root/arch/sparc/kernel/visemul.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. maybe_flush_windows
  2. fetch_reg
  3. __fetch_reg_addr_user
  4. __fetch_reg_addr_kern
  5. store_reg
  6. fpd_regval
  7. fpd_regaddr
  8. fps_regval
  9. fps_regaddr
  10. edge
  11. array
  12. bmask
  13. bshuffle
  14. pdist
  15. pformat
  16. pmul
  17. pcmp
  18. vis_emul

   1 // SPDX-License-Identifier: GPL-2.0
   2 /* visemul.c: Emulation of VIS instructions.
   3  *
   4  * Copyright (C) 2006 David S. Miller (davem@davemloft.net)
   5  */
   6 #include <linux/kernel.h>
   7 #include <linux/errno.h>
   8 #include <linux/thread_info.h>
   9 #include <linux/perf_event.h>
  10 
  11 #include <asm/ptrace.h>
  12 #include <asm/pstate.h>
  13 #include <asm/fpumacro.h>
  14 #include <linux/uaccess.h>
  15 #include <asm/cacheflush.h>
  16 
  17 /* OPF field of various VIS instructions.  */
  18 
  19 /* 000111011 - four 16-bit packs  */
  20 #define FPACK16_OPF     0x03b
  21 
  22 /* 000111010 - two 32-bit packs  */
  23 #define FPACK32_OPF     0x03a
  24 
  25 /* 000111101 - four 16-bit packs  */
  26 #define FPACKFIX_OPF    0x03d
  27 
  28 /* 001001101 - four 16-bit expands  */
  29 #define FEXPAND_OPF     0x04d
  30 
  31 /* 001001011 - two 32-bit merges */
  32 #define FPMERGE_OPF     0x04b
  33 
  34 /* 000110001 - 8-by-16-bit partitioned product  */
  35 #define FMUL8x16_OPF    0x031
  36 
  37 /* 000110011 - 8-by-16-bit upper alpha partitioned product  */
  38 #define FMUL8x16AU_OPF  0x033
  39 
  40 /* 000110101 - 8-by-16-bit lower alpha partitioned product  */
  41 #define FMUL8x16AL_OPF  0x035
  42 
  43 /* 000110110 - upper 8-by-16-bit partitioned product  */
  44 #define FMUL8SUx16_OPF  0x036
  45 
  46 /* 000110111 - lower 8-by-16-bit partitioned product  */
  47 #define FMUL8ULx16_OPF  0x037
  48 
  49 /* 000111000 - upper 8-by-16-bit partitioned product  */
  50 #define FMULD8SUx16_OPF 0x038
  51 
  52 /* 000111001 - lower unsigned 8-by-16-bit partitioned product  */
  53 #define FMULD8ULx16_OPF 0x039
  54 
  55 /* 000101000 - four 16-bit compare; set rd if src1 > src2  */
  56 #define FCMPGT16_OPF    0x028
  57 
  58 /* 000101100 - two 32-bit compare; set rd if src1 > src2  */
  59 #define FCMPGT32_OPF    0x02c
  60 
  61 /* 000100000 - four 16-bit compare; set rd if src1 <= src2  */
  62 #define FCMPLE16_OPF    0x020
  63 
  64 /* 000100100 - two 32-bit compare; set rd if src1 <= src2  */
  65 #define FCMPLE32_OPF    0x024
  66 
  67 /* 000100010 - four 16-bit compare; set rd if src1 != src2  */
  68 #define FCMPNE16_OPF    0x022
  69 
  70 /* 000100110 - two 32-bit compare; set rd if src1 != src2  */
  71 #define FCMPNE32_OPF    0x026
  72 
  73 /* 000101010 - four 16-bit compare; set rd if src1 == src2  */
  74 #define FCMPEQ16_OPF    0x02a
  75 
  76 /* 000101110 - two 32-bit compare; set rd if src1 == src2  */
  77 #define FCMPEQ32_OPF    0x02e
  78 
  79 /* 000000000 - Eight 8-bit edge boundary processing  */
  80 #define EDGE8_OPF       0x000
  81 
  82 /* 000000001 - Eight 8-bit edge boundary processing, no CC */
  83 #define EDGE8N_OPF      0x001
  84 
  85 /* 000000010 - Eight 8-bit edge boundary processing, little-endian  */
  86 #define EDGE8L_OPF      0x002
  87 
  88 /* 000000011 - Eight 8-bit edge boundary processing, little-endian, no CC  */
  89 #define EDGE8LN_OPF     0x003
  90 
  91 /* 000000100 - Four 16-bit edge boundary processing  */
  92 #define EDGE16_OPF      0x004
  93 
  94 /* 000000101 - Four 16-bit edge boundary processing, no CC  */
  95 #define EDGE16N_OPF     0x005
  96 
  97 /* 000000110 - Four 16-bit edge boundary processing, little-endian  */
  98 #define EDGE16L_OPF     0x006
  99 
 100 /* 000000111 - Four 16-bit edge boundary processing, little-endian, no CC  */
 101 #define EDGE16LN_OPF    0x007
 102 
 103 /* 000001000 - Two 32-bit edge boundary processing  */
 104 #define EDGE32_OPF      0x008
 105 
 106 /* 000001001 - Two 32-bit edge boundary processing, no CC  */
 107 #define EDGE32N_OPF     0x009
 108 
 109 /* 000001010 - Two 32-bit edge boundary processing, little-endian  */
 110 #define EDGE32L_OPF     0x00a
 111 
 112 /* 000001011 - Two 32-bit edge boundary processing, little-endian, no CC  */
 113 #define EDGE32LN_OPF    0x00b
 114 
 115 /* 000111110 - distance between 8 8-bit components  */
 116 #define PDIST_OPF       0x03e
 117 
 118 /* 000010000 - convert 8-bit 3-D address to blocked byte address  */
 119 #define ARRAY8_OPF      0x010
 120 
 121 /* 000010010 - convert 16-bit 3-D address to blocked byte address  */
 122 #define ARRAY16_OPF     0x012
 123 
 124 /* 000010100 - convert 32-bit 3-D address to blocked byte address  */
 125 #define ARRAY32_OPF     0x014
 126 
 127 /* 000011001 - Set the GSR.MASK field in preparation for a BSHUFFLE  */
 128 #define BMASK_OPF       0x019
 129 
 130 /* 001001100 - Permute bytes as specified by GSR.MASK  */
 131 #define BSHUFFLE_OPF    0x04c
 132 
 133 #define VIS_OPF_SHIFT   5
 134 #define VIS_OPF_MASK    (0x1ff << VIS_OPF_SHIFT)
 135 
 136 #define RS1(INSN)       (((INSN) >> 14) & 0x1f)
 137 #define RS2(INSN)       (((INSN) >>  0) & 0x1f)
 138 #define RD(INSN)        (((INSN) >> 25) & 0x1f)
 139 
 140 static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
 141                                        unsigned int rd, int from_kernel)
 142 {
 143         if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
 144                 if (from_kernel != 0)
 145                         __asm__ __volatile__("flushw");
 146                 else
 147                         flushw_user();
 148         }
 149 }
 150 
 151 static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
 152 {
 153         unsigned long value, fp;
 154         
 155         if (reg < 16)
 156                 return (!reg ? 0 : regs->u_regs[reg]);
 157 
 158         fp = regs->u_regs[UREG_FP];
 159 
 160         if (regs->tstate & TSTATE_PRIV) {
 161                 struct reg_window *win;
 162                 win = (struct reg_window *)(fp + STACK_BIAS);
 163                 value = win->locals[reg - 16];
 164         } else if (!test_thread_64bit_stack(fp)) {
 165                 struct reg_window32 __user *win32;
 166                 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
 167                 get_user(value, &win32->locals[reg - 16]);
 168         } else {
 169                 struct reg_window __user *win;
 170                 win = (struct reg_window __user *)(fp + STACK_BIAS);
 171                 get_user(value, &win->locals[reg - 16]);
 172         }
 173         return value;
 174 }
 175 
 176 static inline unsigned long __user *__fetch_reg_addr_user(unsigned int reg,
 177                                                           struct pt_regs *regs)
 178 {
 179         unsigned long fp = regs->u_regs[UREG_FP];
 180 
 181         BUG_ON(reg < 16);
 182         BUG_ON(regs->tstate & TSTATE_PRIV);
 183 
 184         if (!test_thread_64bit_stack(fp)) {
 185                 struct reg_window32 __user *win32;
 186                 win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
 187                 return (unsigned long __user *)&win32->locals[reg - 16];
 188         } else {
 189                 struct reg_window __user *win;
 190                 win = (struct reg_window __user *)(fp + STACK_BIAS);
 191                 return &win->locals[reg - 16];
 192         }
 193 }
 194 
 195 static inline unsigned long *__fetch_reg_addr_kern(unsigned int reg,
 196                                                    struct pt_regs *regs)
 197 {
 198         BUG_ON(reg >= 16);
 199         BUG_ON(regs->tstate & TSTATE_PRIV);
 200 
 201         return &regs->u_regs[reg];
 202 }
 203 
 204 static void store_reg(struct pt_regs *regs, unsigned long val, unsigned long rd)
 205 {
 206         if (rd < 16) {
 207                 unsigned long *rd_kern = __fetch_reg_addr_kern(rd, regs);
 208 
 209                 *rd_kern = val;
 210         } else {
 211                 unsigned long __user *rd_user = __fetch_reg_addr_user(rd, regs);
 212 
 213                 if (!test_thread_64bit_stack(regs->u_regs[UREG_FP]))
 214                         __put_user((u32)val, (u32 __user *)rd_user);
 215                 else
 216                         __put_user(val, rd_user);
 217         }
 218 }
 219 
 220 static inline unsigned long fpd_regval(struct fpustate *f,
 221                                        unsigned int insn_regnum)
 222 {
 223         insn_regnum = (((insn_regnum & 1) << 5) |
 224                        (insn_regnum & 0x1e));
 225 
 226         return *(unsigned long *) &f->regs[insn_regnum];
 227 }
 228 
 229 static inline unsigned long *fpd_regaddr(struct fpustate *f,
 230                                          unsigned int insn_regnum)
 231 {
 232         insn_regnum = (((insn_regnum & 1) << 5) |
 233                        (insn_regnum & 0x1e));
 234 
 235         return (unsigned long *) &f->regs[insn_regnum];
 236 }
 237 
 238 static inline unsigned int fps_regval(struct fpustate *f,
 239                                       unsigned int insn_regnum)
 240 {
 241         return f->regs[insn_regnum];
 242 }
 243 
 244 static inline unsigned int *fps_regaddr(struct fpustate *f,
 245                                         unsigned int insn_regnum)
 246 {
 247         return &f->regs[insn_regnum];
 248 }
 249 
 250 struct edge_tab {
 251         u16 left, right;
 252 };
 253 static struct edge_tab edge8_tab[8] = {
 254         { 0xff, 0x80 },
 255         { 0x7f, 0xc0 },
 256         { 0x3f, 0xe0 },
 257         { 0x1f, 0xf0 },
 258         { 0x0f, 0xf8 },
 259         { 0x07, 0xfc },
 260         { 0x03, 0xfe },
 261         { 0x01, 0xff },
 262 };
 263 static struct edge_tab edge8_tab_l[8] = {
 264         { 0xff, 0x01 },
 265         { 0xfe, 0x03 },
 266         { 0xfc, 0x07 },
 267         { 0xf8, 0x0f },
 268         { 0xf0, 0x1f },
 269         { 0xe0, 0x3f },
 270         { 0xc0, 0x7f },
 271         { 0x80, 0xff },
 272 };
 273 static struct edge_tab edge16_tab[4] = {
 274         { 0xf, 0x8 },
 275         { 0x7, 0xc },
 276         { 0x3, 0xe },
 277         { 0x1, 0xf },
 278 };
 279 static struct edge_tab edge16_tab_l[4] = {
 280         { 0xf, 0x1 },
 281         { 0xe, 0x3 },
 282         { 0xc, 0x7 },
 283         { 0x8, 0xf },
 284 };
 285 static struct edge_tab edge32_tab[2] = {
 286         { 0x3, 0x2 },
 287         { 0x1, 0x3 },
 288 };
 289 static struct edge_tab edge32_tab_l[2] = {
 290         { 0x3, 0x1 },
 291         { 0x2, 0x3 },
 292 };
 293 
 294 static void edge(struct pt_regs *regs, unsigned int insn, unsigned int opf)
 295 {
 296         unsigned long orig_rs1, rs1, orig_rs2, rs2, rd_val;
 297         u16 left, right;
 298 
 299         maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
 300         orig_rs1 = rs1 = fetch_reg(RS1(insn), regs);
 301         orig_rs2 = rs2 = fetch_reg(RS2(insn), regs);
 302 
 303         if (test_thread_flag(TIF_32BIT)) {
 304                 rs1 = rs1 & 0xffffffff;
 305                 rs2 = rs2 & 0xffffffff;
 306         }
 307         switch (opf) {
 308         default:
 309         case EDGE8_OPF:
 310         case EDGE8N_OPF:
 311                 left = edge8_tab[rs1 & 0x7].left;
 312                 right = edge8_tab[rs2 & 0x7].right;
 313                 break;
 314         case EDGE8L_OPF:
 315         case EDGE8LN_OPF:
 316                 left = edge8_tab_l[rs1 & 0x7].left;
 317                 right = edge8_tab_l[rs2 & 0x7].right;
 318                 break;
 319 
 320         case EDGE16_OPF:
 321         case EDGE16N_OPF:
 322                 left = edge16_tab[(rs1 >> 1) & 0x3].left;
 323                 right = edge16_tab[(rs2 >> 1) & 0x3].right;
 324                 break;
 325 
 326         case EDGE16L_OPF:
 327         case EDGE16LN_OPF:
 328                 left = edge16_tab_l[(rs1 >> 1) & 0x3].left;
 329                 right = edge16_tab_l[(rs2 >> 1) & 0x3].right;
 330                 break;
 331 
 332         case EDGE32_OPF:
 333         case EDGE32N_OPF:
 334                 left = edge32_tab[(rs1 >> 2) & 0x1].left;
 335                 right = edge32_tab[(rs2 >> 2) & 0x1].right;
 336                 break;
 337 
 338         case EDGE32L_OPF:
 339         case EDGE32LN_OPF:
 340                 left = edge32_tab_l[(rs1 >> 2) & 0x1].left;
 341                 right = edge32_tab_l[(rs2 >> 2) & 0x1].right;
 342                 break;
 343         }
 344 
 345         if ((rs1 & ~0x7UL) == (rs2 & ~0x7UL))
 346                 rd_val = right & left;
 347         else
 348                 rd_val = left;
 349 
 350         store_reg(regs, rd_val, RD(insn));
 351 
 352         switch (opf) {
 353         case EDGE8_OPF:
 354         case EDGE8L_OPF:
 355         case EDGE16_OPF:
 356         case EDGE16L_OPF:
 357         case EDGE32_OPF:
 358         case EDGE32L_OPF: {
 359                 unsigned long ccr, tstate;
 360 
 361                 __asm__ __volatile__("subcc     %1, %2, %%g0\n\t"
 362                                      "rd        %%ccr, %0"
 363                                      : "=r" (ccr)
 364                                      : "r" (orig_rs1), "r" (orig_rs2)
 365                                      : "cc");
 366                 tstate = regs->tstate & ~(TSTATE_XCC | TSTATE_ICC);
 367                 regs->tstate = tstate | (ccr << 32UL);
 368         }
 369         }
 370 }
 371 
 372 static void array(struct pt_regs *regs, unsigned int insn, unsigned int opf)
 373 {
 374         unsigned long rs1, rs2, rd_val;
 375         unsigned int bits, bits_mask;
 376 
 377         maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
 378         rs1 = fetch_reg(RS1(insn), regs);
 379         rs2 = fetch_reg(RS2(insn), regs);
 380 
 381         bits = (rs2 > 5 ? 5 : rs2);
 382         bits_mask = (1UL << bits) - 1UL;
 383 
 384         rd_val = ((((rs1 >> 11) & 0x3) <<  0) |
 385                   (((rs1 >> 33) & 0x3) <<  2) |
 386                   (((rs1 >> 55) & 0x1) <<  4) |
 387                   (((rs1 >> 13) & 0xf) <<  5) |
 388                   (((rs1 >> 35) & 0xf) <<  9) |
 389                   (((rs1 >> 56) & 0xf) << 13) |
 390                   (((rs1 >> 17) & bits_mask) << 17) |
 391                   (((rs1 >> 39) & bits_mask) << (17 + bits)) |
 392                   (((rs1 >> 60) & 0xf)       << (17 + (2*bits))));
 393 
 394         switch (opf) {
 395         case ARRAY16_OPF:
 396                 rd_val <<= 1;
 397                 break;
 398 
 399         case ARRAY32_OPF:
 400                 rd_val <<= 2;
 401         }
 402 
 403         store_reg(regs, rd_val, RD(insn));
 404 }
 405 
 406 static void bmask(struct pt_regs *regs, unsigned int insn)
 407 {
 408         unsigned long rs1, rs2, rd_val, gsr;
 409 
 410         maybe_flush_windows(RS1(insn), RS2(insn), RD(insn), 0);
 411         rs1 = fetch_reg(RS1(insn), regs);
 412         rs2 = fetch_reg(RS2(insn), regs);
 413         rd_val = rs1 + rs2;
 414 
 415         store_reg(regs, rd_val, RD(insn));
 416 
 417         gsr = current_thread_info()->gsr[0] & 0xffffffff;
 418         gsr |= rd_val << 32UL;
 419         current_thread_info()->gsr[0] = gsr;
 420 }
 421 
 422 static void bshuffle(struct pt_regs *regs, unsigned int insn)
 423 {
 424         struct fpustate *f = FPUSTATE;
 425         unsigned long rs1, rs2, rd_val;
 426         unsigned long bmask, i;
 427 
 428         bmask = current_thread_info()->gsr[0] >> 32UL;
 429 
 430         rs1 = fpd_regval(f, RS1(insn));
 431         rs2 = fpd_regval(f, RS2(insn));
 432 
 433         rd_val = 0UL;
 434         for (i = 0; i < 8; i++) {
 435                 unsigned long which = (bmask >> (i * 4)) & 0xf;
 436                 unsigned long byte;
 437 
 438                 if (which < 8)
 439                         byte = (rs1 >> (which * 8)) & 0xff;
 440                 else
 441                         byte = (rs2 >> ((which-8)*8)) & 0xff;
 442                 rd_val |= (byte << (i * 8));
 443         }
 444 
 445         *fpd_regaddr(f, RD(insn)) = rd_val;
 446 }
 447 
 448 static void pdist(struct pt_regs *regs, unsigned int insn)
 449 {
 450         struct fpustate *f = FPUSTATE;
 451         unsigned long rs1, rs2, *rd, rd_val;
 452         unsigned long i;
 453 
 454         rs1 = fpd_regval(f, RS1(insn));
 455         rs2 = fpd_regval(f, RS2(insn));
 456         rd = fpd_regaddr(f, RD(insn));
 457 
 458         rd_val = *rd;
 459 
 460         for (i = 0; i < 8; i++) {
 461                 s16 s1, s2;
 462 
 463                 s1 = (rs1 >> (56 - (i * 8))) & 0xff;
 464                 s2 = (rs2 >> (56 - (i * 8))) & 0xff;
 465 
 466                 /* Absolute value of difference. */
 467                 s1 -= s2;
 468                 if (s1 < 0)
 469                         s1 = ~s1 + 1;
 470 
 471                 rd_val += s1;
 472         }
 473 
 474         *rd = rd_val;
 475 }
 476 
 477 static void pformat(struct pt_regs *regs, unsigned int insn, unsigned int opf)
 478 {
 479         struct fpustate *f = FPUSTATE;
 480         unsigned long rs1, rs2, gsr, scale, rd_val;
 481 
 482         gsr = current_thread_info()->gsr[0];
 483         scale = (gsr >> 3) & (opf == FPACK16_OPF ? 0xf : 0x1f);
 484         switch (opf) {
 485         case FPACK16_OPF: {
 486                 unsigned long byte;
 487 
 488                 rs2 = fpd_regval(f, RS2(insn));
 489                 rd_val = 0;
 490                 for (byte = 0; byte < 4; byte++) {
 491                         unsigned int val;
 492                         s16 src = (rs2 >> (byte * 16UL)) & 0xffffUL;
 493                         int scaled = src << scale;
 494                         int from_fixed = scaled >> 7;
 495 
 496                         val = ((from_fixed < 0) ?
 497                                0 :
 498                                (from_fixed > 255) ?
 499                                255 : from_fixed);
 500 
 501                         rd_val |= (val << (8 * byte));
 502                 }
 503                 *fps_regaddr(f, RD(insn)) = rd_val;
 504                 break;
 505         }
 506 
 507         case FPACK32_OPF: {
 508                 unsigned long word;
 509 
 510                 rs1 = fpd_regval(f, RS1(insn));
 511                 rs2 = fpd_regval(f, RS2(insn));
 512                 rd_val = (rs1 << 8) & ~(0x000000ff000000ffUL);
 513                 for (word = 0; word < 2; word++) {
 514                         unsigned long val;
 515                         s32 src = (rs2 >> (word * 32UL));
 516                         s64 scaled = src << scale;
 517                         s64 from_fixed = scaled >> 23;
 518 
 519                         val = ((from_fixed < 0) ?
 520                                0 :
 521                                (from_fixed > 255) ?
 522                                255 : from_fixed);
 523 
 524                         rd_val |= (val << (32 * word));
 525                 }
 526                 *fpd_regaddr(f, RD(insn)) = rd_val;
 527                 break;
 528         }
 529 
 530         case FPACKFIX_OPF: {
 531                 unsigned long word;
 532 
 533                 rs2 = fpd_regval(f, RS2(insn));
 534 
 535                 rd_val = 0;
 536                 for (word = 0; word < 2; word++) {
 537                         long val;
 538                         s32 src = (rs2 >> (word * 32UL));
 539                         s64 scaled = src << scale;
 540                         s64 from_fixed = scaled >> 16;
 541 
 542                         val = ((from_fixed < -32768) ?
 543                                -32768 :
 544                                (from_fixed > 32767) ?
 545                                32767 : from_fixed);
 546 
 547                         rd_val |= ((val & 0xffff) << (word * 16));
 548                 }
 549                 *fps_regaddr(f, RD(insn)) = rd_val;
 550                 break;
 551         }
 552 
 553         case FEXPAND_OPF: {
 554                 unsigned long byte;
 555 
 556                 rs2 = fps_regval(f, RS2(insn));
 557 
 558                 rd_val = 0;
 559                 for (byte = 0; byte < 4; byte++) {
 560                         unsigned long val;
 561                         u8 src = (rs2 >> (byte * 8)) & 0xff;
 562 
 563                         val = src << 4;
 564 
 565                         rd_val |= (val << (byte * 16));
 566                 }
 567                 *fpd_regaddr(f, RD(insn)) = rd_val;
 568                 break;
 569         }
 570 
 571         case FPMERGE_OPF: {
 572                 rs1 = fps_regval(f, RS1(insn));
 573                 rs2 = fps_regval(f, RS2(insn));
 574 
 575                 rd_val = (((rs2 & 0x000000ff) <<  0) |
 576                           ((rs1 & 0x000000ff) <<  8) |
 577                           ((rs2 & 0x0000ff00) <<  8) |
 578                           ((rs1 & 0x0000ff00) << 16) |
 579                           ((rs2 & 0x00ff0000) << 16) |
 580                           ((rs1 & 0x00ff0000) << 24) |
 581                           ((rs2 & 0xff000000) << 24) |
 582                           ((rs1 & 0xff000000) << 32));
 583                 *fpd_regaddr(f, RD(insn)) = rd_val;
 584                 break;
 585         }
 586         }
 587 }
 588 
 589 static void pmul(struct pt_regs *regs, unsigned int insn, unsigned int opf)
 590 {
 591         struct fpustate *f = FPUSTATE;
 592         unsigned long rs1, rs2, rd_val;
 593 
 594         switch (opf) {
 595         case FMUL8x16_OPF: {
 596                 unsigned long byte;
 597 
 598                 rs1 = fps_regval(f, RS1(insn));
 599                 rs2 = fpd_regval(f, RS2(insn));
 600 
 601                 rd_val = 0;
 602                 for (byte = 0; byte < 4; byte++) {
 603                         u16 src1 = (rs1 >> (byte *  8)) & 0x00ff;
 604                         s16 src2 = (rs2 >> (byte * 16)) & 0xffff;
 605                         u32 prod = src1 * src2;
 606                         u16 scaled = ((prod & 0x00ffff00) >> 8);
 607 
 608                         /* Round up.  */
 609                         if (prod & 0x80)
 610                                 scaled++;
 611                         rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
 612                 }
 613 
 614                 *fpd_regaddr(f, RD(insn)) = rd_val;
 615                 break;
 616         }
 617 
 618         case FMUL8x16AU_OPF:
 619         case FMUL8x16AL_OPF: {
 620                 unsigned long byte;
 621                 s16 src2;
 622 
 623                 rs1 = fps_regval(f, RS1(insn));
 624                 rs2 = fps_regval(f, RS2(insn));
 625 
 626                 rd_val = 0;
 627                 src2 = rs2 >> (opf == FMUL8x16AU_OPF ? 16 : 0);
 628                 for (byte = 0; byte < 4; byte++) {
 629                         u16 src1 = (rs1 >> (byte * 8)) & 0x00ff;
 630                         u32 prod = src1 * src2;
 631                         u16 scaled = ((prod & 0x00ffff00) >> 8);
 632 
 633                         /* Round up.  */
 634                         if (prod & 0x80)
 635                                 scaled++;
 636                         rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
 637                 }
 638 
 639                 *fpd_regaddr(f, RD(insn)) = rd_val;
 640                 break;
 641         }
 642 
 643         case FMUL8SUx16_OPF:
 644         case FMUL8ULx16_OPF: {
 645                 unsigned long byte, ushift;
 646 
 647                 rs1 = fpd_regval(f, RS1(insn));
 648                 rs2 = fpd_regval(f, RS2(insn));
 649 
 650                 rd_val = 0;
 651                 ushift = (opf == FMUL8SUx16_OPF) ? 8 : 0;
 652                 for (byte = 0; byte < 4; byte++) {
 653                         u16 src1;
 654                         s16 src2;
 655                         u32 prod;
 656                         u16 scaled;
 657 
 658                         src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
 659                         src2 = ((rs2 >> (16 * byte)) & 0xffff);
 660                         prod = src1 * src2;
 661                         scaled = ((prod & 0x00ffff00) >> 8);
 662 
 663                         /* Round up.  */
 664                         if (prod & 0x80)
 665                                 scaled++;
 666                         rd_val |= ((scaled & 0xffffUL) << (byte * 16UL));
 667                 }
 668 
 669                 *fpd_regaddr(f, RD(insn)) = rd_val;
 670                 break;
 671         }
 672 
 673         case FMULD8SUx16_OPF:
 674         case FMULD8ULx16_OPF: {
 675                 unsigned long byte, ushift;
 676 
 677                 rs1 = fps_regval(f, RS1(insn));
 678                 rs2 = fps_regval(f, RS2(insn));
 679 
 680                 rd_val = 0;
 681                 ushift = (opf == FMULD8SUx16_OPF) ? 8 : 0;
 682                 for (byte = 0; byte < 2; byte++) {
 683                         u16 src1;
 684                         s16 src2;
 685                         u32 prod;
 686                         u16 scaled;
 687 
 688                         src1 = ((rs1 >> ((16 * byte) + ushift)) & 0x00ff);
 689                         src2 = ((rs2 >> (16 * byte)) & 0xffff);
 690                         prod = src1 * src2;
 691                         scaled = ((prod & 0x00ffff00) >> 8);
 692 
 693                         /* Round up.  */
 694                         if (prod & 0x80)
 695                                 scaled++;
 696                         rd_val |= ((scaled & 0xffffUL) <<
 697                                    ((byte * 32UL) + 7UL));
 698                 }
 699                 *fpd_regaddr(f, RD(insn)) = rd_val;
 700                 break;
 701         }
 702         }
 703 }
 704 
 705 static void pcmp(struct pt_regs *regs, unsigned int insn, unsigned int opf)
 706 {
 707         struct fpustate *f = FPUSTATE;
 708         unsigned long rs1, rs2, rd_val, i;
 709 
 710         rs1 = fpd_regval(f, RS1(insn));
 711         rs2 = fpd_regval(f, RS2(insn));
 712 
 713         rd_val = 0;
 714 
 715         switch (opf) {
 716         case FCMPGT16_OPF:
 717                 for (i = 0; i < 4; i++) {
 718                         s16 a = (rs1 >> (i * 16)) & 0xffff;
 719                         s16 b = (rs2 >> (i * 16)) & 0xffff;
 720 
 721                         if (a > b)
 722                                 rd_val |= 8 >> i;
 723                 }
 724                 break;
 725 
 726         case FCMPGT32_OPF:
 727                 for (i = 0; i < 2; i++) {
 728                         s32 a = (rs1 >> (i * 32)) & 0xffffffff;
 729                         s32 b = (rs2 >> (i * 32)) & 0xffffffff;
 730 
 731                         if (a > b)
 732                                 rd_val |= 2 >> i;
 733                 }
 734                 break;
 735 
 736         case FCMPLE16_OPF:
 737                 for (i = 0; i < 4; i++) {
 738                         s16 a = (rs1 >> (i * 16)) & 0xffff;
 739                         s16 b = (rs2 >> (i * 16)) & 0xffff;
 740 
 741                         if (a <= b)
 742                                 rd_val |= 8 >> i;
 743                 }
 744                 break;
 745 
 746         case FCMPLE32_OPF:
 747                 for (i = 0; i < 2; i++) {
 748                         s32 a = (rs1 >> (i * 32)) & 0xffffffff;
 749                         s32 b = (rs2 >> (i * 32)) & 0xffffffff;
 750 
 751                         if (a <= b)
 752                                 rd_val |= 2 >> i;
 753                 }
 754                 break;
 755 
 756         case FCMPNE16_OPF:
 757                 for (i = 0; i < 4; i++) {
 758                         s16 a = (rs1 >> (i * 16)) & 0xffff;
 759                         s16 b = (rs2 >> (i * 16)) & 0xffff;
 760 
 761                         if (a != b)
 762                                 rd_val |= 8 >> i;
 763                 }
 764                 break;
 765 
 766         case FCMPNE32_OPF:
 767                 for (i = 0; i < 2; i++) {
 768                         s32 a = (rs1 >> (i * 32)) & 0xffffffff;
 769                         s32 b = (rs2 >> (i * 32)) & 0xffffffff;
 770 
 771                         if (a != b)
 772                                 rd_val |= 2 >> i;
 773                 }
 774                 break;
 775 
 776         case FCMPEQ16_OPF:
 777                 for (i = 0; i < 4; i++) {
 778                         s16 a = (rs1 >> (i * 16)) & 0xffff;
 779                         s16 b = (rs2 >> (i * 16)) & 0xffff;
 780 
 781                         if (a == b)
 782                                 rd_val |= 8 >> i;
 783                 }
 784                 break;
 785 
 786         case FCMPEQ32_OPF:
 787                 for (i = 0; i < 2; i++) {
 788                         s32 a = (rs1 >> (i * 32)) & 0xffffffff;
 789                         s32 b = (rs2 >> (i * 32)) & 0xffffffff;
 790 
 791                         if (a == b)
 792                                 rd_val |= 2 >> i;
 793                 }
 794                 break;
 795         }
 796 
 797         maybe_flush_windows(0, 0, RD(insn), 0);
 798         store_reg(regs, rd_val, RD(insn));
 799 }
 800 
 801 /* Emulate the VIS instructions which are not implemented in
 802  * hardware on Niagara.
 803  */
 804 int vis_emul(struct pt_regs *regs, unsigned int insn)
 805 {
 806         unsigned long pc = regs->tpc;
 807         unsigned int opf;
 808 
 809         BUG_ON(regs->tstate & TSTATE_PRIV);
 810 
 811         perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 812 
 813         if (test_thread_flag(TIF_32BIT))
 814                 pc = (u32)pc;
 815 
 816         if (get_user(insn, (u32 __user *) pc))
 817                 return -EFAULT;
 818 
 819         save_and_clear_fpu();
 820 
 821         opf = (insn & VIS_OPF_MASK) >> VIS_OPF_SHIFT;
 822         switch (opf) {
 823         default:
 824                 return -EINVAL;
 825 
 826         /* Pixel Formatting Instructions.  */
 827         case FPACK16_OPF:
 828         case FPACK32_OPF:
 829         case FPACKFIX_OPF:
 830         case FEXPAND_OPF:
 831         case FPMERGE_OPF:
 832                 pformat(regs, insn, opf);
 833                 break;
 834 
 835         /* Partitioned Multiply Instructions  */
 836         case FMUL8x16_OPF:
 837         case FMUL8x16AU_OPF:
 838         case FMUL8x16AL_OPF:
 839         case FMUL8SUx16_OPF:
 840         case FMUL8ULx16_OPF:
 841         case FMULD8SUx16_OPF:
 842         case FMULD8ULx16_OPF:
 843                 pmul(regs, insn, opf);
 844                 break;
 845 
 846         /* Pixel Compare Instructions  */
 847         case FCMPGT16_OPF:
 848         case FCMPGT32_OPF:
 849         case FCMPLE16_OPF:
 850         case FCMPLE32_OPF:
 851         case FCMPNE16_OPF:
 852         case FCMPNE32_OPF:
 853         case FCMPEQ16_OPF:
 854         case FCMPEQ32_OPF:
 855                 pcmp(regs, insn, opf);
 856                 break;
 857 
 858         /* Edge Handling Instructions  */
 859         case EDGE8_OPF:
 860         case EDGE8N_OPF:
 861         case EDGE8L_OPF:
 862         case EDGE8LN_OPF:
 863         case EDGE16_OPF:
 864         case EDGE16N_OPF:
 865         case EDGE16L_OPF:
 866         case EDGE16LN_OPF:
 867         case EDGE32_OPF:
 868         case EDGE32N_OPF:
 869         case EDGE32L_OPF:
 870         case EDGE32LN_OPF:
 871                 edge(regs, insn, opf);
 872                 break;
 873 
 874         /* Pixel Component Distance  */
 875         case PDIST_OPF:
 876                 pdist(regs, insn);
 877                 break;
 878 
 879         /* Three-Dimensional Array Addressing Instructions  */
 880         case ARRAY8_OPF:
 881         case ARRAY16_OPF:
 882         case ARRAY32_OPF:
 883                 array(regs, insn, opf);
 884                 break;
 885 
 886         /* Byte Mask and Shuffle Instructions  */
 887         case BMASK_OPF:
 888                 bmask(regs, insn);
 889                 break;
 890 
 891         case BSHUFFLE_OPF:
 892                 bshuffle(regs, insn);
 893                 break;
 894         }
 895 
 896         regs->tpc = regs->tnpc;
 897         regs->tnpc += 4;
 898         return 0;
 899 }

/* [<][>][^][v][top][bottom][index][help] */