root/arch/arm/vfp/vfpmodule.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vfp_state_in_hw
  2. vfp_force_reload
  3. vfp_thread_flush
  4. vfp_thread_exit
  5. vfp_thread_copy
  6. vfp_notifier
  7. vfp_raise_sigfpe
  8. vfp_panic
  9. vfp_raise_exceptions
  10. vfp_emulate_instruction
  11. VFP_bounce
  12. vfp_enable
  13. vfp_disable
  14. vfp_pm_suspend
  15. vfp_pm_resume
  16. vfp_cpu_pm_notifier
  17. vfp_pm_init
  18. vfp_pm_init
  19. vfp_sync_hwstate
  20. vfp_flush_hwstate
  21. vfp_preserve_user_clear_hwstate
  22. vfp_restore_user_hwstate
  23. vfp_dying_cpu
  24. vfp_starting_cpu
  25. vfp_kmode_exception
  26. kernel_neon_begin
  27. kernel_neon_end
  28. vfp_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  *  linux/arch/arm/vfp/vfpmodule.c
   4  *
   5  *  Copyright (C) 2004 ARM Limited.
   6  *  Written by Deep Blue Solutions Limited.
   7  */
   8 #include <linux/types.h>
   9 #include <linux/cpu.h>
  10 #include <linux/cpu_pm.h>
  11 #include <linux/hardirq.h>
  12 #include <linux/kernel.h>
  13 #include <linux/notifier.h>
  14 #include <linux/signal.h>
  15 #include <linux/sched/signal.h>
  16 #include <linux/smp.h>
  17 #include <linux/init.h>
  18 #include <linux/uaccess.h>
  19 #include <linux/user.h>
  20 #include <linux/export.h>
  21 
  22 #include <asm/cp15.h>
  23 #include <asm/cputype.h>
  24 #include <asm/system_info.h>
  25 #include <asm/thread_notify.h>
  26 #include <asm/vfp.h>
  27 
  28 #include "vfpinstr.h"
  29 #include "vfp.h"
  30 
  31 /*
  32  * Our undef handlers (in entry.S)
  33  */
  34 asmlinkage void vfp_testing_entry(void);
  35 asmlinkage void vfp_support_entry(void);
  36 asmlinkage void vfp_null_entry(void);
  37 
  38 asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
  39 
  40 /*
  41  * Dual-use variable.
  42  * Used in startup: set to non-zero if VFP checks fail
  43  * After startup, holds VFP architecture
  44  */
  45 unsigned int VFP_arch;
  46 
  47 /*
  48  * The pointer to the vfpstate structure of the thread which currently
  49  * owns the context held in the VFP hardware, or NULL if the hardware
  50  * context is invalid.
  51  *
  52  * For UP, this is sufficient to tell which thread owns the VFP context.
  53  * However, for SMP, we also need to check the CPU number stored in the
  54  * saved state too to catch migrations.
  55  */
  56 union vfp_state *vfp_current_hw_state[NR_CPUS];
  57 
  58 /*
  59  * Is 'thread's most up to date state stored in this CPUs hardware?
  60  * Must be called from non-preemptible context.
  61  */
  62 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
  63 {
  64 #ifdef CONFIG_SMP
  65         if (thread->vfpstate.hard.cpu != cpu)
  66                 return false;
  67 #endif
  68         return vfp_current_hw_state[cpu] == &thread->vfpstate;
  69 }
  70 
  71 /*
  72  * Force a reload of the VFP context from the thread structure.  We do
  73  * this by ensuring that access to the VFP hardware is disabled, and
  74  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
  75  */
  76 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
  77 {
  78         if (vfp_state_in_hw(cpu, thread)) {
  79                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  80                 vfp_current_hw_state[cpu] = NULL;
  81         }
  82 #ifdef CONFIG_SMP
  83         thread->vfpstate.hard.cpu = NR_CPUS;
  84 #endif
  85 }
  86 
  87 /*
  88  * Per-thread VFP initialization.
  89  */
  90 static void vfp_thread_flush(struct thread_info *thread)
  91 {
  92         union vfp_state *vfp = &thread->vfpstate;
  93         unsigned int cpu;
  94 
  95         /*
  96          * Disable VFP to ensure we initialize it first.  We must ensure
  97          * that the modification of vfp_current_hw_state[] and hardware
  98          * disable are done for the same CPU and without preemption.
  99          *
 100          * Do this first to ensure that preemption won't overwrite our
 101          * state saving should access to the VFP be enabled at this point.
 102          */
 103         cpu = get_cpu();
 104         if (vfp_current_hw_state[cpu] == vfp)
 105                 vfp_current_hw_state[cpu] = NULL;
 106         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 107         put_cpu();
 108 
 109         memset(vfp, 0, sizeof(union vfp_state));
 110 
 111         vfp->hard.fpexc = FPEXC_EN;
 112         vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
 113 #ifdef CONFIG_SMP
 114         vfp->hard.cpu = NR_CPUS;
 115 #endif
 116 }
 117 
 118 static void vfp_thread_exit(struct thread_info *thread)
 119 {
 120         /* release case: Per-thread VFP cleanup. */
 121         union vfp_state *vfp = &thread->vfpstate;
 122         unsigned int cpu = get_cpu();
 123 
 124         if (vfp_current_hw_state[cpu] == vfp)
 125                 vfp_current_hw_state[cpu] = NULL;
 126         put_cpu();
 127 }
 128 
 129 static void vfp_thread_copy(struct thread_info *thread)
 130 {
 131         struct thread_info *parent = current_thread_info();
 132 
 133         vfp_sync_hwstate(parent);
 134         thread->vfpstate = parent->vfpstate;
 135 #ifdef CONFIG_SMP
 136         thread->vfpstate.hard.cpu = NR_CPUS;
 137 #endif
 138 }
 139 
 140 /*
 141  * When this function is called with the following 'cmd's, the following
 142  * is true while this function is being run:
 143  *  THREAD_NOFTIFY_SWTICH:
 144  *   - the previously running thread will not be scheduled onto another CPU.
 145  *   - the next thread to be run (v) will not be running on another CPU.
 146  *   - thread->cpu is the local CPU number
 147  *   - not preemptible as we're called in the middle of a thread switch
 148  *  THREAD_NOTIFY_FLUSH:
 149  *   - the thread (v) will be running on the local CPU, so
 150  *      v === current_thread_info()
 151  *   - thread->cpu is the local CPU number at the time it is accessed,
 152  *      but may change at any time.
 153  *   - we could be preempted if tree preempt rcu is enabled, so
 154  *      it is unsafe to use thread->cpu.
 155  *  THREAD_NOTIFY_EXIT
 156  *   - we could be preempted if tree preempt rcu is enabled, so
 157  *      it is unsafe to use thread->cpu.
 158  */
 159 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
 160 {
 161         struct thread_info *thread = v;
 162         u32 fpexc;
 163 #ifdef CONFIG_SMP
 164         unsigned int cpu;
 165 #endif
 166 
 167         switch (cmd) {
 168         case THREAD_NOTIFY_SWITCH:
 169                 fpexc = fmrx(FPEXC);
 170 
 171 #ifdef CONFIG_SMP
 172                 cpu = thread->cpu;
 173 
 174                 /*
 175                  * On SMP, if VFP is enabled, save the old state in
 176                  * case the thread migrates to a different CPU. The
 177                  * restoring is done lazily.
 178                  */
 179                 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
 180                         vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 181 #endif
 182 
 183                 /*
 184                  * Always disable VFP so we can lazily save/restore the
 185                  * old state.
 186                  */
 187                 fmxr(FPEXC, fpexc & ~FPEXC_EN);
 188                 break;
 189 
 190         case THREAD_NOTIFY_FLUSH:
 191                 vfp_thread_flush(thread);
 192                 break;
 193 
 194         case THREAD_NOTIFY_EXIT:
 195                 vfp_thread_exit(thread);
 196                 break;
 197 
 198         case THREAD_NOTIFY_COPY:
 199                 vfp_thread_copy(thread);
 200                 break;
 201         }
 202 
 203         return NOTIFY_DONE;
 204 }
 205 
 206 static struct notifier_block vfp_notifier_block = {
 207         .notifier_call  = vfp_notifier,
 208 };
 209 
 210 /*
 211  * Raise a SIGFPE for the current process.
 212  * sicode describes the signal being raised.
 213  */
 214 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
 215 {
 216         /*
 217          * This is the same as NWFPE, because it's not clear what
 218          * this is used for
 219          */
 220         current->thread.error_code = 0;
 221         current->thread.trap_no = 6;
 222 
 223         send_sig_fault(SIGFPE, sicode,
 224                        (void __user *)(instruction_pointer(regs) - 4),
 225                        current);
 226 }
 227 
 228 static void vfp_panic(char *reason, u32 inst)
 229 {
 230         int i;
 231 
 232         pr_err("VFP: Error: %s\n", reason);
 233         pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
 234                 fmrx(FPEXC), fmrx(FPSCR), inst);
 235         for (i = 0; i < 32; i += 2)
 236                 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
 237                        i, vfp_get_float(i), i+1, vfp_get_float(i+1));
 238 }
 239 
 240 /*
 241  * Process bitmask of exception conditions.
 242  */
 243 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
 244 {
 245         int si_code = 0;
 246 
 247         pr_debug("VFP: raising exceptions %08x\n", exceptions);
 248 
 249         if (exceptions == VFP_EXCEPTION_ERROR) {
 250                 vfp_panic("unhandled bounce", inst);
 251                 vfp_raise_sigfpe(FPE_FLTINV, regs);
 252                 return;
 253         }
 254 
 255         /*
 256          * If any of the status flags are set, update the FPSCR.
 257          * Comparison instructions always return at least one of
 258          * these flags set.
 259          */
 260         if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
 261                 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
 262 
 263         fpscr |= exceptions;
 264 
 265         fmxr(FPSCR, fpscr);
 266 
 267 #define RAISE(stat,en,sig)                              \
 268         if (exceptions & stat && fpscr & en)            \
 269                 si_code = sig;
 270 
 271         /*
 272          * These are arranged in priority order, least to highest.
 273          */
 274         RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
 275         RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
 276         RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
 277         RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
 278         RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
 279 
 280         if (si_code)
 281                 vfp_raise_sigfpe(si_code, regs);
 282 }
 283 
 284 /*
 285  * Emulate a VFP instruction.
 286  */
 287 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
 288 {
 289         u32 exceptions = VFP_EXCEPTION_ERROR;
 290 
 291         pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
 292 
 293         if (INST_CPRTDO(inst)) {
 294                 if (!INST_CPRT(inst)) {
 295                         /*
 296                          * CPDO
 297                          */
 298                         if (vfp_single(inst)) {
 299                                 exceptions = vfp_single_cpdo(inst, fpscr);
 300                         } else {
 301                                 exceptions = vfp_double_cpdo(inst, fpscr);
 302                         }
 303                 } else {
 304                         /*
 305                          * A CPRT instruction can not appear in FPINST2, nor
 306                          * can it cause an exception.  Therefore, we do not
 307                          * have to emulate it.
 308                          */
 309                 }
 310         } else {
 311                 /*
 312                  * A CPDT instruction can not appear in FPINST2, nor can
 313                  * it cause an exception.  Therefore, we do not have to
 314                  * emulate it.
 315                  */
 316         }
 317         return exceptions & ~VFP_NAN_FLAG;
 318 }
 319 
 320 /*
 321  * Package up a bounce condition.
 322  */
 323 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
 324 {
 325         u32 fpscr, orig_fpscr, fpsid, exceptions;
 326 
 327         pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
 328 
 329         /*
 330          * At this point, FPEXC can have the following configuration:
 331          *
 332          *  EX DEX IXE
 333          *  0   1   x   - synchronous exception
 334          *  1   x   0   - asynchronous exception
 335          *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
 336          *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
 337          *                implementation), undefined otherwise
 338          *
 339          * Clear various bits and enable access to the VFP so we can
 340          * handle the bounce.
 341          */
 342         fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
 343 
 344         fpsid = fmrx(FPSID);
 345         orig_fpscr = fpscr = fmrx(FPSCR);
 346 
 347         /*
 348          * Check for the special VFP subarch 1 and FPSCR.IXE bit case
 349          */
 350         if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
 351             && (fpscr & FPSCR_IXE)) {
 352                 /*
 353                  * Synchronous exception, emulate the trigger instruction
 354                  */
 355                 goto emulate;
 356         }
 357 
 358         if (fpexc & FPEXC_EX) {
 359 #ifndef CONFIG_CPU_FEROCEON
 360                 /*
 361                  * Asynchronous exception. The instruction is read from FPINST
 362                  * and the interrupted instruction has to be restarted.
 363                  */
 364                 trigger = fmrx(FPINST);
 365                 regs->ARM_pc -= 4;
 366 #endif
 367         } else if (!(fpexc & FPEXC_DEX)) {
 368                 /*
 369                  * Illegal combination of bits. It can be caused by an
 370                  * unallocated VFP instruction but with FPSCR.IXE set and not
 371                  * on VFP subarch 1.
 372                  */
 373                  vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
 374                 goto exit;
 375         }
 376 
 377         /*
 378          * Modify fpscr to indicate the number of iterations remaining.
 379          * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
 380          * whether FPEXC.VECITR or FPSCR.LEN is used.
 381          */
 382         if (fpexc & (FPEXC_EX | FPEXC_VV)) {
 383                 u32 len;
 384 
 385                 len = fpexc + (1 << FPEXC_LENGTH_BIT);
 386 
 387                 fpscr &= ~FPSCR_LENGTH_MASK;
 388                 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
 389         }
 390 
 391         /*
 392          * Handle the first FP instruction.  We used to take note of the
 393          * FPEXC bounce reason, but this appears to be unreliable.
 394          * Emulate the bounced instruction instead.
 395          */
 396         exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
 397         if (exceptions)
 398                 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 399 
 400         /*
 401          * If there isn't a second FP instruction, exit now. Note that
 402          * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
 403          */
 404         if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
 405                 goto exit;
 406 
 407         /*
 408          * The barrier() here prevents fpinst2 being read
 409          * before the condition above.
 410          */
 411         barrier();
 412         trigger = fmrx(FPINST2);
 413 
 414  emulate:
 415         exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
 416         if (exceptions)
 417                 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
 418  exit:
 419         preempt_enable();
 420 }
 421 
 422 static void vfp_enable(void *unused)
 423 {
 424         u32 access;
 425 
 426         BUG_ON(preemptible());
 427         access = get_copro_access();
 428 
 429         /*
 430          * Enable full access to VFP (cp10 and cp11)
 431          */
 432         set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
 433 }
 434 
 435 /* Called by platforms on which we want to disable VFP because it may not be
 436  * present on all CPUs within a SMP complex. Needs to be called prior to
 437  * vfp_init().
 438  */
 439 void vfp_disable(void)
 440 {
 441         if (VFP_arch) {
 442                 pr_debug("%s: should be called prior to vfp_init\n", __func__);
 443                 return;
 444         }
 445         VFP_arch = 1;
 446 }
 447 
 448 #ifdef CONFIG_CPU_PM
 449 static int vfp_pm_suspend(void)
 450 {
 451         struct thread_info *ti = current_thread_info();
 452         u32 fpexc = fmrx(FPEXC);
 453 
 454         /* if vfp is on, then save state for resumption */
 455         if (fpexc & FPEXC_EN) {
 456                 pr_debug("%s: saving vfp state\n", __func__);
 457                 vfp_save_state(&ti->vfpstate, fpexc);
 458 
 459                 /* disable, just in case */
 460                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 461         } else if (vfp_current_hw_state[ti->cpu]) {
 462 #ifndef CONFIG_SMP
 463                 fmxr(FPEXC, fpexc | FPEXC_EN);
 464                 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
 465                 fmxr(FPEXC, fpexc);
 466 #endif
 467         }
 468 
 469         /* clear any information we had about last context state */
 470         vfp_current_hw_state[ti->cpu] = NULL;
 471 
 472         return 0;
 473 }
 474 
 475 static void vfp_pm_resume(void)
 476 {
 477         /* ensure we have access to the vfp */
 478         vfp_enable(NULL);
 479 
 480         /* and disable it to ensure the next usage restores the state */
 481         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 482 }
 483 
 484 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
 485         void *v)
 486 {
 487         switch (cmd) {
 488         case CPU_PM_ENTER:
 489                 vfp_pm_suspend();
 490                 break;
 491         case CPU_PM_ENTER_FAILED:
 492         case CPU_PM_EXIT:
 493                 vfp_pm_resume();
 494                 break;
 495         }
 496         return NOTIFY_OK;
 497 }
 498 
 499 static struct notifier_block vfp_cpu_pm_notifier_block = {
 500         .notifier_call = vfp_cpu_pm_notifier,
 501 };
 502 
 503 static void vfp_pm_init(void)
 504 {
 505         cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
 506 }
 507 
 508 #else
 509 static inline void vfp_pm_init(void) { }
 510 #endif /* CONFIG_CPU_PM */
 511 
 512 /*
 513  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
 514  * with the hardware state.
 515  */
 516 void vfp_sync_hwstate(struct thread_info *thread)
 517 {
 518         unsigned int cpu = get_cpu();
 519 
 520         if (vfp_state_in_hw(cpu, thread)) {
 521                 u32 fpexc = fmrx(FPEXC);
 522 
 523                 /*
 524                  * Save the last VFP state on this CPU.
 525                  */
 526                 fmxr(FPEXC, fpexc | FPEXC_EN);
 527                 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
 528                 fmxr(FPEXC, fpexc);
 529         }
 530 
 531         put_cpu();
 532 }
 533 
 534 /* Ensure that the thread reloads the hardware VFP state on the next use. */
 535 void vfp_flush_hwstate(struct thread_info *thread)
 536 {
 537         unsigned int cpu = get_cpu();
 538 
 539         vfp_force_reload(cpu, thread);
 540 
 541         put_cpu();
 542 }
 543 
 544 /*
 545  * Save the current VFP state into the provided structures and prepare
 546  * for entry into a new function (signal handler).
 547  */
 548 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
 549                                     struct user_vfp_exc *ufp_exc)
 550 {
 551         struct thread_info *thread = current_thread_info();
 552         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
 553 
 554         /* Ensure that the saved hwstate is up-to-date. */
 555         vfp_sync_hwstate(thread);
 556 
 557         /*
 558          * Copy the floating point registers. There can be unused
 559          * registers see asm/hwcap.h for details.
 560          */
 561         memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
 562 
 563         /*
 564          * Copy the status and control register.
 565          */
 566         ufp->fpscr = hwstate->fpscr;
 567 
 568         /*
 569          * Copy the exception registers.
 570          */
 571         ufp_exc->fpexc = hwstate->fpexc;
 572         ufp_exc->fpinst = hwstate->fpinst;
 573         ufp_exc->fpinst2 = hwstate->fpinst2;
 574 
 575         /* Ensure that VFP is disabled. */
 576         vfp_flush_hwstate(thread);
 577 
 578         /*
 579          * As per the PCS, clear the length and stride bits for function
 580          * entry.
 581          */
 582         hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
 583         return 0;
 584 }
 585 
 586 /* Sanitise and restore the current VFP state from the provided structures. */
 587 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
 588 {
 589         struct thread_info *thread = current_thread_info();
 590         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
 591         unsigned long fpexc;
 592 
 593         /* Disable VFP to avoid corrupting the new thread state. */
 594         vfp_flush_hwstate(thread);
 595 
 596         /*
 597          * Copy the floating point registers. There can be unused
 598          * registers see asm/hwcap.h for details.
 599          */
 600         memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
 601         /*
 602          * Copy the status and control register.
 603          */
 604         hwstate->fpscr = ufp->fpscr;
 605 
 606         /*
 607          * Sanitise and restore the exception registers.
 608          */
 609         fpexc = ufp_exc->fpexc;
 610 
 611         /* Ensure the VFP is enabled. */
 612         fpexc |= FPEXC_EN;
 613 
 614         /* Ensure FPINST2 is invalid and the exception flag is cleared. */
 615         fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
 616         hwstate->fpexc = fpexc;
 617 
 618         hwstate->fpinst = ufp_exc->fpinst;
 619         hwstate->fpinst2 = ufp_exc->fpinst2;
 620 
 621         return 0;
 622 }
 623 
 624 /*
 625  * VFP hardware can lose all context when a CPU goes offline.
 626  * As we will be running in SMP mode with CPU hotplug, we will save the
 627  * hardware state at every thread switch.  We clear our held state when
 628  * a CPU has been killed, indicating that the VFP hardware doesn't contain
 629  * a threads VFP state.  When a CPU starts up, we re-enable access to the
 630  * VFP hardware. The callbacks below are called on the CPU which
 631  * is being offlined/onlined.
 632  */
 633 static int vfp_dying_cpu(unsigned int cpu)
 634 {
 635         vfp_current_hw_state[cpu] = NULL;
 636         return 0;
 637 }
 638 
 639 static int vfp_starting_cpu(unsigned int unused)
 640 {
 641         vfp_enable(NULL);
 642         return 0;
 643 }
 644 
 645 void vfp_kmode_exception(void)
 646 {
 647         /*
 648          * If we reach this point, a floating point exception has been raised
 649          * while running in kernel mode. If the NEON/VFP unit was enabled at the
 650          * time, it means a VFP instruction has been issued that requires
 651          * software assistance to complete, something which is not currently
 652          * supported in kernel mode.
 653          * If the NEON/VFP unit was disabled, and the location pointed to below
 654          * is properly preceded by a call to kernel_neon_begin(), something has
 655          * caused the task to be scheduled out and back in again. In this case,
 656          * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
 657          * be helpful in localizing the problem.
 658          */
 659         if (fmrx(FPEXC) & FPEXC_EN)
 660                 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
 661         else
 662                 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
 663 }
 664 
 665 #ifdef CONFIG_KERNEL_MODE_NEON
 666 
 667 /*
 668  * Kernel-side NEON support functions
 669  */
 670 void kernel_neon_begin(void)
 671 {
 672         struct thread_info *thread = current_thread_info();
 673         unsigned int cpu;
 674         u32 fpexc;
 675 
 676         /*
 677          * Kernel mode NEON is only allowed outside of interrupt context
 678          * with preemption disabled. This will make sure that the kernel
 679          * mode NEON register contents never need to be preserved.
 680          */
 681         BUG_ON(in_interrupt());
 682         cpu = get_cpu();
 683 
 684         fpexc = fmrx(FPEXC) | FPEXC_EN;
 685         fmxr(FPEXC, fpexc);
 686 
 687         /*
 688          * Save the userland NEON/VFP state. Under UP,
 689          * the owner could be a task other than 'current'
 690          */
 691         if (vfp_state_in_hw(cpu, thread))
 692                 vfp_save_state(&thread->vfpstate, fpexc);
 693 #ifndef CONFIG_SMP
 694         else if (vfp_current_hw_state[cpu] != NULL)
 695                 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
 696 #endif
 697         vfp_current_hw_state[cpu] = NULL;
 698 }
 699 EXPORT_SYMBOL(kernel_neon_begin);
 700 
 701 void kernel_neon_end(void)
 702 {
 703         /* Disable the NEON/VFP unit. */
 704         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
 705         put_cpu();
 706 }
 707 EXPORT_SYMBOL(kernel_neon_end);
 708 
 709 #endif /* CONFIG_KERNEL_MODE_NEON */
 710 
 711 /*
 712  * VFP support code initialisation.
 713  */
 714 static int __init vfp_init(void)
 715 {
 716         unsigned int vfpsid;
 717         unsigned int cpu_arch = cpu_architecture();
 718 
 719         /*
 720          * Enable the access to the VFP on all online CPUs so the
 721          * following test on FPSID will succeed.
 722          */
 723         if (cpu_arch >= CPU_ARCH_ARMv6)
 724                 on_each_cpu(vfp_enable, NULL, 1);
 725 
 726         /*
 727          * First check that there is a VFP that we can use.
 728          * The handler is already setup to just log calls, so
 729          * we just need to read the VFPSID register.
 730          */
 731         vfp_vector = vfp_testing_entry;
 732         barrier();
 733         vfpsid = fmrx(FPSID);
 734         barrier();
 735         vfp_vector = vfp_null_entry;
 736 
 737         pr_info("VFP support v0.3: ");
 738         if (VFP_arch) {
 739                 pr_cont("not present\n");
 740                 return 0;
 741         /* Extract the architecture on CPUID scheme */
 742         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
 743                 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
 744                 VFP_arch >>= FPSID_ARCH_BIT;
 745                 /*
 746                  * Check for the presence of the Advanced SIMD
 747                  * load/store instructions, integer and single
 748                  * precision floating point operations. Only check
 749                  * for NEON if the hardware has the MVFR registers.
 750                  */
 751                 if (IS_ENABLED(CONFIG_NEON) &&
 752                    (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
 753                         elf_hwcap |= HWCAP_NEON;
 754 
 755                 if (IS_ENABLED(CONFIG_VFPv3)) {
 756                         u32 mvfr0 = fmrx(MVFR0);
 757                         if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
 758                             ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
 759                                 elf_hwcap |= HWCAP_VFPv3;
 760                                 /*
 761                                  * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
 762                                  * this configuration only have 16 x 64bit
 763                                  * registers.
 764                                  */
 765                                 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
 766                                         /* also v4-D16 */
 767                                         elf_hwcap |= HWCAP_VFPv3D16;
 768                                 else
 769                                         elf_hwcap |= HWCAP_VFPD32;
 770                         }
 771 
 772                         if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
 773                                 elf_hwcap |= HWCAP_VFPv4;
 774                 }
 775         /* Extract the architecture version on pre-cpuid scheme */
 776         } else {
 777                 if (vfpsid & FPSID_NODOUBLE) {
 778                         pr_cont("no double precision support\n");
 779                         return 0;
 780                 }
 781 
 782                 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
 783         }
 784 
 785         cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
 786                                   "arm/vfp:starting", vfp_starting_cpu,
 787                                   vfp_dying_cpu);
 788 
 789         vfp_vector = vfp_support_entry;
 790 
 791         thread_register_notifier(&vfp_notifier_block);
 792         vfp_pm_init();
 793 
 794         /*
 795          * We detected VFP, and the support code is
 796          * in place; report VFP support to userspace.
 797          */
 798         elf_hwcap |= HWCAP_VFP;
 799 
 800         pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
 801                 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
 802                 VFP_arch,
 803                 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
 804                 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
 805                 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
 806 
 807         return 0;
 808 }
 809 
 810 core_initcall(vfp_init);

/* [<][>][^][v][top][bottom][index][help] */