root/arch/arm/kvm/coproc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. write_to_read_only
  2. read_from_write_only
  3. vcpu_cp15_reg64_set
  4. vcpu_cp15_reg64_get
  5. kvm_handle_cp10_id
  6. kvm_handle_cp_0_13_access
  7. kvm_handle_cp14_load_store
  8. reset_mpidr
  9. access_actlr
  10. access_cbar
  11. access_l2ctlr
  12. reset_l2ctlr
  13. reset_actlr
  14. access_l2ectlr
  15. access_dcsw
  16. access_vm_reg
  17. access_gic_sgi
  18. access_gic_sre
  19. access_cntp_tval
  20. access_cntp_ctl
  21. access_cntp_cval
  22. trap_raz_wi
  23. check_reg_table
  24. kvm_register_target_coproc_table
  25. get_target_table
  26. match_reg
  27. find_reg
  28. emulate_cp15
  29. decode_64bit_hsr
  30. kvm_handle_cp15_64
  31. kvm_handle_cp14_64
  32. reset_coproc_regs
  33. decode_32bit_hsr
  34. kvm_handle_cp15_32
  35. kvm_handle_cp14_32
  36. index_to_params
  37. index_to_coproc_reg
  38. reg_from_user
  39. reg_to_user
  40. get_invariant_cp15
  41. set_invariant_cp15
  42. is_valid_cache
  43. get_ccsidr
  44. demux_c15_get
  45. demux_c15_set
  46. num_fp_regs
  47. num_vfp_regs
  48. copy_vfp_regids
  49. vfp_get_reg
  50. vfp_set_reg
  51. num_vfp_regs
  52. copy_vfp_regids
  53. vfp_get_reg
  54. vfp_set_reg
  55. kvm_arm_coproc_get_reg
  56. kvm_arm_coproc_set_reg
  57. num_demux_regs
  58. write_demux_regids
  59. cp15_to_index
  60. copy_reg_to_user
  61. walk_cp15
  62. kvm_arm_num_coproc_regs
  63. kvm_arm_copy_coproc_indices
  64. kvm_coproc_table_init
  65. kvm_reset_coprocs

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   4  * Authors: Rusty Russell <rusty@rustcorp.com.au>
   5  *          Christoffer Dall <c.dall@virtualopensystems.com>
   6  */
   7 
   8 #include <linux/bsearch.h>
   9 #include <linux/mm.h>
  10 #include <linux/kvm_host.h>
  11 #include <linux/uaccess.h>
  12 #include <asm/kvm_arm.h>
  13 #include <asm/kvm_host.h>
  14 #include <asm/kvm_emulate.h>
  15 #include <asm/kvm_coproc.h>
  16 #include <asm/kvm_mmu.h>
  17 #include <asm/cacheflush.h>
  18 #include <asm/cputype.h>
  19 #include <trace/events/kvm.h>
  20 #include <asm/vfp.h>
  21 #include "../vfp/vfpinstr.h"
  22 
  23 #define CREATE_TRACE_POINTS
  24 #include "trace.h"
  25 #include "coproc.h"
  26 
  27 
  28 /******************************************************************************
  29  * Co-processor emulation
  30  *****************************************************************************/
  31 
  32 static bool write_to_read_only(struct kvm_vcpu *vcpu,
  33                                const struct coproc_params *params)
  34 {
  35         WARN_ONCE(1, "CP15 write to read-only register\n");
  36         print_cp_instr(params);
  37         kvm_inject_undefined(vcpu);
  38         return false;
  39 }
  40 
  41 static bool read_from_write_only(struct kvm_vcpu *vcpu,
  42                                  const struct coproc_params *params)
  43 {
  44         WARN_ONCE(1, "CP15 read to write-only register\n");
  45         print_cp_instr(params);
  46         kvm_inject_undefined(vcpu);
  47         return false;
  48 }
  49 
  50 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  51 static u32 cache_levels;
  52 
  53 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  54 #define CSSELR_MAX 12
  55 
  56 /*
  57  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  58  * of cp15 registers can be viewed either as couple of two u32 registers
  59  * or one u64 register. Current u64 register encoding is that least
  60  * significant u32 word is followed by most significant u32 word.
  61  */
  62 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  63                                        const struct coproc_reg *r,
  64                                        u64 val)
  65 {
  66         vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
  67         vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
  68 }
  69 
  70 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  71                                       const struct coproc_reg *r)
  72 {
  73         u64 val;
  74 
  75         val = vcpu_cp15(vcpu, r->reg + 1);
  76         val = val << 32;
  77         val = val | vcpu_cp15(vcpu, r->reg);
  78         return val;
  79 }
  80 
  81 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  82 {
  83         kvm_inject_undefined(vcpu);
  84         return 1;
  85 }
  86 
  87 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  88 {
  89         /*
  90          * We can get here, if the host has been built without VFPv3 support,
  91          * but the guest attempted a floating point operation.
  92          */
  93         kvm_inject_undefined(vcpu);
  94         return 1;
  95 }
  96 
  97 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  98 {
  99         kvm_inject_undefined(vcpu);
 100         return 1;
 101 }
 102 
 103 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 104 {
 105         /*
 106          * Compute guest MPIDR. We build a virtual cluster out of the
 107          * vcpu_id, but we read the 'U' bit from the underlying
 108          * hardware directly.
 109          */
 110         vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
 111                                      ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
 112                                      (vcpu->vcpu_id & 3));
 113 }
 114 
 115 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
 116 static bool access_actlr(struct kvm_vcpu *vcpu,
 117                          const struct coproc_params *p,
 118                          const struct coproc_reg *r)
 119 {
 120         if (p->is_write)
 121                 return ignore_write(vcpu, p);
 122 
 123         *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
 124         return true;
 125 }
 126 
 127 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
 128 static bool access_cbar(struct kvm_vcpu *vcpu,
 129                         const struct coproc_params *p,
 130                         const struct coproc_reg *r)
 131 {
 132         if (p->is_write)
 133                 return write_to_read_only(vcpu, p);
 134         return read_zero(vcpu, p);
 135 }
 136 
 137 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
 138 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
 139                           const struct coproc_params *p,
 140                           const struct coproc_reg *r)
 141 {
 142         if (p->is_write)
 143                 return ignore_write(vcpu, p);
 144 
 145         *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
 146         return true;
 147 }
 148 
 149 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 150 {
 151         u32 l2ctlr, ncores;
 152 
 153         asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
 154         l2ctlr &= ~(3 << 24);
 155         ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
 156         /* How many cores in the current cluster and the next ones */
 157         ncores -= (vcpu->vcpu_id & ~3);
 158         /* Cap it to the maximum number of cores in a single cluster */
 159         ncores = min(ncores, 3U);
 160         l2ctlr |= (ncores & 3) << 24;
 161 
 162         vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
 163 }
 164 
 165 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
 166 {
 167         u32 actlr;
 168 
 169         /* ACTLR contains SMP bit: make sure you create all cpus first! */
 170         asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
 171         /* Make the SMP bit consistent with the guest configuration */
 172         if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
 173                 actlr |= 1U << 6;
 174         else
 175                 actlr &= ~(1U << 6);
 176 
 177         vcpu_cp15(vcpu, c1_ACTLR) = actlr;
 178 }
 179 
 180 /*
 181  * TRM entries: A7:4.3.50, A15:4.3.49
 182  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
 183  */
 184 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
 185                            const struct coproc_params *p,
 186                            const struct coproc_reg *r)
 187 {
 188         if (p->is_write)
 189                 return ignore_write(vcpu, p);
 190 
 191         *vcpu_reg(vcpu, p->Rt1) = 0;
 192         return true;
 193 }
 194 
 195 /*
 196  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 197  */
 198 static bool access_dcsw(struct kvm_vcpu *vcpu,
 199                         const struct coproc_params *p,
 200                         const struct coproc_reg *r)
 201 {
 202         if (!p->is_write)
 203                 return read_from_write_only(vcpu, p);
 204 
 205         kvm_set_way_flush(vcpu);
 206         return true;
 207 }
 208 
 209 /*
 210  * Generic accessor for VM registers. Only called as long as HCR_TVM
 211  * is set.  If the guest enables the MMU, we stop trapping the VM
 212  * sys_regs and leave it in complete control of the caches.
 213  *
 214  * Used by the cpu-specific code.
 215  */
 216 bool access_vm_reg(struct kvm_vcpu *vcpu,
 217                    const struct coproc_params *p,
 218                    const struct coproc_reg *r)
 219 {
 220         bool was_enabled = vcpu_has_cache_enabled(vcpu);
 221 
 222         BUG_ON(!p->is_write);
 223 
 224         vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
 225         if (p->is_64bit)
 226                 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
 227 
 228         kvm_toggle_cache(vcpu, was_enabled);
 229         return true;
 230 }
 231 
 232 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 233                            const struct coproc_params *p,
 234                            const struct coproc_reg *r)
 235 {
 236         u64 reg;
 237         bool g1;
 238 
 239         if (!p->is_write)
 240                 return read_from_write_only(vcpu, p);
 241 
 242         reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
 243         reg |= *vcpu_reg(vcpu, p->Rt1) ;
 244 
 245         /*
 246          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R access generates
 247          * Group0 SGIs only, while ICC_SGI1R can generate either group,
 248          * depending on the SGI configuration. ICC_ASGI1R is effectively
 249          * equivalent to ICC_SGI0R, as there is no "alternative" secure
 250          * group.
 251          */
 252         switch (p->Op1) {
 253         default:                /* Keep GCC quiet */
 254         case 0:                 /* ICC_SGI1R */
 255                 g1 = true;
 256                 break;
 257         case 1:                 /* ICC_ASGI1R */
 258         case 2:                 /* ICC_SGI0R */
 259                 g1 = false;
 260                 break;
 261         }
 262 
 263         vgic_v3_dispatch_sgi(vcpu, reg, g1);
 264 
 265         return true;
 266 }
 267 
 268 static bool access_gic_sre(struct kvm_vcpu *vcpu,
 269                            const struct coproc_params *p,
 270                            const struct coproc_reg *r)
 271 {
 272         if (p->is_write)
 273                 return ignore_write(vcpu, p);
 274 
 275         *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 276 
 277         return true;
 278 }
 279 
 280 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
 281                              const struct coproc_params *p,
 282                              const struct coproc_reg *r)
 283 {
 284         u32 val;
 285 
 286         if (p->is_write) {
 287                 val = *vcpu_reg(vcpu, p->Rt1);
 288                 kvm_arm_timer_write_sysreg(vcpu,
 289                                            TIMER_PTIMER, TIMER_REG_TVAL, val);
 290         } else {
 291                 val = kvm_arm_timer_read_sysreg(vcpu,
 292                                                 TIMER_PTIMER, TIMER_REG_TVAL);
 293                 *vcpu_reg(vcpu, p->Rt1) = val;
 294         }
 295 
 296         return true;
 297 }
 298 
 299 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
 300                             const struct coproc_params *p,
 301                             const struct coproc_reg *r)
 302 {
 303         u32 val;
 304 
 305         if (p->is_write) {
 306                 val = *vcpu_reg(vcpu, p->Rt1);
 307                 kvm_arm_timer_write_sysreg(vcpu,
 308                                            TIMER_PTIMER, TIMER_REG_CTL, val);
 309         } else {
 310                 val = kvm_arm_timer_read_sysreg(vcpu,
 311                                                 TIMER_PTIMER, TIMER_REG_CTL);
 312                 *vcpu_reg(vcpu, p->Rt1) = val;
 313         }
 314 
 315         return true;
 316 }
 317 
 318 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
 319                              const struct coproc_params *p,
 320                              const struct coproc_reg *r)
 321 {
 322         u64 val;
 323 
 324         if (p->is_write) {
 325                 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
 326                 val |= *vcpu_reg(vcpu, p->Rt1);
 327                 kvm_arm_timer_write_sysreg(vcpu,
 328                                            TIMER_PTIMER, TIMER_REG_CVAL, val);
 329         } else {
 330                 val = kvm_arm_timer_read_sysreg(vcpu,
 331                                                 TIMER_PTIMER, TIMER_REG_CVAL);
 332                 *vcpu_reg(vcpu, p->Rt1) = val;
 333                 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
 334         }
 335 
 336         return true;
 337 }
 338 
 339 /*
 340  * We could trap ID_DFR0 and tell the guest we don't support performance
 341  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
 342  * NAKed, so it will read the PMCR anyway.
 343  *
 344  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
 345  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
 346  * all PM registers, which doesn't crash the guest kernel at least.
 347  */
 348 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 349                     const struct coproc_params *p,
 350                     const struct coproc_reg *r)
 351 {
 352         if (p->is_write)
 353                 return ignore_write(vcpu, p);
 354         else
 355                 return read_zero(vcpu, p);
 356 }
 357 
 358 #define access_pmcr trap_raz_wi
 359 #define access_pmcntenset trap_raz_wi
 360 #define access_pmcntenclr trap_raz_wi
 361 #define access_pmovsr trap_raz_wi
 362 #define access_pmselr trap_raz_wi
 363 #define access_pmceid0 trap_raz_wi
 364 #define access_pmceid1 trap_raz_wi
 365 #define access_pmccntr trap_raz_wi
 366 #define access_pmxevtyper trap_raz_wi
 367 #define access_pmxevcntr trap_raz_wi
 368 #define access_pmuserenr trap_raz_wi
 369 #define access_pmintenset trap_raz_wi
 370 #define access_pmintenclr trap_raz_wi
 371 
 372 /* Architected CP15 registers.
 373  * CRn denotes the primary register number, but is copied to the CRm in the
 374  * user space API for 64-bit register access in line with the terminology used
 375  * in the ARM ARM.
 376  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
 377  *            registers preceding 32-bit ones.
 378  */
 379 static const struct coproc_reg cp15_regs[] = {
 380         /* MPIDR: we use VMPIDR for guest access. */
 381         { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
 382                         NULL, reset_mpidr, c0_MPIDR },
 383 
 384         /* CSSELR: swapped by interrupt.S. */
 385         { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
 386                         NULL, reset_unknown, c0_CSSELR },
 387 
 388         /* ACTLR: trapped by HCR.TAC bit. */
 389         { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
 390                         access_actlr, reset_actlr, c1_ACTLR },
 391 
 392         /* CPACR: swapped by interrupt.S. */
 393         { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
 394                         NULL, reset_val, c1_CPACR, 0x00000000 },
 395 
 396         /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
 397         { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
 398         { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
 399                         access_vm_reg, reset_unknown, c2_TTBR0 },
 400         { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
 401                         access_vm_reg, reset_unknown, c2_TTBR1 },
 402         { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
 403                         access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
 404         { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
 405 
 406 
 407         /* DACR: swapped by interrupt.S. */
 408         { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
 409                         access_vm_reg, reset_unknown, c3_DACR },
 410 
 411         /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
 412         { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
 413                         access_vm_reg, reset_unknown, c5_DFSR },
 414         { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
 415                         access_vm_reg, reset_unknown, c5_IFSR },
 416         { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
 417                         access_vm_reg, reset_unknown, c5_ADFSR },
 418         { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
 419                         access_vm_reg, reset_unknown, c5_AIFSR },
 420 
 421         /* DFAR/IFAR: swapped by interrupt.S. */
 422         { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
 423                         access_vm_reg, reset_unknown, c6_DFAR },
 424         { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
 425                         access_vm_reg, reset_unknown, c6_IFAR },
 426 
 427         /* PAR swapped by interrupt.S */
 428         { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
 429 
 430         /*
 431          * DC{C,I,CI}SW operations:
 432          */
 433         { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
 434         { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
 435         { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
 436         /*
 437          * L2CTLR access (guest wants to know #CPUs).
 438          */
 439         { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
 440                         access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
 441         { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
 442 
 443         /*
 444          * Dummy performance monitor implementation.
 445          */
 446         { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
 447         { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
 448         { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
 449         { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
 450         { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
 451         { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
 452         { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
 453         { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
 454         { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
 455         { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
 456         { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
 457         { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
 458         { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
 459 
 460         /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
 461         { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
 462                         access_vm_reg, reset_unknown, c10_PRRR},
 463         { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
 464                         access_vm_reg, reset_unknown, c10_NMRR},
 465 
 466         /* AMAIR0/AMAIR1: swapped by interrupt.S. */
 467         { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
 468                         access_vm_reg, reset_unknown, c10_AMAIR0},
 469         { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
 470                         access_vm_reg, reset_unknown, c10_AMAIR1},
 471 
 472         /* ICC_SGI1R */
 473         { CRm64(12), Op1( 0), is64, access_gic_sgi},
 474 
 475         /* VBAR: swapped by interrupt.S. */
 476         { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
 477                         NULL, reset_val, c12_VBAR, 0x00000000 },
 478 
 479         /* ICC_ASGI1R */
 480         { CRm64(12), Op1( 1), is64, access_gic_sgi},
 481         /* ICC_SGI0R */
 482         { CRm64(12), Op1( 2), is64, access_gic_sgi},
 483         /* ICC_SRE */
 484         { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
 485 
 486         /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
 487         { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
 488                         access_vm_reg, reset_val, c13_CID, 0x00000000 },
 489         { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
 490                         NULL, reset_unknown, c13_TID_URW },
 491         { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
 492                         NULL, reset_unknown, c13_TID_URO },
 493         { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
 494                         NULL, reset_unknown, c13_TID_PRIV },
 495 
 496         /* CNTP */
 497         { CRm64(14), Op1( 2), is64, access_cntp_cval},
 498 
 499         /* CNTKCTL: swapped by interrupt.S. */
 500         { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
 501                         NULL, reset_val, c14_CNTKCTL, 0x00000000 },
 502 
 503         /* CNTP */
 504         { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
 505         { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
 506 
 507         /* The Configuration Base Address Register. */
 508         { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
 509 };
 510 
 511 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
 512 {
 513         unsigned int i;
 514 
 515         for (i = 1; i < n; i++) {
 516                 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
 517                         kvm_err("reg table %p out of order (%d)\n", table, i - 1);
 518                         return 1;
 519                 }
 520         }
 521 
 522         return 0;
 523 }
 524 
 525 /* Target specific emulation tables */
 526 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
 527 
 528 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
 529 {
 530         BUG_ON(check_reg_table(table->table, table->num));
 531         target_tables[table->target] = table;
 532 }
 533 
 534 /* Get specific register table for this target. */
 535 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
 536 {
 537         struct kvm_coproc_target_table *table;
 538 
 539         table = target_tables[target];
 540         *num = table->num;
 541         return table->table;
 542 }
 543 
 544 #define reg_to_match_value(x)                                           \
 545         ({                                                              \
 546                 unsigned long val;                                      \
 547                 val  = (x)->CRn << 11;                                  \
 548                 val |= (x)->CRm << 7;                                   \
 549                 val |= (x)->Op1 << 4;                                   \
 550                 val |= (x)->Op2 << 1;                                   \
 551                 val |= !(x)->is_64bit;                                  \
 552                 val;                                                    \
 553          })
 554 
 555 static int match_reg(const void *key, const void *elt)
 556 {
 557         const unsigned long pval = (unsigned long)key;
 558         const struct coproc_reg *r = elt;
 559 
 560         return pval - reg_to_match_value(r);
 561 }
 562 
 563 static const struct coproc_reg *find_reg(const struct coproc_params *params,
 564                                          const struct coproc_reg table[],
 565                                          unsigned int num)
 566 {
 567         unsigned long pval = reg_to_match_value(params);
 568 
 569         return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
 570 }
 571 
 572 static int emulate_cp15(struct kvm_vcpu *vcpu,
 573                         const struct coproc_params *params)
 574 {
 575         size_t num;
 576         const struct coproc_reg *table, *r;
 577 
 578         trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
 579                                    params->CRm, params->Op2, params->is_write);
 580 
 581         table = get_target_table(vcpu->arch.target, &num);
 582 
 583         /* Search target-specific then generic table. */
 584         r = find_reg(params, table, num);
 585         if (!r)
 586                 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
 587 
 588         if (likely(r)) {
 589                 /* If we don't have an accessor, we should never get here! */
 590                 BUG_ON(!r->access);
 591 
 592                 if (likely(r->access(vcpu, params, r))) {
 593                         /* Skip instruction, since it was emulated */
 594                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 595                 }
 596         } else {
 597                 /* If access function fails, it should complain. */
 598                 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
 599                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
 600                 print_cp_instr(params);
 601                 kvm_inject_undefined(vcpu);
 602         }
 603 
 604         return 1;
 605 }
 606 
 607 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
 608 {
 609         struct coproc_params params;
 610 
 611         params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
 612         params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
 613         params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
 614         params.is_64bit = true;
 615 
 616         params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
 617         params.Op2 = 0;
 618         params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
 619         params.CRm = 0;
 620 
 621         return params;
 622 }
 623 
 624 /**
 625  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
 626  * @vcpu: The VCPU pointer
 627  * @run:  The kvm_run struct
 628  */
 629 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 630 {
 631         struct coproc_params params = decode_64bit_hsr(vcpu);
 632 
 633         return emulate_cp15(vcpu, &params);
 634 }
 635 
 636 /**
 637  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
 638  * @vcpu: The VCPU pointer
 639  * @run:  The kvm_run struct
 640  */
 641 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
 642 {
 643         struct coproc_params params = decode_64bit_hsr(vcpu);
 644 
 645         /* raz_wi cp14 */
 646         trap_raz_wi(vcpu, &params, NULL);
 647 
 648         /* handled */
 649         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 650         return 1;
 651 }
 652 
 653 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
 654                               const struct coproc_reg *table, size_t num,
 655                               unsigned long *bmap)
 656 {
 657         unsigned long i;
 658 
 659         for (i = 0; i < num; i++)
 660                 if (table[i].reset) {
 661                         int reg = table[i].reg;
 662 
 663                         table[i].reset(vcpu, &table[i]);
 664                         if (reg > 0 && reg < NR_CP15_REGS) {
 665                                 set_bit(reg, bmap);
 666                                 if (table[i].is_64bit)
 667                                         set_bit(reg + 1, bmap);
 668                         }
 669                 }
 670 }
 671 
 672 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
 673 {
 674         struct coproc_params params;
 675 
 676         params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
 677         params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
 678         params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
 679         params.is_64bit = false;
 680 
 681         params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
 682         params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
 683         params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
 684         params.Rt2 = 0;
 685 
 686         return params;
 687 }
 688 
 689 /**
 690  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
 691  * @vcpu: The VCPU pointer
 692  * @run:  The kvm_run struct
 693  */
 694 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 695 {
 696         struct coproc_params params = decode_32bit_hsr(vcpu);
 697         return emulate_cp15(vcpu, &params);
 698 }
 699 
 700 /**
 701  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
 702  * @vcpu: The VCPU pointer
 703  * @run:  The kvm_run struct
 704  */
 705 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
 706 {
 707         struct coproc_params params = decode_32bit_hsr(vcpu);
 708 
 709         /* raz_wi cp14 */
 710         trap_raz_wi(vcpu, &params, NULL);
 711 
 712         /* handled */
 713         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
 714         return 1;
 715 }
 716 
 717 /******************************************************************************
 718  * Userspace API
 719  *****************************************************************************/
 720 
 721 static bool index_to_params(u64 id, struct coproc_params *params)
 722 {
 723         switch (id & KVM_REG_SIZE_MASK) {
 724         case KVM_REG_SIZE_U32:
 725                 /* Any unused index bits means it's not valid. */
 726                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 727                            | KVM_REG_ARM_COPROC_MASK
 728                            | KVM_REG_ARM_32_CRN_MASK
 729                            | KVM_REG_ARM_CRM_MASK
 730                            | KVM_REG_ARM_OPC1_MASK
 731                            | KVM_REG_ARM_32_OPC2_MASK))
 732                         return false;
 733 
 734                 params->is_64bit = false;
 735                 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
 736                                >> KVM_REG_ARM_32_CRN_SHIFT);
 737                 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
 738                                >> KVM_REG_ARM_CRM_SHIFT);
 739                 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
 740                                >> KVM_REG_ARM_OPC1_SHIFT);
 741                 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
 742                                >> KVM_REG_ARM_32_OPC2_SHIFT);
 743                 return true;
 744         case KVM_REG_SIZE_U64:
 745                 /* Any unused index bits means it's not valid. */
 746                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
 747                               | KVM_REG_ARM_COPROC_MASK
 748                               | KVM_REG_ARM_CRM_MASK
 749                               | KVM_REG_ARM_OPC1_MASK))
 750                         return false;
 751                 params->is_64bit = true;
 752                 /* CRm to CRn: see cp15_to_index for details */
 753                 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
 754                                >> KVM_REG_ARM_CRM_SHIFT);
 755                 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
 756                                >> KVM_REG_ARM_OPC1_SHIFT);
 757                 params->Op2 = 0;
 758                 params->CRm = 0;
 759                 return true;
 760         default:
 761                 return false;
 762         }
 763 }
 764 
 765 /* Decode an index value, and find the cp15 coproc_reg entry. */
 766 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
 767                                                     u64 id)
 768 {
 769         size_t num;
 770         const struct coproc_reg *table, *r;
 771         struct coproc_params params;
 772 
 773         /* We only do cp15 for now. */
 774         if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
 775                 return NULL;
 776 
 777         if (!index_to_params(id, &params))
 778                 return NULL;
 779 
 780         table = get_target_table(vcpu->arch.target, &num);
 781         r = find_reg(&params, table, num);
 782         if (!r)
 783                 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
 784 
 785         /* Not saved in the cp15 array? */
 786         if (r && !r->reg)
 787                 r = NULL;
 788 
 789         return r;
 790 }
 791 
 792 /*
 793  * These are the invariant cp15 registers: we let the guest see the host
 794  * versions of these, so they're part of the guest state.
 795  *
 796  * A future CPU may provide a mechanism to present different values to
 797  * the guest, or a future kvm may trap them.
 798  */
 799 /* Unfortunately, there's no register-argument for mrc, so generate. */
 800 #define FUNCTION_FOR32(crn, crm, op1, op2, name)                        \
 801         static void get_##name(struct kvm_vcpu *v,                      \
 802                                const struct coproc_reg *r)              \
 803         {                                                               \
 804                 u32 val;                                                \
 805                                                                         \
 806                 asm volatile("mrc p15, " __stringify(op1)               \
 807                              ", %0, c" __stringify(crn)                 \
 808                              ", c" __stringify(crm)                     \
 809                              ", " __stringify(op2) "\n" : "=r" (val));  \
 810                 ((struct coproc_reg *)r)->val = val;                    \
 811         }
 812 
 813 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
 814 FUNCTION_FOR32(0, 0, 0, 1, CTR)
 815 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
 816 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
 817 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
 818 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
 819 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
 820 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
 821 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
 822 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
 823 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
 824 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
 825 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
 826 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
 827 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
 828 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
 829 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
 830 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
 831 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
 832 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
 833 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
 834 
 835 /* ->val is filled in by kvm_invariant_coproc_table_init() */
 836 static struct coproc_reg invariant_cp15[] = {
 837         { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
 838         { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
 839         { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
 840         { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
 841         { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
 842 
 843         { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
 844         { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
 845 
 846         { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
 847         { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
 848         { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
 849         { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
 850         { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
 851         { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
 852         { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
 853         { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
 854 
 855         { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
 856         { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
 857         { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
 858         { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
 859         { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
 860         { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
 861 };
 862 
 863 /*
 864  * Reads a register value from a userspace address to a kernel
 865  * variable. Make sure that register size matches sizeof(*__val).
 866  */
 867 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
 868 {
 869         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
 870                 return -EFAULT;
 871         return 0;
 872 }
 873 
 874 /*
 875  * Writes a register value to a userspace address from a kernel variable.
 876  * Make sure that register size matches sizeof(*__val).
 877  */
 878 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
 879 {
 880         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
 881                 return -EFAULT;
 882         return 0;
 883 }
 884 
 885 static int get_invariant_cp15(u64 id, void __user *uaddr)
 886 {
 887         struct coproc_params params;
 888         const struct coproc_reg *r;
 889         int ret;
 890 
 891         if (!index_to_params(id, &params))
 892                 return -ENOENT;
 893 
 894         r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
 895         if (!r)
 896                 return -ENOENT;
 897 
 898         ret = -ENOENT;
 899         if (KVM_REG_SIZE(id) == 4) {
 900                 u32 val = r->val;
 901 
 902                 ret = reg_to_user(uaddr, &val, id);
 903         } else if (KVM_REG_SIZE(id) == 8) {
 904                 ret = reg_to_user(uaddr, &r->val, id);
 905         }
 906         return ret;
 907 }
 908 
 909 static int set_invariant_cp15(u64 id, void __user *uaddr)
 910 {
 911         struct coproc_params params;
 912         const struct coproc_reg *r;
 913         int err;
 914         u64 val;
 915 
 916         if (!index_to_params(id, &params))
 917                 return -ENOENT;
 918         r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
 919         if (!r)
 920                 return -ENOENT;
 921 
 922         err = -ENOENT;
 923         if (KVM_REG_SIZE(id) == 4) {
 924                 u32 val32;
 925 
 926                 err = reg_from_user(&val32, uaddr, id);
 927                 if (!err)
 928                         val = val32;
 929         } else if (KVM_REG_SIZE(id) == 8) {
 930                 err = reg_from_user(&val, uaddr, id);
 931         }
 932         if (err)
 933                 return err;
 934 
 935         /* This is what we mean by invariant: you can't change it. */
 936         if (r->val != val)
 937                 return -EINVAL;
 938 
 939         return 0;
 940 }
 941 
 942 static bool is_valid_cache(u32 val)
 943 {
 944         u32 level, ctype;
 945 
 946         if (val >= CSSELR_MAX)
 947                 return false;
 948 
 949         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
 950         level = (val >> 1);
 951         ctype = (cache_levels >> (level * 3)) & 7;
 952 
 953         switch (ctype) {
 954         case 0: /* No cache */
 955                 return false;
 956         case 1: /* Instruction cache only */
 957                 return (val & 1);
 958         case 2: /* Data cache only */
 959         case 4: /* Unified cache */
 960                 return !(val & 1);
 961         case 3: /* Separate instruction and data caches */
 962                 return true;
 963         default: /* Reserved: we can't know instruction or data. */
 964                 return false;
 965         }
 966 }
 967 
 968 /* Which cache CCSIDR represents depends on CSSELR value. */
 969 static u32 get_ccsidr(u32 csselr)
 970 {
 971         u32 ccsidr;
 972 
 973         /* Make sure noone else changes CSSELR during this! */
 974         local_irq_disable();
 975         /* Put value into CSSELR */
 976         asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
 977         isb();
 978         /* Read result out of CCSIDR */
 979         asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
 980         local_irq_enable();
 981 
 982         return ccsidr;
 983 }
 984 
 985 static int demux_c15_get(u64 id, void __user *uaddr)
 986 {
 987         u32 val;
 988         u32 __user *uval = uaddr;
 989 
 990         /* Fail if we have unknown bits set. */
 991         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
 992                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
 993                 return -ENOENT;
 994 
 995         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
 996         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
 997                 if (KVM_REG_SIZE(id) != 4)
 998                         return -ENOENT;
 999                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1000                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1001                 if (!is_valid_cache(val))
1002                         return -ENOENT;
1003 
1004                 return put_user(get_ccsidr(val), uval);
1005         default:
1006                 return -ENOENT;
1007         }
1008 }
1009 
1010 static int demux_c15_set(u64 id, void __user *uaddr)
1011 {
1012         u32 val, newval;
1013         u32 __user *uval = uaddr;
1014 
1015         /* Fail if we have unknown bits set. */
1016         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1017                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1018                 return -ENOENT;
1019 
1020         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1021         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1022                 if (KVM_REG_SIZE(id) != 4)
1023                         return -ENOENT;
1024                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1025                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1026                 if (!is_valid_cache(val))
1027                         return -ENOENT;
1028 
1029                 if (get_user(newval, uval))
1030                         return -EFAULT;
1031 
1032                 /* This is also invariant: you can't change it. */
1033                 if (newval != get_ccsidr(val))
1034                         return -EINVAL;
1035                 return 0;
1036         default:
1037                 return -ENOENT;
1038         }
1039 }
1040 
1041 #ifdef CONFIG_VFPv3
1042 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1043                                    KVM_REG_ARM_VFP_FPSCR,
1044                                    KVM_REG_ARM_VFP_FPINST,
1045                                    KVM_REG_ARM_VFP_FPINST2,
1046                                    KVM_REG_ARM_VFP_MVFR0,
1047                                    KVM_REG_ARM_VFP_MVFR1,
1048                                    KVM_REG_ARM_VFP_FPSID };
1049 
1050 static unsigned int num_fp_regs(void)
1051 {
1052         if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1053                 return 32;
1054         else
1055                 return 16;
1056 }
1057 
1058 static unsigned int num_vfp_regs(void)
1059 {
1060         /* Normal FP regs + control regs. */
1061         return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1062 }
1063 
1064 static int copy_vfp_regids(u64 __user *uindices)
1065 {
1066         unsigned int i;
1067         const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1068         const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1069 
1070         for (i = 0; i < num_fp_regs(); i++) {
1071                 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1072                              uindices))
1073                         return -EFAULT;
1074                 uindices++;
1075         }
1076 
1077         for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1078                 if (put_user(u32reg | vfp_sysregs[i], uindices))
1079                         return -EFAULT;
1080                 uindices++;
1081         }
1082 
1083         return num_vfp_regs();
1084 }
1085 
1086 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1087 {
1088         u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1089         u32 val;
1090 
1091         /* Fail if we have unknown bits set. */
1092         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1093                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1094                 return -ENOENT;
1095 
1096         if (vfpid < num_fp_regs()) {
1097                 if (KVM_REG_SIZE(id) != 8)
1098                         return -ENOENT;
1099                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1100                                    id);
1101         }
1102 
1103         /* FP control registers are all 32 bit. */
1104         if (KVM_REG_SIZE(id) != 4)
1105                 return -ENOENT;
1106 
1107         switch (vfpid) {
1108         case KVM_REG_ARM_VFP_FPEXC:
1109                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1110         case KVM_REG_ARM_VFP_FPSCR:
1111                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1112         case KVM_REG_ARM_VFP_FPINST:
1113                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1114         case KVM_REG_ARM_VFP_FPINST2:
1115                 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1116         case KVM_REG_ARM_VFP_MVFR0:
1117                 val = fmrx(MVFR0);
1118                 return reg_to_user(uaddr, &val, id);
1119         case KVM_REG_ARM_VFP_MVFR1:
1120                 val = fmrx(MVFR1);
1121                 return reg_to_user(uaddr, &val, id);
1122         case KVM_REG_ARM_VFP_FPSID:
1123                 val = fmrx(FPSID);
1124                 return reg_to_user(uaddr, &val, id);
1125         default:
1126                 return -ENOENT;
1127         }
1128 }
1129 
1130 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1131 {
1132         u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1133         u32 val;
1134 
1135         /* Fail if we have unknown bits set. */
1136         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1137                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1138                 return -ENOENT;
1139 
1140         if (vfpid < num_fp_regs()) {
1141                 if (KVM_REG_SIZE(id) != 8)
1142                         return -ENOENT;
1143                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1144                                      uaddr, id);
1145         }
1146 
1147         /* FP control registers are all 32 bit. */
1148         if (KVM_REG_SIZE(id) != 4)
1149                 return -ENOENT;
1150 
1151         switch (vfpid) {
1152         case KVM_REG_ARM_VFP_FPEXC:
1153                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1154         case KVM_REG_ARM_VFP_FPSCR:
1155                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1156         case KVM_REG_ARM_VFP_FPINST:
1157                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1158         case KVM_REG_ARM_VFP_FPINST2:
1159                 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1160         /* These are invariant. */
1161         case KVM_REG_ARM_VFP_MVFR0:
1162                 if (reg_from_user(&val, uaddr, id))
1163                         return -EFAULT;
1164                 if (val != fmrx(MVFR0))
1165                         return -EINVAL;
1166                 return 0;
1167         case KVM_REG_ARM_VFP_MVFR1:
1168                 if (reg_from_user(&val, uaddr, id))
1169                         return -EFAULT;
1170                 if (val != fmrx(MVFR1))
1171                         return -EINVAL;
1172                 return 0;
1173         case KVM_REG_ARM_VFP_FPSID:
1174                 if (reg_from_user(&val, uaddr, id))
1175                         return -EFAULT;
1176                 if (val != fmrx(FPSID))
1177                         return -EINVAL;
1178                 return 0;
1179         default:
1180                 return -ENOENT;
1181         }
1182 }
1183 #else /* !CONFIG_VFPv3 */
1184 static unsigned int num_vfp_regs(void)
1185 {
1186         return 0;
1187 }
1188 
1189 static int copy_vfp_regids(u64 __user *uindices)
1190 {
1191         return 0;
1192 }
1193 
1194 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1195 {
1196         return -ENOENT;
1197 }
1198 
1199 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1200 {
1201         return -ENOENT;
1202 }
1203 #endif /* !CONFIG_VFPv3 */
1204 
1205 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1206 {
1207         const struct coproc_reg *r;
1208         void __user *uaddr = (void __user *)(long)reg->addr;
1209         int ret;
1210 
1211         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1212                 return demux_c15_get(reg->id, uaddr);
1213 
1214         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1215                 return vfp_get_reg(vcpu, reg->id, uaddr);
1216 
1217         r = index_to_coproc_reg(vcpu, reg->id);
1218         if (!r)
1219                 return get_invariant_cp15(reg->id, uaddr);
1220 
1221         ret = -ENOENT;
1222         if (KVM_REG_SIZE(reg->id) == 8) {
1223                 u64 val;
1224 
1225                 val = vcpu_cp15_reg64_get(vcpu, r);
1226                 ret = reg_to_user(uaddr, &val, reg->id);
1227         } else if (KVM_REG_SIZE(reg->id) == 4) {
1228                 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1229         }
1230 
1231         return ret;
1232 }
1233 
1234 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1235 {
1236         const struct coproc_reg *r;
1237         void __user *uaddr = (void __user *)(long)reg->addr;
1238         int ret;
1239 
1240         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1241                 return demux_c15_set(reg->id, uaddr);
1242 
1243         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1244                 return vfp_set_reg(vcpu, reg->id, uaddr);
1245 
1246         r = index_to_coproc_reg(vcpu, reg->id);
1247         if (!r)
1248                 return set_invariant_cp15(reg->id, uaddr);
1249 
1250         ret = -ENOENT;
1251         if (KVM_REG_SIZE(reg->id) == 8) {
1252                 u64 val;
1253 
1254                 ret = reg_from_user(&val, uaddr, reg->id);
1255                 if (!ret)
1256                         vcpu_cp15_reg64_set(vcpu, r, val);
1257         } else if (KVM_REG_SIZE(reg->id) == 4) {
1258                 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1259         }
1260 
1261         return ret;
1262 }
1263 
1264 static unsigned int num_demux_regs(void)
1265 {
1266         unsigned int i, count = 0;
1267 
1268         for (i = 0; i < CSSELR_MAX; i++)
1269                 if (is_valid_cache(i))
1270                         count++;
1271 
1272         return count;
1273 }
1274 
1275 static int write_demux_regids(u64 __user *uindices)
1276 {
1277         u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1278         unsigned int i;
1279 
1280         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1281         for (i = 0; i < CSSELR_MAX; i++) {
1282                 if (!is_valid_cache(i))
1283                         continue;
1284                 if (put_user(val | i, uindices))
1285                         return -EFAULT;
1286                 uindices++;
1287         }
1288         return 0;
1289 }
1290 
1291 static u64 cp15_to_index(const struct coproc_reg *reg)
1292 {
1293         u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1294         if (reg->is_64bit) {
1295                 val |= KVM_REG_SIZE_U64;
1296                 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1297                 /*
1298                  * CRn always denotes the primary coproc. reg. nr. for the
1299                  * in-kernel representation, but the user space API uses the
1300                  * CRm for the encoding, because it is modelled after the
1301                  * MRRC/MCRR instructions: see the ARM ARM rev. c page
1302                  * B3-1445
1303                  */
1304                 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1305         } else {
1306                 val |= KVM_REG_SIZE_U32;
1307                 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1308                 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1309                 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1310                 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1311         }
1312         return val;
1313 }
1314 
1315 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1316 {
1317         if (!*uind)
1318                 return true;
1319 
1320         if (put_user(cp15_to_index(reg), *uind))
1321                 return false;
1322 
1323         (*uind)++;
1324         return true;
1325 }
1326 
1327 /* Assumed ordered tables, see kvm_coproc_table_init. */
1328 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1329 {
1330         const struct coproc_reg *i1, *i2, *end1, *end2;
1331         unsigned int total = 0;
1332         size_t num;
1333 
1334         /* We check for duplicates here, to allow arch-specific overrides. */
1335         i1 = get_target_table(vcpu->arch.target, &num);
1336         end1 = i1 + num;
1337         i2 = cp15_regs;
1338         end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1339 
1340         BUG_ON(i1 == end1 || i2 == end2);
1341 
1342         /* Walk carefully, as both tables may refer to the same register. */
1343         while (i1 || i2) {
1344                 int cmp = cmp_reg(i1, i2);
1345                 /* target-specific overrides generic entry. */
1346                 if (cmp <= 0) {
1347                         /* Ignore registers we trap but don't save. */
1348                         if (i1->reg) {
1349                                 if (!copy_reg_to_user(i1, &uind))
1350                                         return -EFAULT;
1351                                 total++;
1352                         }
1353                 } else {
1354                         /* Ignore registers we trap but don't save. */
1355                         if (i2->reg) {
1356                                 if (!copy_reg_to_user(i2, &uind))
1357                                         return -EFAULT;
1358                                 total++;
1359                         }
1360                 }
1361 
1362                 if (cmp <= 0 && ++i1 == end1)
1363                         i1 = NULL;
1364                 if (cmp >= 0 && ++i2 == end2)
1365                         i2 = NULL;
1366         }
1367         return total;
1368 }
1369 
1370 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1371 {
1372         return ARRAY_SIZE(invariant_cp15)
1373                 + num_demux_regs()
1374                 + num_vfp_regs()
1375                 + walk_cp15(vcpu, (u64 __user *)NULL);
1376 }
1377 
1378 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1379 {
1380         unsigned int i;
1381         int err;
1382 
1383         /* Then give them all the invariant registers' indices. */
1384         for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1385                 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1386                         return -EFAULT;
1387                 uindices++;
1388         }
1389 
1390         err = walk_cp15(vcpu, uindices);
1391         if (err < 0)
1392                 return err;
1393         uindices += err;
1394 
1395         err = copy_vfp_regids(uindices);
1396         if (err < 0)
1397                 return err;
1398         uindices += err;
1399 
1400         return write_demux_regids(uindices);
1401 }
1402 
1403 void kvm_coproc_table_init(void)
1404 {
1405         unsigned int i;
1406 
1407         /* Make sure tables are unique and in order. */
1408         BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1409         BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1410 
1411         /* We abuse the reset function to overwrite the table itself. */
1412         for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1413                 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1414 
1415         /*
1416          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1417          *
1418          *   If software reads the Cache Type fields from Ctype1
1419          *   upwards, once it has seen a value of 0b000, no caches
1420          *   exist at further-out levels of the hierarchy. So, for
1421          *   example, if Ctype3 is the first Cache Type field with a
1422          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1423          *   ignored.
1424          */
1425         asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1426         for (i = 0; i < 7; i++)
1427                 if (((cache_levels >> (i*3)) & 7) == 0)
1428                         break;
1429         /* Clear all higher bits. */
1430         cache_levels &= (1 << (i*3))-1;
1431 }
1432 
1433 /**
1434  * kvm_reset_coprocs - sets cp15 registers to reset value
1435  * @vcpu: The VCPU pointer
1436  *
1437  * This function finds the right table above and sets the registers on the
1438  * virtual CPU struct to their architecturally defined reset values.
1439  */
1440 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1441 {
1442         size_t num;
1443         const struct coproc_reg *table;
1444         DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1445 
1446         /* Generic chip reset first (so target could override). */
1447         reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1448 
1449         table = get_target_table(vcpu->arch.target, &num);
1450         reset_coproc_regs(vcpu, table, num, bmap);
1451 
1452         for (num = 1; num < NR_CP15_REGS; num++)
1453                 WARN(!test_bit(num, bmap),
1454                      "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455 }

/* [<][>][^][v][top][bottom][index][help] */