root/arch/arm/vfp/vfp.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. vfp_shiftright32jamming
  2. vfp_shiftright64jamming
  3. vfp_hi64to32jamming
  4. add128
  5. sub128
  6. mul64to128
  7. shift64left
  8. vfp_hi64multiply64
  9. vfp_estimate_div128to64
  10. vfp_single_unpack
  11. vfp_single_pack
  12. vfp_single_type
  13. vfp_double_unpack
  14. vfp_double_pack
  15. vfp_double_type

   1 /* SPDX-License-Identifier: GPL-2.0-only */
   2 /*
   3  *  linux/arch/arm/vfp/vfp.h
   4  *
   5  *  Copyright (C) 2004 ARM Limited.
   6  *  Written by Deep Blue Solutions Limited.
   7  */
   8 
   9 static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
  10 {
  11         if (shift) {
  12                 if (shift < 32)
  13                         val = val >> shift | ((val << (32 - shift)) != 0);
  14                 else
  15                         val = val != 0;
  16         }
  17         return val;
  18 }
  19 
  20 static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
  21 {
  22         if (shift) {
  23                 if (shift < 64)
  24                         val = val >> shift | ((val << (64 - shift)) != 0);
  25                 else
  26                         val = val != 0;
  27         }
  28         return val;
  29 }
  30 
  31 static inline u32 vfp_hi64to32jamming(u64 val)
  32 {
  33         u32 v;
  34 
  35         asm(
  36         "cmp    %Q1, #1         @ vfp_hi64to32jamming\n\t"
  37         "movcc  %0, %R1\n\t"
  38         "orrcs  %0, %R1, #1"
  39         : "=r" (v) : "r" (val) : "cc");
  40 
  41         return v;
  42 }
  43 
  44 static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
  45 {
  46         asm(    "adds   %Q0, %Q2, %Q4\n\t"
  47                 "adcs   %R0, %R2, %R4\n\t"
  48                 "adcs   %Q1, %Q3, %Q5\n\t"
  49                 "adc    %R1, %R3, %R5"
  50             : "=r" (nl), "=r" (nh)
  51             : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
  52             : "cc");
  53         *resh = nh;
  54         *resl = nl;
  55 }
  56 
  57 static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
  58 {
  59         asm(    "subs   %Q0, %Q2, %Q4\n\t"
  60                 "sbcs   %R0, %R2, %R4\n\t"
  61                 "sbcs   %Q1, %Q3, %Q5\n\t"
  62                 "sbc    %R1, %R3, %R5\n\t"
  63             : "=r" (nl), "=r" (nh)
  64             : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
  65             : "cc");
  66         *resh = nh;
  67         *resl = nl;
  68 }
  69 
  70 static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
  71 {
  72         u32 nh, nl, mh, ml;
  73         u64 rh, rma, rmb, rl;
  74 
  75         nl = n;
  76         ml = m;
  77         rl = (u64)nl * ml;
  78 
  79         nh = n >> 32;
  80         rma = (u64)nh * ml;
  81 
  82         mh = m >> 32;
  83         rmb = (u64)nl * mh;
  84         rma += rmb;
  85 
  86         rh = (u64)nh * mh;
  87         rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
  88 
  89         rma <<= 32;
  90         rl += rma;
  91         rh += (rl < rma);
  92 
  93         *resl = rl;
  94         *resh = rh;
  95 }
  96 
  97 static inline void shift64left(u64 *resh, u64 *resl, u64 n)
  98 {
  99         *resh = n >> 63;
 100         *resl = n << 1;
 101 }
 102 
 103 static inline u64 vfp_hi64multiply64(u64 n, u64 m)
 104 {
 105         u64 rh, rl;
 106         mul64to128(&rh, &rl, n, m);
 107         return rh | (rl != 0);
 108 }
 109 
 110 static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
 111 {
 112         u64 mh, ml, remh, reml, termh, terml, z;
 113 
 114         if (nh >= m)
 115                 return ~0ULL;
 116         mh = m >> 32;
 117         if (mh << 32 <= nh) {
 118                 z = 0xffffffff00000000ULL;
 119         } else {
 120                 z = nh;
 121                 do_div(z, mh);
 122                 z <<= 32;
 123         }
 124         mul64to128(&termh, &terml, m, z);
 125         sub128(&remh, &reml, nh, nl, termh, terml);
 126         ml = m << 32;
 127         while ((s64)remh < 0) {
 128                 z -= 0x100000000ULL;
 129                 add128(&remh, &reml, remh, reml, mh, ml);
 130         }
 131         remh = (remh << 32) | (reml >> 32);
 132         if (mh << 32 <= remh) {
 133                 z |= 0xffffffff;
 134         } else {
 135                 do_div(remh, mh);
 136                 z |= remh;
 137         }
 138         return z;
 139 }
 140 
 141 /*
 142  * Operations on unpacked elements
 143  */
 144 #define vfp_sign_negate(sign)   (sign ^ 0x8000)
 145 
 146 /*
 147  * Single-precision
 148  */
 149 struct vfp_single {
 150         s16     exponent;
 151         u16     sign;
 152         u32     significand;
 153 };
 154 
 155 asmlinkage s32 vfp_get_float(unsigned int reg);
 156 asmlinkage void vfp_put_float(s32 val, unsigned int reg);
 157 
 158 /*
 159  * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 160  * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 161  * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 162  *  which are not propagated to the float upon packing.
 163  */
 164 #define VFP_SINGLE_MANTISSA_BITS        (23)
 165 #define VFP_SINGLE_EXPONENT_BITS        (8)
 166 #define VFP_SINGLE_LOW_BITS             (32 - VFP_SINGLE_MANTISSA_BITS - 2)
 167 #define VFP_SINGLE_LOW_BITS_MASK        ((1 << VFP_SINGLE_LOW_BITS) - 1)
 168 
 169 /*
 170  * The bit in an unpacked float which indicates that it is a quiet NaN
 171  */
 172 #define VFP_SINGLE_SIGNIFICAND_QNAN     (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
 173 
 174 /*
 175  * Operations on packed single-precision numbers
 176  */
 177 #define vfp_single_packed_sign(v)       ((v) & 0x80000000)
 178 #define vfp_single_packed_negate(v)     ((v) ^ 0x80000000)
 179 #define vfp_single_packed_abs(v)        ((v) & ~0x80000000)
 180 #define vfp_single_packed_exponent(v)   (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
 181 #define vfp_single_packed_mantissa(v)   ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
 182 
 183 /*
 184  * Unpack a single-precision float.  Note that this returns the magnitude
 185  * of the single-precision float mantissa with the 1. if necessary,
 186  * aligned to bit 30.
 187  */
 188 static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
 189 {
 190         u32 significand;
 191 
 192         s->sign = vfp_single_packed_sign(val) >> 16,
 193         s->exponent = vfp_single_packed_exponent(val);
 194 
 195         significand = (u32) val;
 196         significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
 197         if (s->exponent && s->exponent != 255)
 198                 significand |= 0x40000000;
 199         s->significand = significand;
 200 }
 201 
 202 /*
 203  * Re-pack a single-precision float.  This assumes that the float is
 204  * already normalised such that the MSB is bit 30, _not_ bit 31.
 205  */
 206 static inline s32 vfp_single_pack(struct vfp_single *s)
 207 {
 208         u32 val;
 209         val = (s->sign << 16) +
 210               (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
 211               (s->significand >> VFP_SINGLE_LOW_BITS);
 212         return (s32)val;
 213 }
 214 
 215 #define VFP_NUMBER              (1<<0)
 216 #define VFP_ZERO                (1<<1)
 217 #define VFP_DENORMAL            (1<<2)
 218 #define VFP_INFINITY            (1<<3)
 219 #define VFP_NAN                 (1<<4)
 220 #define VFP_NAN_SIGNAL          (1<<5)
 221 
 222 #define VFP_QNAN                (VFP_NAN)
 223 #define VFP_SNAN                (VFP_NAN|VFP_NAN_SIGNAL)
 224 
 225 static inline int vfp_single_type(struct vfp_single *s)
 226 {
 227         int type = VFP_NUMBER;
 228         if (s->exponent == 255) {
 229                 if (s->significand == 0)
 230                         type = VFP_INFINITY;
 231                 else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
 232                         type = VFP_QNAN;
 233                 else
 234                         type = VFP_SNAN;
 235         } else if (s->exponent == 0) {
 236                 if (s->significand == 0)
 237                         type |= VFP_ZERO;
 238                 else
 239                         type |= VFP_DENORMAL;
 240         }
 241         return type;
 242 }
 243 
 244 #ifndef DEBUG
 245 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
 246 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
 247 #else
 248 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
 249 #endif
 250 
 251 /*
 252  * Double-precision
 253  */
 254 struct vfp_double {
 255         s16     exponent;
 256         u16     sign;
 257         u64     significand;
 258 };
 259 
 260 /*
 261  * VFP_REG_ZERO is a special register number for vfp_get_double
 262  * which returns (double)0.0.  This is useful for the compare with
 263  * zero instructions.
 264  */
 265 #ifdef CONFIG_VFPv3
 266 #define VFP_REG_ZERO    32
 267 #else
 268 #define VFP_REG_ZERO    16
 269 #endif
 270 asmlinkage u64 vfp_get_double(unsigned int reg);
 271 asmlinkage void vfp_put_double(u64 val, unsigned int reg);
 272 
 273 #define VFP_DOUBLE_MANTISSA_BITS        (52)
 274 #define VFP_DOUBLE_EXPONENT_BITS        (11)
 275 #define VFP_DOUBLE_LOW_BITS             (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
 276 #define VFP_DOUBLE_LOW_BITS_MASK        ((1 << VFP_DOUBLE_LOW_BITS) - 1)
 277 
 278 /*
 279  * The bit in an unpacked double which indicates that it is a quiet NaN
 280  */
 281 #define VFP_DOUBLE_SIGNIFICAND_QNAN     (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
 282 
 283 /*
 284  * Operations on packed single-precision numbers
 285  */
 286 #define vfp_double_packed_sign(v)       ((v) & (1ULL << 63))
 287 #define vfp_double_packed_negate(v)     ((v) ^ (1ULL << 63))
 288 #define vfp_double_packed_abs(v)        ((v) & ~(1ULL << 63))
 289 #define vfp_double_packed_exponent(v)   (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
 290 #define vfp_double_packed_mantissa(v)   ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
 291 
 292 /*
 293  * Unpack a double-precision float.  Note that this returns the magnitude
 294  * of the double-precision float mantissa with the 1. if necessary,
 295  * aligned to bit 62.
 296  */
 297 static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
 298 {
 299         u64 significand;
 300 
 301         s->sign = vfp_double_packed_sign(val) >> 48;
 302         s->exponent = vfp_double_packed_exponent(val);
 303 
 304         significand = (u64) val;
 305         significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
 306         if (s->exponent && s->exponent != 2047)
 307                 significand |= (1ULL << 62);
 308         s->significand = significand;
 309 }
 310 
 311 /*
 312  * Re-pack a double-precision float.  This assumes that the float is
 313  * already normalised such that the MSB is bit 30, _not_ bit 31.
 314  */
 315 static inline s64 vfp_double_pack(struct vfp_double *s)
 316 {
 317         u64 val;
 318         val = ((u64)s->sign << 48) +
 319               ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
 320               (s->significand >> VFP_DOUBLE_LOW_BITS);
 321         return (s64)val;
 322 }
 323 
 324 static inline int vfp_double_type(struct vfp_double *s)
 325 {
 326         int type = VFP_NUMBER;
 327         if (s->exponent == 2047) {
 328                 if (s->significand == 0)
 329                         type = VFP_INFINITY;
 330                 else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
 331                         type = VFP_QNAN;
 332                 else
 333                         type = VFP_SNAN;
 334         } else if (s->exponent == 0) {
 335                 if (s->significand == 0)
 336                         type |= VFP_ZERO;
 337                 else
 338                         type |= VFP_DENORMAL;
 339         }
 340         return type;
 341 }
 342 
 343 u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
 344 
 345 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
 346 
 347 /*
 348  * A special flag to tell the normalisation code not to normalise.
 349  */
 350 #define VFP_NAN_FLAG    0x100
 351 
 352 /*
 353  * A bit pattern used to indicate the initial (unset) value of the
 354  * exception mask, in case nothing handles an instruction.  This
 355  * doesn't include the NAN flag, which get masked out before
 356  * we check for an error.
 357  */
 358 #define VFP_EXCEPTION_ERROR     ((u32)-1 & ~VFP_NAN_FLAG)
 359 
 360 /*
 361  * A flag to tell vfp instruction type.
 362  *  OP_SCALAR - this operation always operates in scalar mode
 363  *  OP_SD - the instruction exceptionally writes to a single precision result.
 364  *  OP_DD - the instruction exceptionally writes to a double precision result.
 365  *  OP_SM - the instruction exceptionally reads from a single precision operand.
 366  */
 367 #define OP_SCALAR       (1 << 0)
 368 #define OP_SD           (1 << 1)
 369 #define OP_DD           (1 << 1)
 370 #define OP_SM           (1 << 2)
 371 
 372 struct op {
 373         u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
 374         u32 flags;
 375 };
 376 
 377 asmlinkage void vfp_save_state(void *location, u32 fpexc);

/* [<][>][^][v][top][bottom][index][help] */