This source file includes following definitions.
- write_to_read_only
- read_from_write_only
- vcpu_cp15_reg64_set
- vcpu_cp15_reg64_get
- kvm_handle_cp10_id
- kvm_handle_cp_0_13_access
- kvm_handle_cp14_load_store
- reset_mpidr
- access_actlr
- access_cbar
- access_l2ctlr
- reset_l2ctlr
- reset_actlr
- access_l2ectlr
- access_dcsw
- access_vm_reg
- access_gic_sgi
- access_gic_sre
- access_cntp_tval
- access_cntp_ctl
- access_cntp_cval
- trap_raz_wi
- check_reg_table
- kvm_register_target_coproc_table
- get_target_table
- match_reg
- find_reg
- emulate_cp15
- decode_64bit_hsr
- kvm_handle_cp15_64
- kvm_handle_cp14_64
- reset_coproc_regs
- decode_32bit_hsr
- kvm_handle_cp15_32
- kvm_handle_cp14_32
- index_to_params
- index_to_coproc_reg
- reg_from_user
- reg_to_user
- get_invariant_cp15
- set_invariant_cp15
- is_valid_cache
- get_ccsidr
- demux_c15_get
- demux_c15_set
- num_fp_regs
- num_vfp_regs
- copy_vfp_regids
- vfp_get_reg
- vfp_set_reg
- num_vfp_regs
- copy_vfp_regids
- vfp_get_reg
- vfp_set_reg
- kvm_arm_coproc_get_reg
- kvm_arm_coproc_set_reg
- num_demux_regs
- write_demux_regids
- cp15_to_index
- copy_reg_to_user
- walk_cp15
- kvm_arm_num_coproc_regs
- kvm_arm_copy_coproc_indices
- kvm_coproc_table_init
- kvm_reset_coprocs
1
2
3
4
5
6
7
8 #include <linux/bsearch.h>
9 #include <linux/mm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/uaccess.h>
12 #include <asm/kvm_arm.h>
13 #include <asm/kvm_host.h>
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_coproc.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cputype.h>
19 #include <trace/events/kvm.h>
20 #include <asm/vfp.h>
21 #include "../vfp/vfpinstr.h"
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 #include "coproc.h"
26
27
28
29
30
31
32 static bool write_to_read_only(struct kvm_vcpu *vcpu,
33 const struct coproc_params *params)
34 {
35 WARN_ONCE(1, "CP15 write to read-only register\n");
36 print_cp_instr(params);
37 kvm_inject_undefined(vcpu);
38 return false;
39 }
40
41 static bool read_from_write_only(struct kvm_vcpu *vcpu,
42 const struct coproc_params *params)
43 {
44 WARN_ONCE(1, "CP15 read to write-only register\n");
45 print_cp_instr(params);
46 kvm_inject_undefined(vcpu);
47 return false;
48 }
49
50
51 static u32 cache_levels;
52
53
54 #define CSSELR_MAX 12
55
56
57
58
59
60
61
62 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
63 const struct coproc_reg *r,
64 u64 val)
65 {
66 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
67 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
68 }
69
70 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
71 const struct coproc_reg *r)
72 {
73 u64 val;
74
75 val = vcpu_cp15(vcpu, r->reg + 1);
76 val = val << 32;
77 val = val | vcpu_cp15(vcpu, r->reg);
78 return val;
79 }
80
81 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
82 {
83 kvm_inject_undefined(vcpu);
84 return 1;
85 }
86
87 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
88 {
89
90
91
92
93 kvm_inject_undefined(vcpu);
94 return 1;
95 }
96
97 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
98 {
99 kvm_inject_undefined(vcpu);
100 return 1;
101 }
102
103 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
104 {
105
106
107
108
109
110 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
111 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
112 (vcpu->vcpu_id & 3));
113 }
114
115
116 static bool access_actlr(struct kvm_vcpu *vcpu,
117 const struct coproc_params *p,
118 const struct coproc_reg *r)
119 {
120 if (p->is_write)
121 return ignore_write(vcpu, p);
122
123 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
124 return true;
125 }
126
127
128 static bool access_cbar(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131 {
132 if (p->is_write)
133 return write_to_read_only(vcpu, p);
134 return read_zero(vcpu, p);
135 }
136
137
138 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
139 const struct coproc_params *p,
140 const struct coproc_reg *r)
141 {
142 if (p->is_write)
143 return ignore_write(vcpu, p);
144
145 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
146 return true;
147 }
148
149 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
150 {
151 u32 l2ctlr, ncores;
152
153 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
154 l2ctlr &= ~(3 << 24);
155 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
156
157 ncores -= (vcpu->vcpu_id & ~3);
158
159 ncores = min(ncores, 3U);
160 l2ctlr |= (ncores & 3) << 24;
161
162 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
163 }
164
165 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
166 {
167 u32 actlr;
168
169
170 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
171
172 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
173 actlr |= 1U << 6;
174 else
175 actlr &= ~(1U << 6);
176
177 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
178 }
179
180
181
182
183
184 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
185 const struct coproc_params *p,
186 const struct coproc_reg *r)
187 {
188 if (p->is_write)
189 return ignore_write(vcpu, p);
190
191 *vcpu_reg(vcpu, p->Rt1) = 0;
192 return true;
193 }
194
195
196
197
198 static bool access_dcsw(struct kvm_vcpu *vcpu,
199 const struct coproc_params *p,
200 const struct coproc_reg *r)
201 {
202 if (!p->is_write)
203 return read_from_write_only(vcpu, p);
204
205 kvm_set_way_flush(vcpu);
206 return true;
207 }
208
209
210
211
212
213
214
215
216 bool access_vm_reg(struct kvm_vcpu *vcpu,
217 const struct coproc_params *p,
218 const struct coproc_reg *r)
219 {
220 bool was_enabled = vcpu_has_cache_enabled(vcpu);
221
222 BUG_ON(!p->is_write);
223
224 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
225 if (p->is_64bit)
226 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
227
228 kvm_toggle_cache(vcpu, was_enabled);
229 return true;
230 }
231
232 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
233 const struct coproc_params *p,
234 const struct coproc_reg *r)
235 {
236 u64 reg;
237 bool g1;
238
239 if (!p->is_write)
240 return read_from_write_only(vcpu, p);
241
242 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
243 reg |= *vcpu_reg(vcpu, p->Rt1) ;
244
245
246
247
248
249
250
251
252 switch (p->Op1) {
253 default:
254 case 0:
255 g1 = true;
256 break;
257 case 1:
258 case 2:
259 g1 = false;
260 break;
261 }
262
263 vgic_v3_dispatch_sgi(vcpu, reg, g1);
264
265 return true;
266 }
267
268 static bool access_gic_sre(struct kvm_vcpu *vcpu,
269 const struct coproc_params *p,
270 const struct coproc_reg *r)
271 {
272 if (p->is_write)
273 return ignore_write(vcpu, p);
274
275 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
276
277 return true;
278 }
279
280 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
281 const struct coproc_params *p,
282 const struct coproc_reg *r)
283 {
284 u32 val;
285
286 if (p->is_write) {
287 val = *vcpu_reg(vcpu, p->Rt1);
288 kvm_arm_timer_write_sysreg(vcpu,
289 TIMER_PTIMER, TIMER_REG_TVAL, val);
290 } else {
291 val = kvm_arm_timer_read_sysreg(vcpu,
292 TIMER_PTIMER, TIMER_REG_TVAL);
293 *vcpu_reg(vcpu, p->Rt1) = val;
294 }
295
296 return true;
297 }
298
299 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
300 const struct coproc_params *p,
301 const struct coproc_reg *r)
302 {
303 u32 val;
304
305 if (p->is_write) {
306 val = *vcpu_reg(vcpu, p->Rt1);
307 kvm_arm_timer_write_sysreg(vcpu,
308 TIMER_PTIMER, TIMER_REG_CTL, val);
309 } else {
310 val = kvm_arm_timer_read_sysreg(vcpu,
311 TIMER_PTIMER, TIMER_REG_CTL);
312 *vcpu_reg(vcpu, p->Rt1) = val;
313 }
314
315 return true;
316 }
317
318 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
319 const struct coproc_params *p,
320 const struct coproc_reg *r)
321 {
322 u64 val;
323
324 if (p->is_write) {
325 val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
326 val |= *vcpu_reg(vcpu, p->Rt1);
327 kvm_arm_timer_write_sysreg(vcpu,
328 TIMER_PTIMER, TIMER_REG_CVAL, val);
329 } else {
330 val = kvm_arm_timer_read_sysreg(vcpu,
331 TIMER_PTIMER, TIMER_REG_CVAL);
332 *vcpu_reg(vcpu, p->Rt1) = val;
333 *vcpu_reg(vcpu, p->Rt2) = val >> 32;
334 }
335
336 return true;
337 }
338
339
340
341
342
343
344
345
346
347
348 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
349 const struct coproc_params *p,
350 const struct coproc_reg *r)
351 {
352 if (p->is_write)
353 return ignore_write(vcpu, p);
354 else
355 return read_zero(vcpu, p);
356 }
357
358 #define access_pmcr trap_raz_wi
359 #define access_pmcntenset trap_raz_wi
360 #define access_pmcntenclr trap_raz_wi
361 #define access_pmovsr trap_raz_wi
362 #define access_pmselr trap_raz_wi
363 #define access_pmceid0 trap_raz_wi
364 #define access_pmceid1 trap_raz_wi
365 #define access_pmccntr trap_raz_wi
366 #define access_pmxevtyper trap_raz_wi
367 #define access_pmxevcntr trap_raz_wi
368 #define access_pmuserenr trap_raz_wi
369 #define access_pmintenset trap_raz_wi
370 #define access_pmintenclr trap_raz_wi
371
372
373
374
375
376
377
378
379 static const struct coproc_reg cp15_regs[] = {
380
381 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
382 NULL, reset_mpidr, c0_MPIDR },
383
384
385 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
386 NULL, reset_unknown, c0_CSSELR },
387
388
389 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
390 access_actlr, reset_actlr, c1_ACTLR },
391
392
393 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
394 NULL, reset_val, c1_CPACR, 0x00000000 },
395
396
397 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
398 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
399 access_vm_reg, reset_unknown, c2_TTBR0 },
400 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
401 access_vm_reg, reset_unknown, c2_TTBR1 },
402 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
403 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
404 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
405
406
407
408 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
409 access_vm_reg, reset_unknown, c3_DACR },
410
411
412 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
413 access_vm_reg, reset_unknown, c5_DFSR },
414 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
415 access_vm_reg, reset_unknown, c5_IFSR },
416 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
417 access_vm_reg, reset_unknown, c5_ADFSR },
418 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
419 access_vm_reg, reset_unknown, c5_AIFSR },
420
421
422 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
423 access_vm_reg, reset_unknown, c6_DFAR },
424 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
425 access_vm_reg, reset_unknown, c6_IFAR },
426
427
428 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
429
430
431
432
433 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
434 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
435 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
436
437
438
439 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
440 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
441 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
442
443
444
445
446 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
447 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
448 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
449 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
450 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
451 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
452 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
453 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
454 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
455 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
456 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
457 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
458 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
459
460
461 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
462 access_vm_reg, reset_unknown, c10_PRRR},
463 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
464 access_vm_reg, reset_unknown, c10_NMRR},
465
466
467 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
468 access_vm_reg, reset_unknown, c10_AMAIR0},
469 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
470 access_vm_reg, reset_unknown, c10_AMAIR1},
471
472
473 { CRm64(12), Op1( 0), is64, access_gic_sgi},
474
475
476 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
477 NULL, reset_val, c12_VBAR, 0x00000000 },
478
479
480 { CRm64(12), Op1( 1), is64, access_gic_sgi},
481
482 { CRm64(12), Op1( 2), is64, access_gic_sgi},
483
484 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
485
486
487 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
488 access_vm_reg, reset_val, c13_CID, 0x00000000 },
489 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
490 NULL, reset_unknown, c13_TID_URW },
491 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
492 NULL, reset_unknown, c13_TID_URO },
493 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
494 NULL, reset_unknown, c13_TID_PRIV },
495
496
497 { CRm64(14), Op1( 2), is64, access_cntp_cval},
498
499
500 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
501 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
502
503
504 { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
505 { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
506
507
508 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
509 };
510
511 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
512 {
513 unsigned int i;
514
515 for (i = 1; i < n; i++) {
516 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
517 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
518 return 1;
519 }
520 }
521
522 return 0;
523 }
524
525
526 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
527
528 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
529 {
530 BUG_ON(check_reg_table(table->table, table->num));
531 target_tables[table->target] = table;
532 }
533
534
535 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
536 {
537 struct kvm_coproc_target_table *table;
538
539 table = target_tables[target];
540 *num = table->num;
541 return table->table;
542 }
543
544 #define reg_to_match_value(x) \
545 ({ \
546 unsigned long val; \
547 val = (x)->CRn << 11; \
548 val |= (x)->CRm << 7; \
549 val |= (x)->Op1 << 4; \
550 val |= (x)->Op2 << 1; \
551 val |= !(x)->is_64bit; \
552 val; \
553 })
554
555 static int match_reg(const void *key, const void *elt)
556 {
557 const unsigned long pval = (unsigned long)key;
558 const struct coproc_reg *r = elt;
559
560 return pval - reg_to_match_value(r);
561 }
562
563 static const struct coproc_reg *find_reg(const struct coproc_params *params,
564 const struct coproc_reg table[],
565 unsigned int num)
566 {
567 unsigned long pval = reg_to_match_value(params);
568
569 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
570 }
571
572 static int emulate_cp15(struct kvm_vcpu *vcpu,
573 const struct coproc_params *params)
574 {
575 size_t num;
576 const struct coproc_reg *table, *r;
577
578 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
579 params->CRm, params->Op2, params->is_write);
580
581 table = get_target_table(vcpu->arch.target, &num);
582
583
584 r = find_reg(params, table, num);
585 if (!r)
586 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
587
588 if (likely(r)) {
589
590 BUG_ON(!r->access);
591
592 if (likely(r->access(vcpu, params, r))) {
593
594 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
595 }
596 } else {
597
598 kvm_err("Unsupported guest CP15 access at: %08lx [%08lx]\n",
599 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
600 print_cp_instr(params);
601 kvm_inject_undefined(vcpu);
602 }
603
604 return 1;
605 }
606
607 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
608 {
609 struct coproc_params params;
610
611 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
612 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
613 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
614 params.is_64bit = true;
615
616 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
617 params.Op2 = 0;
618 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
619 params.CRm = 0;
620
621 return params;
622 }
623
624
625
626
627
628
629 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
630 {
631 struct coproc_params params = decode_64bit_hsr(vcpu);
632
633 return emulate_cp15(vcpu, ¶ms);
634 }
635
636
637
638
639
640
641 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
642 {
643 struct coproc_params params = decode_64bit_hsr(vcpu);
644
645
646 trap_raz_wi(vcpu, ¶ms, NULL);
647
648
649 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
650 return 1;
651 }
652
653 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
654 const struct coproc_reg *table, size_t num,
655 unsigned long *bmap)
656 {
657 unsigned long i;
658
659 for (i = 0; i < num; i++)
660 if (table[i].reset) {
661 int reg = table[i].reg;
662
663 table[i].reset(vcpu, &table[i]);
664 if (reg > 0 && reg < NR_CP15_REGS) {
665 set_bit(reg, bmap);
666 if (table[i].is_64bit)
667 set_bit(reg + 1, bmap);
668 }
669 }
670 }
671
672 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
673 {
674 struct coproc_params params;
675
676 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
677 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
678 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
679 params.is_64bit = false;
680
681 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
682 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
683 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
684 params.Rt2 = 0;
685
686 return params;
687 }
688
689
690
691
692
693
694 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
695 {
696 struct coproc_params params = decode_32bit_hsr(vcpu);
697 return emulate_cp15(vcpu, ¶ms);
698 }
699
700
701
702
703
704
705 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
706 {
707 struct coproc_params params = decode_32bit_hsr(vcpu);
708
709
710 trap_raz_wi(vcpu, ¶ms, NULL);
711
712
713 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
714 return 1;
715 }
716
717
718
719
720
721 static bool index_to_params(u64 id, struct coproc_params *params)
722 {
723 switch (id & KVM_REG_SIZE_MASK) {
724 case KVM_REG_SIZE_U32:
725
726 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
727 | KVM_REG_ARM_COPROC_MASK
728 | KVM_REG_ARM_32_CRN_MASK
729 | KVM_REG_ARM_CRM_MASK
730 | KVM_REG_ARM_OPC1_MASK
731 | KVM_REG_ARM_32_OPC2_MASK))
732 return false;
733
734 params->is_64bit = false;
735 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
736 >> KVM_REG_ARM_32_CRN_SHIFT);
737 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
738 >> KVM_REG_ARM_CRM_SHIFT);
739 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
740 >> KVM_REG_ARM_OPC1_SHIFT);
741 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
742 >> KVM_REG_ARM_32_OPC2_SHIFT);
743 return true;
744 case KVM_REG_SIZE_U64:
745
746 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
747 | KVM_REG_ARM_COPROC_MASK
748 | KVM_REG_ARM_CRM_MASK
749 | KVM_REG_ARM_OPC1_MASK))
750 return false;
751 params->is_64bit = true;
752
753 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
754 >> KVM_REG_ARM_CRM_SHIFT);
755 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
756 >> KVM_REG_ARM_OPC1_SHIFT);
757 params->Op2 = 0;
758 params->CRm = 0;
759 return true;
760 default:
761 return false;
762 }
763 }
764
765
766 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
767 u64 id)
768 {
769 size_t num;
770 const struct coproc_reg *table, *r;
771 struct coproc_params params;
772
773
774 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
775 return NULL;
776
777 if (!index_to_params(id, ¶ms))
778 return NULL;
779
780 table = get_target_table(vcpu->arch.target, &num);
781 r = find_reg(¶ms, table, num);
782 if (!r)
783 r = find_reg(¶ms, cp15_regs, ARRAY_SIZE(cp15_regs));
784
785
786 if (r && !r->reg)
787 r = NULL;
788
789 return r;
790 }
791
792
793
794
795
796
797
798
799
800 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
801 static void get_##name(struct kvm_vcpu *v, \
802 const struct coproc_reg *r) \
803 { \
804 u32 val; \
805 \
806 asm volatile("mrc p15, " __stringify(op1) \
807 ", %0, c" __stringify(crn) \
808 ", c" __stringify(crm) \
809 ", " __stringify(op2) "\n" : "=r" (val)); \
810 ((struct coproc_reg *)r)->val = val; \
811 }
812
813 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
814 FUNCTION_FOR32(0, 0, 0, 1, CTR)
815 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
816 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
817 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
818 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
819 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
820 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
821 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
822 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
823 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
824 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
825 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
826 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
827 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
828 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
829 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
830 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
831 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
832 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
833 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
834
835
836 static struct coproc_reg invariant_cp15[] = {
837 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
838 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
839 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
840 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
841 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
842
843 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
844 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
845
846 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
847 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
848 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
849 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
850 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
851 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
852 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
853 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
854
855 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
856 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
857 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
858 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
859 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
860 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
861 };
862
863
864
865
866
867 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
868 {
869 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
870 return -EFAULT;
871 return 0;
872 }
873
874
875
876
877
878 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
879 {
880 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
881 return -EFAULT;
882 return 0;
883 }
884
885 static int get_invariant_cp15(u64 id, void __user *uaddr)
886 {
887 struct coproc_params params;
888 const struct coproc_reg *r;
889 int ret;
890
891 if (!index_to_params(id, ¶ms))
892 return -ENOENT;
893
894 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
895 if (!r)
896 return -ENOENT;
897
898 ret = -ENOENT;
899 if (KVM_REG_SIZE(id) == 4) {
900 u32 val = r->val;
901
902 ret = reg_to_user(uaddr, &val, id);
903 } else if (KVM_REG_SIZE(id) == 8) {
904 ret = reg_to_user(uaddr, &r->val, id);
905 }
906 return ret;
907 }
908
909 static int set_invariant_cp15(u64 id, void __user *uaddr)
910 {
911 struct coproc_params params;
912 const struct coproc_reg *r;
913 int err;
914 u64 val;
915
916 if (!index_to_params(id, ¶ms))
917 return -ENOENT;
918 r = find_reg(¶ms, invariant_cp15, ARRAY_SIZE(invariant_cp15));
919 if (!r)
920 return -ENOENT;
921
922 err = -ENOENT;
923 if (KVM_REG_SIZE(id) == 4) {
924 u32 val32;
925
926 err = reg_from_user(&val32, uaddr, id);
927 if (!err)
928 val = val32;
929 } else if (KVM_REG_SIZE(id) == 8) {
930 err = reg_from_user(&val, uaddr, id);
931 }
932 if (err)
933 return err;
934
935
936 if (r->val != val)
937 return -EINVAL;
938
939 return 0;
940 }
941
942 static bool is_valid_cache(u32 val)
943 {
944 u32 level, ctype;
945
946 if (val >= CSSELR_MAX)
947 return false;
948
949
950 level = (val >> 1);
951 ctype = (cache_levels >> (level * 3)) & 7;
952
953 switch (ctype) {
954 case 0:
955 return false;
956 case 1:
957 return (val & 1);
958 case 2:
959 case 4:
960 return !(val & 1);
961 case 3:
962 return true;
963 default:
964 return false;
965 }
966 }
967
968
969 static u32 get_ccsidr(u32 csselr)
970 {
971 u32 ccsidr;
972
973
974 local_irq_disable();
975
976 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
977 isb();
978
979 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
980 local_irq_enable();
981
982 return ccsidr;
983 }
984
985 static int demux_c15_get(u64 id, void __user *uaddr)
986 {
987 u32 val;
988 u32 __user *uval = uaddr;
989
990
991 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
992 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
993 return -ENOENT;
994
995 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
996 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
997 if (KVM_REG_SIZE(id) != 4)
998 return -ENOENT;
999 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1000 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1001 if (!is_valid_cache(val))
1002 return -ENOENT;
1003
1004 return put_user(get_ccsidr(val), uval);
1005 default:
1006 return -ENOENT;
1007 }
1008 }
1009
1010 static int demux_c15_set(u64 id, void __user *uaddr)
1011 {
1012 u32 val, newval;
1013 u32 __user *uval = uaddr;
1014
1015
1016 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1017 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1018 return -ENOENT;
1019
1020 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1021 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1022 if (KVM_REG_SIZE(id) != 4)
1023 return -ENOENT;
1024 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1025 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1026 if (!is_valid_cache(val))
1027 return -ENOENT;
1028
1029 if (get_user(newval, uval))
1030 return -EFAULT;
1031
1032
1033 if (newval != get_ccsidr(val))
1034 return -EINVAL;
1035 return 0;
1036 default:
1037 return -ENOENT;
1038 }
1039 }
1040
1041 #ifdef CONFIG_VFPv3
1042 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
1043 KVM_REG_ARM_VFP_FPSCR,
1044 KVM_REG_ARM_VFP_FPINST,
1045 KVM_REG_ARM_VFP_FPINST2,
1046 KVM_REG_ARM_VFP_MVFR0,
1047 KVM_REG_ARM_VFP_MVFR1,
1048 KVM_REG_ARM_VFP_FPSID };
1049
1050 static unsigned int num_fp_regs(void)
1051 {
1052 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
1053 return 32;
1054 else
1055 return 16;
1056 }
1057
1058 static unsigned int num_vfp_regs(void)
1059 {
1060
1061 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
1062 }
1063
1064 static int copy_vfp_regids(u64 __user *uindices)
1065 {
1066 unsigned int i;
1067 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
1068 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
1069
1070 for (i = 0; i < num_fp_regs(); i++) {
1071 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
1072 uindices))
1073 return -EFAULT;
1074 uindices++;
1075 }
1076
1077 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
1078 if (put_user(u32reg | vfp_sysregs[i], uindices))
1079 return -EFAULT;
1080 uindices++;
1081 }
1082
1083 return num_vfp_regs();
1084 }
1085
1086 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1087 {
1088 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1089 u32 val;
1090
1091
1092 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1093 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1094 return -ENOENT;
1095
1096 if (vfpid < num_fp_regs()) {
1097 if (KVM_REG_SIZE(id) != 8)
1098 return -ENOENT;
1099 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1100 id);
1101 }
1102
1103
1104 if (KVM_REG_SIZE(id) != 4)
1105 return -ENOENT;
1106
1107 switch (vfpid) {
1108 case KVM_REG_ARM_VFP_FPEXC:
1109 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1110 case KVM_REG_ARM_VFP_FPSCR:
1111 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1112 case KVM_REG_ARM_VFP_FPINST:
1113 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1114 case KVM_REG_ARM_VFP_FPINST2:
1115 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1116 case KVM_REG_ARM_VFP_MVFR0:
1117 val = fmrx(MVFR0);
1118 return reg_to_user(uaddr, &val, id);
1119 case KVM_REG_ARM_VFP_MVFR1:
1120 val = fmrx(MVFR1);
1121 return reg_to_user(uaddr, &val, id);
1122 case KVM_REG_ARM_VFP_FPSID:
1123 val = fmrx(FPSID);
1124 return reg_to_user(uaddr, &val, id);
1125 default:
1126 return -ENOENT;
1127 }
1128 }
1129
1130 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1131 {
1132 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1133 u32 val;
1134
1135
1136 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1137 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1138 return -ENOENT;
1139
1140 if (vfpid < num_fp_regs()) {
1141 if (KVM_REG_SIZE(id) != 8)
1142 return -ENOENT;
1143 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1144 uaddr, id);
1145 }
1146
1147
1148 if (KVM_REG_SIZE(id) != 4)
1149 return -ENOENT;
1150
1151 switch (vfpid) {
1152 case KVM_REG_ARM_VFP_FPEXC:
1153 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1154 case KVM_REG_ARM_VFP_FPSCR:
1155 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1156 case KVM_REG_ARM_VFP_FPINST:
1157 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1158 case KVM_REG_ARM_VFP_FPINST2:
1159 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1160
1161 case KVM_REG_ARM_VFP_MVFR0:
1162 if (reg_from_user(&val, uaddr, id))
1163 return -EFAULT;
1164 if (val != fmrx(MVFR0))
1165 return -EINVAL;
1166 return 0;
1167 case KVM_REG_ARM_VFP_MVFR1:
1168 if (reg_from_user(&val, uaddr, id))
1169 return -EFAULT;
1170 if (val != fmrx(MVFR1))
1171 return -EINVAL;
1172 return 0;
1173 case KVM_REG_ARM_VFP_FPSID:
1174 if (reg_from_user(&val, uaddr, id))
1175 return -EFAULT;
1176 if (val != fmrx(FPSID))
1177 return -EINVAL;
1178 return 0;
1179 default:
1180 return -ENOENT;
1181 }
1182 }
1183 #else
1184 static unsigned int num_vfp_regs(void)
1185 {
1186 return 0;
1187 }
1188
1189 static int copy_vfp_regids(u64 __user *uindices)
1190 {
1191 return 0;
1192 }
1193
1194 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1195 {
1196 return -ENOENT;
1197 }
1198
1199 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1200 {
1201 return -ENOENT;
1202 }
1203 #endif
1204
1205 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1206 {
1207 const struct coproc_reg *r;
1208 void __user *uaddr = (void __user *)(long)reg->addr;
1209 int ret;
1210
1211 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1212 return demux_c15_get(reg->id, uaddr);
1213
1214 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1215 return vfp_get_reg(vcpu, reg->id, uaddr);
1216
1217 r = index_to_coproc_reg(vcpu, reg->id);
1218 if (!r)
1219 return get_invariant_cp15(reg->id, uaddr);
1220
1221 ret = -ENOENT;
1222 if (KVM_REG_SIZE(reg->id) == 8) {
1223 u64 val;
1224
1225 val = vcpu_cp15_reg64_get(vcpu, r);
1226 ret = reg_to_user(uaddr, &val, reg->id);
1227 } else if (KVM_REG_SIZE(reg->id) == 4) {
1228 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1229 }
1230
1231 return ret;
1232 }
1233
1234 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1235 {
1236 const struct coproc_reg *r;
1237 void __user *uaddr = (void __user *)(long)reg->addr;
1238 int ret;
1239
1240 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1241 return demux_c15_set(reg->id, uaddr);
1242
1243 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1244 return vfp_set_reg(vcpu, reg->id, uaddr);
1245
1246 r = index_to_coproc_reg(vcpu, reg->id);
1247 if (!r)
1248 return set_invariant_cp15(reg->id, uaddr);
1249
1250 ret = -ENOENT;
1251 if (KVM_REG_SIZE(reg->id) == 8) {
1252 u64 val;
1253
1254 ret = reg_from_user(&val, uaddr, reg->id);
1255 if (!ret)
1256 vcpu_cp15_reg64_set(vcpu, r, val);
1257 } else if (KVM_REG_SIZE(reg->id) == 4) {
1258 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1259 }
1260
1261 return ret;
1262 }
1263
1264 static unsigned int num_demux_regs(void)
1265 {
1266 unsigned int i, count = 0;
1267
1268 for (i = 0; i < CSSELR_MAX; i++)
1269 if (is_valid_cache(i))
1270 count++;
1271
1272 return count;
1273 }
1274
1275 static int write_demux_regids(u64 __user *uindices)
1276 {
1277 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1278 unsigned int i;
1279
1280 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1281 for (i = 0; i < CSSELR_MAX; i++) {
1282 if (!is_valid_cache(i))
1283 continue;
1284 if (put_user(val | i, uindices))
1285 return -EFAULT;
1286 uindices++;
1287 }
1288 return 0;
1289 }
1290
1291 static u64 cp15_to_index(const struct coproc_reg *reg)
1292 {
1293 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1294 if (reg->is_64bit) {
1295 val |= KVM_REG_SIZE_U64;
1296 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1297
1298
1299
1300
1301
1302
1303
1304 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1305 } else {
1306 val |= KVM_REG_SIZE_U32;
1307 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1308 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1309 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1310 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1311 }
1312 return val;
1313 }
1314
1315 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1316 {
1317 if (!*uind)
1318 return true;
1319
1320 if (put_user(cp15_to_index(reg), *uind))
1321 return false;
1322
1323 (*uind)++;
1324 return true;
1325 }
1326
1327
1328 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1329 {
1330 const struct coproc_reg *i1, *i2, *end1, *end2;
1331 unsigned int total = 0;
1332 size_t num;
1333
1334
1335 i1 = get_target_table(vcpu->arch.target, &num);
1336 end1 = i1 + num;
1337 i2 = cp15_regs;
1338 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1339
1340 BUG_ON(i1 == end1 || i2 == end2);
1341
1342
1343 while (i1 || i2) {
1344 int cmp = cmp_reg(i1, i2);
1345
1346 if (cmp <= 0) {
1347
1348 if (i1->reg) {
1349 if (!copy_reg_to_user(i1, &uind))
1350 return -EFAULT;
1351 total++;
1352 }
1353 } else {
1354
1355 if (i2->reg) {
1356 if (!copy_reg_to_user(i2, &uind))
1357 return -EFAULT;
1358 total++;
1359 }
1360 }
1361
1362 if (cmp <= 0 && ++i1 == end1)
1363 i1 = NULL;
1364 if (cmp >= 0 && ++i2 == end2)
1365 i2 = NULL;
1366 }
1367 return total;
1368 }
1369
1370 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1371 {
1372 return ARRAY_SIZE(invariant_cp15)
1373 + num_demux_regs()
1374 + num_vfp_regs()
1375 + walk_cp15(vcpu, (u64 __user *)NULL);
1376 }
1377
1378 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1379 {
1380 unsigned int i;
1381 int err;
1382
1383
1384 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1385 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1386 return -EFAULT;
1387 uindices++;
1388 }
1389
1390 err = walk_cp15(vcpu, uindices);
1391 if (err < 0)
1392 return err;
1393 uindices += err;
1394
1395 err = copy_vfp_regids(uindices);
1396 if (err < 0)
1397 return err;
1398 uindices += err;
1399
1400 return write_demux_regids(uindices);
1401 }
1402
1403 void kvm_coproc_table_init(void)
1404 {
1405 unsigned int i;
1406
1407
1408 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1409 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1410
1411
1412 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1413 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1426 for (i = 0; i < 7; i++)
1427 if (((cache_levels >> (i*3)) & 7) == 0)
1428 break;
1429
1430 cache_levels &= (1 << (i*3))-1;
1431 }
1432
1433
1434
1435
1436
1437
1438
1439
1440 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1441 {
1442 size_t num;
1443 const struct coproc_reg *table;
1444 DECLARE_BITMAP(bmap, NR_CP15_REGS) = { 0, };
1445
1446
1447 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs), bmap);
1448
1449 table = get_target_table(vcpu->arch.target, &num);
1450 reset_coproc_regs(vcpu, table, num, bmap);
1451
1452 for (num = 1; num < NR_CP15_REGS; num++)
1453 WARN(!test_bit(num, bmap),
1454 "Didn't reset vcpu_cp15(vcpu, %zi)", num);
1455 }