A value of
 138  * zero indicates to use the default kernel/user exception handler.
 139  * There is only one exception, when the value is identical to the exc_table
 140  * label, the kernel is in trouble. This mechanism is used to protect critical
 141  * sections, mainly when the handler writes to the stack to assert the stack
 142  * pointer is valid. Once the fixup/default handler leaves that area, the
 143  * EXC_TABLE_FIXUP variable is reset to the fixup handler or zero.
 144  *
 145  * Procedures wishing to use this mechanism should set EXC_TABLE_FIXUP to the
 146  * nonzero address of a fixup routine before it could cause a double exception
 147  * and reset it before it returns.
 148  *
 149  * Some other things to take care of when a fast exception handler doesn't
 150  * specify a particular fixup handler but wants to use the default handlers:
 151  *
 152  *  - The original stack pointer (in a1) must not be modified. The fast
 153  *    exception handler should only use a2 as the stack pointer.
 154  *
 155  *  - If the fast handler manipulates the stack pointer (in a2), it has to
 156  *    register a valid fixup handler and cannot use the default handlers.
 157  *
 158  *  - The handler can use any other generic register from a3 to a15, but it
 159  *    must save the content of these registers to stack (PT_AREG3...PT_AREGx)
 160  *
 161  *  - These registers must be saved before a double exception can occur.
 162  *
 163  *  - If we ever implement handling signals while in double exceptions, the
 164  *    number of registers a fast handler has saved (excluding a0 and a1) must
 165  *    be written to  PT_AREG1. (1 if only a3 is used, 2 for a3 and a4, etc. )
 166  *
 167  * The fixup handlers are special handlers:
 168  *
 169  *  - Fixup entry conditions differ from regular exceptions:
 170  *
 171  *      a0:        DEPC
 172  *      a1:        a1
 173  *      a2:        trashed, original value in EXC_TABLE_DOUBLE_SAVE
 174  *      a3:        exctable
 175  *      depc:      a0
 176  *      excsave_1: a3
 177  *
 178  *  - When the kernel enters the fixup handler, it still assumes it is in a
 179  *    critical section, so EXC_TABLE_FIXUP variable is set to exc_table.
 180  *    The fixup handler, therefore, has to re-register itself as the fixup
 181  *    handler before it returns from the double exception.
 182  *
 183  *  - Fixup handler can share the same exception frame with the fast handler.
 184  *    The kernel stack pointer is not changed when entering the fixup handler.
 185  *
 186  *  - Fixup handlers can jump to the default kernel and user exception
 187  *    handlers. Before it jumps, though, it has to setup a exception frame
 188  *    on stack. Because the default handler resets the register fixup handler
 189  *    the fixup handler must make sure that the default handler returns to
 190  *    it instead of the exception address, so it can re-register itself as
 191  *    the fixup handler.
 192  *
 193  * In case of a critical condition where the kernel cannot recover, we jump
 194  * to unrecoverable_exception with the following entry conditions.
 195  * All registers a0...a15 are unchanged from the last exception, except:
 196  *
 197  *      a0:        last address before we jumped to the unrecoverable_exception.
 198  *      excsave_1: a0
 199  *
 200  *
 201  * See the handle_alloca_user and spill_registers routines for example clients.
 202  *
 203  * FIXME: Note: we currently don't allow signal handling coming from a double
 204  *        exception, so the item markt with (*) is not required.
 205  */
 206 
 207         .section .DoubleExceptionVector.text, "ax"
 208 
 209 ENTRY(_DoubleExceptionVector)
 210 
 211         xsr     a3, excsave1
 212         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 213 
 214         /* Check for kernel double exception (usually fatal). */
 215 
 216         rsr     a2, ps
 217         _bbsi.l a2, PS_UM_BIT, 1f
 218         j       .Lksp
 219 
 220         .align  4
 221         .literal_position
 222 1:
 223         /* Check if we are currently handling a window exception. */
 224         /* Note: We don't need to indicate that we enter a critical section. */
 225 
 226         xsr     a0, depc                # get DEPC, save a0
 227 
 228         movi    a2, WINDOW_VECTORS_VADDR
 229         _bltu   a0, a2, .Lfixup
 230         addi    a2, a2, WINDOW_VECTORS_SIZE
 231         _bgeu   a0, a2, .Lfixup
 232 
 233         /* Window overflow/underflow exception. Get stack pointer. */
 234 
 235         l32i    a2, a3, EXC_TABLE_KSTK
 236 
 237         /* Check for overflow/underflow exception, jump if overflow. */
 238 
 239         bbci.l  a0, 6, _DoubleExceptionVector_WindowOverflow
 240 
 241         /*
 242          * Restart window underflow exception.
 243          * Currently:
 244          *      depc = orig a0,
 245          *      a0 = orig DEPC,
 246          *      a2 = new sp based on KSTK from exc_table
 247          *      a3 = excsave_1
 248          *      excsave_1 = orig a3
 249          *
 250          * We return to the instruction in user space that caused the window
 251          * underflow exception. Therefore, we change window base to the value
 252          * before we entered the window underflow exception and prepare the
 253          * registers to return as if we were coming from a regular exception
 254          * by changing depc (in a0).
 255          * Note: We can trash the current window frame (a0...a3) and depc!
 256          */
 257 _DoubleExceptionVector_WindowUnderflow:
 258         xsr     a3, excsave1
 259         wsr     a2, depc                # save stack pointer temporarily
 260         rsr     a0, ps
 261         extui   a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
 262         wsr     a0, windowbase
 263         rsync
 264 
 265         /* We are now in the previous window frame. Save registers again. */
 266 
 267         xsr     a2, depc                # save a2 and get stack pointer
 268         s32i    a0, a2, PT_AREG0
 269         xsr     a3, excsave1
 270         rsr     a0, exccause
 271         s32i    a0, a2, PT_DEPC         # mark it as a regular exception
 272         addx4   a0, a0, a3
 273         xsr     a3, excsave1
 274         l32i    a0, a0, EXC_TABLE_FAST_USER
 275         jx      a0
 276 
 277         /*
 278          * We only allow the ITLB miss exception if we are in kernel space.
 279          * All other exceptions are unexpected and thus unrecoverable!
 280          */
 281 
 282 #ifdef CONFIG_MMU
 283         .extern fast_second_level_miss_double_kernel
 284 
 285 .Lksp:  /* a0: a0, a1: a1, a2: a2, a3: trashed, depc: depc, excsave: a3 */
 286 
 287         rsr     a3, exccause
 288         beqi    a3, EXCCAUSE_ITLB_MISS, 1f
 289         addi    a3, a3, -EXCCAUSE_DTLB_MISS
 290         bnez    a3, .Lunrecoverable
 291 1:      movi    a3, fast_second_level_miss_double_kernel
 292         jx      a3
 293 #else
 294 .equ    .Lksp,  .Lunrecoverable
 295 #endif
 296 
 297         /* Critical! We can't handle this situation. PANIC! */
 298 
 299         .extern unrecoverable_exception
 300 
 301 .Lunrecoverable_fixup:
 302         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 303         xsr     a0, depc
 304 
 305 .Lunrecoverable:
 306         rsr     a3, excsave1
 307         wsr     a0, excsave1
 308         call0   unrecoverable_exception
 309 
 310 .Lfixup:/* Check for a fixup handler or if we were in a critical section. */
 311 
 312         /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave1: a3 */
 313 
 314         /* Enter critical section. */
 315 
 316         l32i    a2, a3, EXC_TABLE_FIXUP
 317         s32i    a3, a3, EXC_TABLE_FIXUP
 318         beq     a2, a3, .Lunrecoverable_fixup   # critical section
 319         beqz    a2, .Ldflt                      # no handler was registered
 320 
 321         /* a0: depc, a1: a1, a2: trash, a3: exctable, depc: a0, excsave: a3 */
 322 
 323         jx      a2
 324 
 325 .Ldflt: /* Get stack pointer. */
 326 
 327         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 328         addi    a2, a2, -PT_USER_SIZE
 329 
 330         /* a0: depc, a1: a1, a2: kstk, a3: exctable, depc: a0, excsave: a3 */
 331 
 332         s32i    a0, a2, PT_DEPC
 333         l32i    a0, a3, EXC_TABLE_DOUBLE_SAVE
 334         xsr     a0, depc
 335         s32i    a0, a2, PT_AREG0
 336 
 337         /* a0: avail, a1: a1, a2: kstk, a3: exctable, depc: a2, excsave: a3 */
 338 
 339         rsr     a0, exccause
 340         addx4   a0, a0, a3
 341         xsr     a3, excsave1
 342         l32i    a0, a0, EXC_TABLE_FAST_USER
 343         jx      a0
 344 
 345         /*
 346          * Restart window OVERFLOW exception.
 347          * Currently:
 348          *      depc = orig a0,
 349          *      a0 = orig DEPC,
 350          *      a2 = new sp based on KSTK from exc_table
 351          *      a3 = EXCSAVE_1
 352          *      excsave_1 = orig a3
 353          *
 354          * We return to the instruction in user space that caused the window
 355          * overflow exception. Therefore, we change window base to the value
 356          * before we entered the window overflow exception and prepare the
 357          * registers to return as if we were coming from a regular exception
 358          * by changing DEPC (in a0).
 359          *
 360          * NOTE: We CANNOT trash the current window frame (a0...a3), but we
 361          * can clobber depc.
 362          *
 363          * The tricky part here is that overflow8 and overflow12 handlers
 364          * save a0, then clobber a0.  To restart the handler, we have to restore
 365          * a0 if the double exception was past the point where a0 was clobbered.
 366          *
 367          * To keep things simple, we take advantage of the fact all overflow
 368          * handlers save a0 in their very first instruction.  If DEPC was past
 369          * that instruction, we can safely restore a0 from where it was saved
 370          * on the stack.
 371          *
 372          * a0: depc, a1: a1, a2: kstk, a3: exc_table, depc: a0, excsave1: a3
 373          */
 374 _DoubleExceptionVector_WindowOverflow:
 375         extui   a2, a0, 0, 6    # get offset into 64-byte vector handler
 376         beqz    a2, 1f          # if at start of vector, don't restore
 377 
 378         addi    a0, a0, -128
 379         bbsi.l  a0, 8, 1f       # don't restore except for overflow 8 and 12
 380 
 381         /*
 382          * This fixup handler is for the extremely unlikely case where the
 383          * overflow handler's reference thru a0 gets a hardware TLB refill
 384          * that bumps out the (distinct, aliasing) TLB entry that mapped its
 385          * prior references thru a9/a13, and where our reference now thru
 386          * a9/a13 gets a 2nd-level miss exception (not hardware TLB refill).
 387          */
 388         movi    a2, window_overflow_restore_a0_fixup
 389         s32i    a2, a3, EXC_TABLE_FIXUP
 390         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 391         xsr     a3, excsave1
 392 
 393         bbsi.l  a0, 7, 2f
 394 
 395         /*
 396          * Restore a0 as saved by _WindowOverflow8().
 397          */
 398 
 399         l32e    a0, a9, -16
 400         wsr     a0, depc        # replace the saved a0
 401         j       3f
 402 
 403 2:
 404         /*
 405          * Restore a0 as saved by _WindowOverflow12().
 406          */
 407 
 408         l32e    a0, a13, -16
 409         wsr     a0, depc        # replace the saved a0
 410 3:
 411         xsr     a3, excsave1
 412         movi    a0, 0
 413         s32i    a0, a3, EXC_TABLE_FIXUP
 414         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 415 1:
 416         /*
 417          * Restore WindowBase while leaving all address registers restored.
 418          * We have to use ROTW for this, because WSR.WINDOWBASE requires
 419          * an address register (which would prevent restore).
 420          *
 421          * Window Base goes from 0 ... 7 (Module 8)
 422          * Window Start is 8 bits; Ex: (0b1010 1010):0x55 from series of call4s
 423          */
 424 
 425         rsr     a0, ps
 426         extui   a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
 427         rsr     a2, windowbase
 428         sub     a0, a2, a0
 429         extui   a0, a0, 0, 3
 430 
 431         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 432         xsr     a3, excsave1
 433         beqi    a0, 1, .L1pane
 434         beqi    a0, 3, .L3pane
 435 
 436         rsr     a0, depc
 437         rotw    -2
 438 
 439         /*
 440          * We are now in the user code's original window frame.
 441          * Process the exception as a user exception as if it was
 442          * taken by the user code.
 443          *
 444          * This is similar to the user exception vector,
 445          * except that PT_DEPC isn't set to EXCCAUSE.
 446          */
 447 1:
 448         xsr     a3, excsave1
 449         wsr     a2, depc
 450         l32i    a2, a3, EXC_TABLE_KSTK
 451         s32i    a0, a2, PT_AREG0
 452         rsr     a0, exccause
 453 
 454         s32i    a0, a2, PT_DEPC
 455 
 456 _DoubleExceptionVector_handle_exception:
 457         addi    a0, a0, -EXCCAUSE_UNALIGNED
 458         beqz    a0, 2f
 459         addx4   a0, a0, a3
 460         l32i    a0, a0, EXC_TABLE_FAST_USER + 4 * EXCCAUSE_UNALIGNED
 461         xsr     a3, excsave1
 462         jx      a0
 463 2:
 464         movi    a0, user_exception
 465         xsr     a3, excsave1
 466         jx      a0
 467 
 468 .L1pane:
 469         rsr     a0, depc
 470         rotw    -1
 471         j       1b
 472 
 473 .L3pane:
 474         rsr     a0, depc
 475         rotw    -3
 476         j       1b
 477 
 478 ENDPROC(_DoubleExceptionVector)
 479 
 480         .text
 481 /*
 482  * Fixup handler for TLB miss in double exception handler for window owerflow.
 483  * We get here with windowbase set to the window that was being spilled and
 484  * a0 trashed. a0 bit 7 determines if this is a call8 (bit clear) or call12
 485  * (bit set) window.
 486  *
 487  * We do the following here:
 488  * - go to the original window retaining a0 value;
 489  * - set up exception stack to return back to appropriate a0 restore code
 490  *   (we'll need to rotate window back and there's no place to save this
 491  *    information, use different return address for that);
 492  * - handle the exception;
 493  * - go to the window that was being spilled;
 494  * - set up window_overflow_restore_a0_fixup as a fixup routine;
 495  * - reload a0;
 496  * - restore the original window;
 497  * - reset the default fixup routine;
 498  * - return to user. By the time we get to this fixup handler all information
 499  *   about the conditions of the original double exception that happened in
 500  *   the window overflow handler is lost, so we just return to userspace to
 501  *   retry overflow from start.
 502  *
 503  * a0: value of depc, original value in depc
 504  * a2: trashed, original value in EXC_TABLE_DOUBLE_SAVE
 505  * a3: exctable, original value in excsave1
 506  */
 507 
 508         .literal_position
 509 
 510 ENTRY(window_overflow_restore_a0_fixup)
 511 
 512         rsr     a0, ps
 513         extui   a0, a0, PS_OWB_SHIFT, PS_OWB_WIDTH
 514         rsr     a2, windowbase
 515         sub     a0, a2, a0
 516         extui   a0, a0, 0, 3
 517         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 518         xsr     a3, excsave1
 519 
 520         _beqi   a0, 1, .Lhandle_1
 521         _beqi   a0, 3, .Lhandle_3
 522 
 523         .macro  overflow_fixup_handle_exception_pane n
 524 
 525         rsr     a0, depc
 526         rotw    -\n
 527 
 528         xsr     a3, excsave1
 529         wsr     a2, depc
 530         l32i    a2, a3, EXC_TABLE_KSTK
 531         s32i    a0, a2, PT_AREG0
 532 
 533         movi    a0, .Lrestore_\n
 534         s32i    a0, a2, PT_DEPC
 535         rsr     a0, exccause
 536         j       _DoubleExceptionVector_handle_exception
 537 
 538         .endm
 539 
 540         overflow_fixup_handle_exception_pane 2
 541 .Lhandle_1:
 542         overflow_fixup_handle_exception_pane 1
 543 .Lhandle_3:
 544         overflow_fixup_handle_exception_pane 3
 545 
 546         .macro  overflow_fixup_restore_a0_pane n
 547 
 548         rotw    \n
 549         /* Need to preserve a0 value here to be able to handle exception
 550          * that may occur on a0 reload from stack. It may occur because
 551          * TLB miss handler may not be atomic and pointer to page table
 552          * may be lost before we get here. There are no free registers,
 553          * so we need to use EXC_TABLE_DOUBLE_SAVE area.
 554          */
 555         xsr     a3, excsave1
 556         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 557         movi    a2, window_overflow_restore_a0_fixup
 558         s32i    a2, a3, EXC_TABLE_FIXUP
 559         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 560         xsr     a3, excsave1
 561         bbsi.l  a0, 7, 1f
 562         l32e    a0, a9, -16
 563         j       2f
 564 1:
 565         l32e    a0, a13, -16
 566 2:
 567         rotw    -\n
 568 
 569         .endm
 570 
 571 .Lrestore_2:
 572         overflow_fixup_restore_a0_pane 2
 573 
 574 .Lset_default_fixup:
 575         xsr     a3, excsave1
 576         s32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 577         movi    a2, 0
 578         s32i    a2, a3, EXC_TABLE_FIXUP
 579         l32i    a2, a3, EXC_TABLE_DOUBLE_SAVE
 580         xsr     a3, excsave1
 581         rfe
 582 
 583 .Lrestore_1:
 584         overflow_fixup_restore_a0_pane 1
 585         j       .Lset_default_fixup
 586 .Lrestore_3:
 587         overflow_fixup_restore_a0_pane 3
 588         j       .Lset_default_fixup
 589 
 590 ENDPROC(window_overflow_restore_a0_fixup)
 591 
 592 /*
 593  * Debug interrupt vector
 594  *
 595  * There is not much space here, so simply jump to another handler.
 596  * EXCSAVE[DEBUGLEVEL] has been set to that handler.
 597  */
 598 
 599         .section .DebugInterruptVector.text, "ax"
 600 
 601 ENTRY(_DebugInterruptVector)
 602 
 603         xsr     a3, SREG_EXCSAVE + XCHAL_DEBUGLEVEL
 604         s32i    a0, a3, DT_DEBUG_SAVE
 605         l32i    a0, a3, DT_DEBUG_EXCEPTION
 606         jx      a0
 607 
 608 ENDPROC(_DebugInterruptVector)
 609 
 610 
 611 
 612 /*
 613  * Medium priority level interrupt vectors
 614  *
 615  * Each takes less than 16 (0x10) bytes, no literals, by placing
 616  * the extra 8 bytes that would otherwise be required in the window
 617  * vectors area where there is space.  With relocatable vectors,
 618  * all vectors are within ~ 4 kB range of each other, so we can
 619  * simply jump (J) to another vector without having to use JX.
 620  *
 621  * common_exception code gets current IRQ level in PS.INTLEVEL
 622  * and preserves it for the IRQ handling time.
 623  */
 624 
 625         .macro  irq_entry_level level
 626 
 627         .if     XCHAL_EXCM_LEVEL >= \level
 628         .section .Level\level\()InterruptVector.text, "ax"
 629 ENTRY(_Level\level\()InterruptVector)
 630         wsr     a0, excsave2
 631         rsr     a0, epc\level
 632         wsr     a0, epc1
 633         .if     \level <= LOCKLEVEL
 634         movi    a0, EXCCAUSE_LEVEL1_INTERRUPT
 635         .else
 636         movi    a0, EXCCAUSE_MAPPED_NMI
 637         .endif
 638         wsr     a0, exccause
 639         rsr     a0, eps\level
 640                                         # branch to user or kernel vector
 641         j       _SimulateUserKernelVectorException
 642         .endif
 643 
 644         .endm
 645 
 646         irq_entry_level 2
 647         irq_entry_level 3
 648         irq_entry_level 4
 649         irq_entry_level 5
 650         irq_entry_level 6
 651 
 652 
 653 /* Window overflow and underflow handlers.
 654  * The handlers must be 64 bytes apart, first starting with the underflow
 655  * handlers underflow-4 to underflow-12, then the overflow handlers
 656  * overflow-4 to overflow-12.
 657  *
 658  * Note: We rerun the underflow handlers if we hit an exception, so
 659  *       we try to access any page that would cause a page fault early.
 660  */
 661 
 662 #define ENTRY_ALIGN64(name)     \
 663         .globl name;            \
 664         .align 64;              \
 665         name:
 666 
 667         .section                .WindowVectors.text, "ax"
 668 
 669 
 670 /* 4-Register Window Overflow Vector (Handler) */
 671 
 672 ENTRY_ALIGN64(_WindowOverflow4)
 673 
 674         s32e    a0, a5, -16
 675         s32e    a1, a5, -12
 676         s32e    a2, a5,  -8
 677         s32e    a3, a5,  -4
 678         rfwo
 679 
 680 ENDPROC(_WindowOverflow4)
 681 
 682 
 683 #if XCHAL_EXCM_LEVEL >= 2
 684         /*  Not a window vector - but a convenient location
 685          *  (where we know there's space) for continuation of
 686          *  medium priority interrupt dispatch code.
 687          *  On entry here, a0 contains PS, and EPC2 contains saved a0:
 688          */
 689         .align 4
 690 _SimulateUserKernelVectorException:
 691         addi    a0, a0, (1 << PS_EXCM_BIT)
 692 #if !XTENSA_FAKE_NMI
 693         wsr     a0, ps
 694 #endif
 695         bbsi.l  a0, PS_UM_BIT, 1f       # branch if user mode
 696         xsr     a0, excsave2            # restore a0
 697         j       _KernelExceptionVector  # simulate kernel vector exception
 698 1:      xsr     a0, excsave2            # restore a0
 699         j       _UserExceptionVector    # simulate user vector exception
 700 #endif
 701 
 702 
 703 /* 4-Register Window Underflow Vector (Handler) */
 704 
 705 ENTRY_ALIGN64(_WindowUnderflow4)
 706 
 707         l32e    a0, a5, -16
 708         l32e    a1, a5, -12
 709         l32e    a2, a5,  -8
 710         l32e    a3, a5,  -4
 711         rfwu
 712 
 713 ENDPROC(_WindowUnderflow4)
 714 
 715 /* 8-Register Window Overflow Vector (Handler) */
 716 
 717 ENTRY_ALIGN64(_WindowOverflow8)
 718 
 719         s32e    a0, a9, -16
 720         l32e    a0, a1, -12
 721         s32e    a2, a9,  -8
 722         s32e    a1, a9, -12
 723         s32e    a3, a9,  -4
 724         s32e    a4, a0, -32
 725         s32e    a5, a0, -28
 726         s32e    a6, a0, -24
 727         s32e    a7, a0, -20
 728         rfwo
 729 
 730 ENDPROC(_WindowOverflow8)
 731 
 732 /* 8-Register Window Underflow Vector (Handler) */
 733 
 734 ENTRY_ALIGN64(_WindowUnderflow8)
 735 
 736         l32e    a1, a9, -12
 737         l32e    a0, a9, -16
 738         l32e    a7, a1, -12
 739         l32e    a2, a9,  -8
 740         l32e    a4, a7, -32
 741         l32e    a3, a9,  -4
 742         l32e    a5, a7, -28
 743         l32e    a6, a7, -24
 744         l32e    a7, a7, -20
 745         rfwu
 746 
 747 ENDPROC(_WindowUnderflow8)
 748 
 749 /* 12-Register Window Overflow Vector (Handler) */
 750 
 751 ENTRY_ALIGN64(_WindowOverflow12)
 752 
 753         s32e    a0,  a13, -16
 754         l32e    a0,  a1,  -12
 755         s32e    a1,  a13, -12
 756         s32e    a2,  a13,  -8
 757         s32e    a3,  a13,  -4
 758         s32e    a4,  a0,  -48
 759         s32e    a5,  a0,  -44
 760         s32e    a6,  a0,  -40
 761         s32e    a7,  a0,  -36
 762         s32e    a8,  a0,  -32
 763         s32e    a9,  a0,  -28
 764         s32e    a10, a0,  -24
 765         s32e    a11, a0,  -20
 766         rfwo
 767 
 768 ENDPROC(_WindowOverflow12)
 769 
 770 /* 12-Register Window Underflow Vector (Handler) */
 771 
 772 ENTRY_ALIGN64(_WindowUnderflow12)
 773 
 774         l32e    a1,  a13, -12
 775         l32e    a0,  a13, -16
 776         l32e    a11, a1,  -12
 777         l32e    a2,  a13,  -8
 778         l32e    a4,  a11, -48
 779         l32e    a8,  a11, -32
 780         l32e    a3,  a13,  -4
 781         l32e    a5,  a11, -44
 782         l32e    a6,  a11, -40
 783         l32e    a7,  a11, -36
 784         l32e    a9,  a11, -28
 785         l32e    a10, a11, -24
 786         l32e    a11, a11, -20
 787         rfwu
 788 
 789 ENDPROC(_WindowUnderflow12)
 790 
 791         .text

/* [<][>][^][v][top][bottom][index][help] */