This source file includes following definitions.
- cpuinfo_id
- enumerate_cpuinfo_nodes
- build_cpuinfo_tree
- increment_rover
- iterate_cpu
- _cpu_map_rebuild
- simple_map_to_cpu
- _map_to_cpu
- map_to_cpu
- cpu_map_rebuild
1
2
3
4
5
6
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/kernel.h>
10 #include <linux/cpumask.h>
11 #include <linux/spinlock.h>
12 #include <asm/cpudata.h>
13 #include "cpumap.h"
14
15
16 enum {
17 CPUINFO_LVL_ROOT = 0,
18 CPUINFO_LVL_NODE,
19 CPUINFO_LVL_CORE,
20 CPUINFO_LVL_PROC,
21 CPUINFO_LVL_MAX,
22 };
23
24 enum {
25 ROVER_NO_OP = 0,
26
27 ROVER_INC_ON_VISIT = 1 << 0,
28
29 ROVER_INC_PARENT_ON_LOOP = 1 << 1,
30 };
31
32 struct cpuinfo_node {
33 int id;
34 int level;
35 int num_cpus;
36 int parent_index;
37 int child_start;
38 int child_end;
39 int rover;
40 };
41
42 struct cpuinfo_level {
43 int start_index;
44 int end_index;
45 int num_nodes;
46 };
47
48 struct cpuinfo_tree {
49 int total_nodes;
50
51
52 struct cpuinfo_level level[CPUINFO_LVL_MAX];
53 struct cpuinfo_node nodes[0];
54 };
55
56
57 static struct cpuinfo_tree *cpuinfo_tree;
58
59 static u16 cpu_distribution_map[NR_CPUS];
60 static DEFINE_SPINLOCK(cpu_map_lock);
61
62
63
64 static const int niagara_iterate_method[] = {
65 [CPUINFO_LVL_ROOT] = ROVER_NO_OP,
66
67
68
69
70
71
72 [CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
73
74
75
76
77
78
79 [CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT,
80
81
82 [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT,
83 };
84
85
86
87
88 static const int generic_iterate_method[] = {
89 [CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT,
90 [CPUINFO_LVL_NODE] = ROVER_NO_OP,
91 [CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP,
92 [CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP,
93 };
94
95
96 static int cpuinfo_id(int cpu, int level)
97 {
98 int id;
99
100 switch (level) {
101 case CPUINFO_LVL_ROOT:
102 id = 0;
103 break;
104 case CPUINFO_LVL_NODE:
105 id = cpu_to_node(cpu);
106 break;
107 case CPUINFO_LVL_CORE:
108 id = cpu_data(cpu).core_id;
109 break;
110 case CPUINFO_LVL_PROC:
111 id = cpu_data(cpu).proc_id;
112 break;
113 default:
114 id = -EINVAL;
115 }
116 return id;
117 }
118
119
120
121
122
123
124 static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level)
125 {
126 int prev_id[CPUINFO_LVL_MAX];
127 int i, n, num_nodes;
128
129 for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) {
130 struct cpuinfo_level *lv = &tree_level[i];
131
132 prev_id[i] = -1;
133 lv->start_index = lv->end_index = lv->num_nodes = 0;
134 }
135
136 num_nodes = 1;
137
138 for (i = 0; i < num_possible_cpus(); i++) {
139 if (!cpu_online(i))
140 continue;
141
142 n = cpuinfo_id(i, CPUINFO_LVL_NODE);
143 if (n > prev_id[CPUINFO_LVL_NODE]) {
144 tree_level[CPUINFO_LVL_NODE].num_nodes++;
145 prev_id[CPUINFO_LVL_NODE] = n;
146 num_nodes++;
147 }
148 n = cpuinfo_id(i, CPUINFO_LVL_CORE);
149 if (n > prev_id[CPUINFO_LVL_CORE]) {
150 tree_level[CPUINFO_LVL_CORE].num_nodes++;
151 prev_id[CPUINFO_LVL_CORE] = n;
152 num_nodes++;
153 }
154 n = cpuinfo_id(i, CPUINFO_LVL_PROC);
155 if (n > prev_id[CPUINFO_LVL_PROC]) {
156 tree_level[CPUINFO_LVL_PROC].num_nodes++;
157 prev_id[CPUINFO_LVL_PROC] = n;
158 num_nodes++;
159 }
160 }
161
162 tree_level[CPUINFO_LVL_ROOT].num_nodes = 1;
163
164 n = tree_level[CPUINFO_LVL_NODE].num_nodes;
165 tree_level[CPUINFO_LVL_NODE].start_index = 1;
166 tree_level[CPUINFO_LVL_NODE].end_index = n;
167
168 n++;
169 tree_level[CPUINFO_LVL_CORE].start_index = n;
170 n += tree_level[CPUINFO_LVL_CORE].num_nodes;
171 tree_level[CPUINFO_LVL_CORE].end_index = n - 1;
172
173 tree_level[CPUINFO_LVL_PROC].start_index = n;
174 n += tree_level[CPUINFO_LVL_PROC].num_nodes;
175 tree_level[CPUINFO_LVL_PROC].end_index = n - 1;
176
177 return num_nodes;
178 }
179
180
181
182
183
184
185 static struct cpuinfo_tree *build_cpuinfo_tree(void)
186 {
187 struct cpuinfo_tree *new_tree;
188 struct cpuinfo_node *node;
189 struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX];
190 int num_cpus[CPUINFO_LVL_MAX];
191 int level_rover[CPUINFO_LVL_MAX];
192 int prev_id[CPUINFO_LVL_MAX];
193 int n, id, cpu, prev_cpu, last_cpu, level;
194
195 n = enumerate_cpuinfo_nodes(tmp_level);
196
197 new_tree = kzalloc(struct_size(new_tree, nodes, n), GFP_ATOMIC);
198 if (!new_tree)
199 return NULL;
200
201 new_tree->total_nodes = n;
202 memcpy(&new_tree->level, tmp_level, sizeof(tmp_level));
203
204 prev_cpu = cpu = cpumask_first(cpu_online_mask);
205
206
207 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) {
208 n = new_tree->level[level].start_index;
209
210 level_rover[level] = n;
211 node = &new_tree->nodes[n];
212
213 id = cpuinfo_id(cpu, level);
214 if (unlikely(id < 0)) {
215 kfree(new_tree);
216 return NULL;
217 }
218 node->id = id;
219 node->level = level;
220 node->num_cpus = 1;
221
222 node->parent_index = (level > CPUINFO_LVL_ROOT)
223 ? new_tree->level[level - 1].start_index : -1;
224
225 node->child_start = node->child_end = node->rover =
226 (level == CPUINFO_LVL_PROC)
227 ? cpu : new_tree->level[level + 1].start_index;
228
229 prev_id[level] = node->id;
230 num_cpus[level] = 1;
231 }
232
233 for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) {
234 if (cpu_online(last_cpu))
235 break;
236 }
237
238 while (++cpu <= last_cpu) {
239 if (!cpu_online(cpu))
240 continue;
241
242 for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT;
243 level--) {
244 id = cpuinfo_id(cpu, level);
245 if (unlikely(id < 0)) {
246 kfree(new_tree);
247 return NULL;
248 }
249
250 if ((id != prev_id[level]) || (cpu == last_cpu)) {
251 prev_id[level] = id;
252 node = &new_tree->nodes[level_rover[level]];
253 node->num_cpus = num_cpus[level];
254 num_cpus[level] = 1;
255
256 if (cpu == last_cpu)
257 node->num_cpus++;
258
259
260 if (level == CPUINFO_LVL_ROOT)
261 node->parent_index = -1;
262 else
263 node->parent_index =
264 level_rover[level - 1];
265
266 if (level == CPUINFO_LVL_PROC) {
267 node->child_end =
268 (cpu == last_cpu) ? cpu : prev_cpu;
269 } else {
270 node->child_end =
271 level_rover[level + 1] - 1;
272 }
273
274
275 n = ++level_rover[level];
276 if (n <= new_tree->level[level].end_index) {
277 node = &new_tree->nodes[n];
278 node->id = id;
279 node->level = level;
280
281
282 node->child_start = node->child_end =
283 node->rover =
284 (level == CPUINFO_LVL_PROC)
285 ? cpu : level_rover[level + 1];
286 }
287 } else
288 num_cpus[level]++;
289 }
290 prev_cpu = cpu;
291 }
292
293 return new_tree;
294 }
295
296 static void increment_rover(struct cpuinfo_tree *t, int node_index,
297 int root_index, const int *rover_inc_table)
298 {
299 struct cpuinfo_node *node = &t->nodes[node_index];
300 int top_level, level;
301
302 top_level = t->nodes[root_index].level;
303 for (level = node->level; level >= top_level; level--) {
304 node->rover++;
305 if (node->rover <= node->child_end)
306 return;
307
308 node->rover = node->child_start;
309
310 if ((level == top_level) ||
311 !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP))
312 return;
313
314 node = &t->nodes[node->parent_index];
315 }
316 }
317
318 static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index)
319 {
320 const int *rover_inc_table;
321 int level, new_index, index = root_index;
322
323 switch (sun4v_chip_type) {
324 case SUN4V_CHIP_NIAGARA1:
325 case SUN4V_CHIP_NIAGARA2:
326 case SUN4V_CHIP_NIAGARA3:
327 case SUN4V_CHIP_NIAGARA4:
328 case SUN4V_CHIP_NIAGARA5:
329 case SUN4V_CHIP_SPARC_M6:
330 case SUN4V_CHIP_SPARC_M7:
331 case SUN4V_CHIP_SPARC_M8:
332 case SUN4V_CHIP_SPARC_SN:
333 case SUN4V_CHIP_SPARC64X:
334 rover_inc_table = niagara_iterate_method;
335 break;
336 default:
337 rover_inc_table = generic_iterate_method;
338 }
339
340 for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX;
341 level++) {
342 new_index = t->nodes[index].rover;
343 if (rover_inc_table[level] & ROVER_INC_ON_VISIT)
344 increment_rover(t, index, root_index, rover_inc_table);
345
346 index = new_index;
347 }
348 return index;
349 }
350
351 static void _cpu_map_rebuild(void)
352 {
353 int i;
354
355 if (cpuinfo_tree) {
356 kfree(cpuinfo_tree);
357 cpuinfo_tree = NULL;
358 }
359
360 cpuinfo_tree = build_cpuinfo_tree();
361 if (!cpuinfo_tree)
362 return;
363
364
365
366
367
368 for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++)
369 cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0);
370 }
371
372
373
374
375 static int simple_map_to_cpu(unsigned int index)
376 {
377 int i, end, cpu_rover;
378
379 cpu_rover = 0;
380 end = index % num_online_cpus();
381 for (i = 0; i < num_possible_cpus(); i++) {
382 if (cpu_online(cpu_rover)) {
383 if (cpu_rover >= end)
384 return cpu_rover;
385
386 cpu_rover++;
387 }
388 }
389
390
391 return cpumask_first(cpu_online_mask);
392 }
393
394 static int _map_to_cpu(unsigned int index)
395 {
396 struct cpuinfo_node *root_node;
397
398 if (unlikely(!cpuinfo_tree)) {
399 _cpu_map_rebuild();
400 if (!cpuinfo_tree)
401 return simple_map_to_cpu(index);
402 }
403
404 root_node = &cpuinfo_tree->nodes[0];
405 #ifdef CONFIG_HOTPLUG_CPU
406 if (unlikely(root_node->num_cpus != num_online_cpus())) {
407 _cpu_map_rebuild();
408 if (!cpuinfo_tree)
409 return simple_map_to_cpu(index);
410 }
411 #endif
412 return cpu_distribution_map[index % root_node->num_cpus];
413 }
414
415 int map_to_cpu(unsigned int index)
416 {
417 int mapped_cpu;
418 unsigned long flag;
419
420 spin_lock_irqsave(&cpu_map_lock, flag);
421 mapped_cpu = _map_to_cpu(index);
422
423 #ifdef CONFIG_HOTPLUG_CPU
424 while (unlikely(!cpu_online(mapped_cpu)))
425 mapped_cpu = _map_to_cpu(index);
426 #endif
427 spin_unlock_irqrestore(&cpu_map_lock, flag);
428 return mapped_cpu;
429 }
430 EXPORT_SYMBOL(map_to_cpu);
431
432 void cpu_map_rebuild(void)
433 {
434 unsigned long flag;
435
436 spin_lock_irqsave(&cpu_map_lock, flag);
437 _cpu_map_rebuild();
438 spin_unlock_irqrestore(&cpu_map_lock, flag);
439 }