root/arch/s390/numa/mode_emu.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pin_core_to_node
  2. cores_pinned
  3. core_pinned_to_node_id
  4. cores_free
  5. core_node
  6. core_drawer
  7. core_book
  8. core_mc
  9. dist_core_to_core
  10. dist_node_to_core
  11. toptree_unify_tree
  12. node_for_core
  13. toptree_to_numa_single
  14. move_level_to_numa_node
  15. move_level_to_numa
  16. toptree_to_numa_first
  17. toptree_new
  18. create_core_to_node_map
  19. toptree_to_numa
  20. toptree_from_topology
  21. topology_add_core
  22. toptree_to_topology
  23. print_node_to_core_map
  24. pin_all_possible_cpus
  25. emu_update_cpu_topology
  26. emu_setup_size_adjust
  27. emu_setup_nodes_adjust
  28. emu_setup
  29. emu_pfn_to_nid
  30. emu_align
  31. emu_distance
  32. early_parse_emu_nodes
  33. early_parse_emu_size

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * NUMA support for s390
   4  *
   5  * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
   6  * without using real topology information about the physical memory of the
   7  * machine.
   8  *
   9  * It distributes the available CPUs to nodes while respecting the original
  10  * machine topology information. This is done by trying to avoid to separate
  11  * CPUs which reside on the same book or even on the same MC.
  12  *
  13  * Because the current Linux scheduler code requires a stable cpu to node
  14  * mapping, cores are pinned to nodes when the first CPU thread is set online.
  15  *
  16  * Copyright IBM Corp. 2015
  17  */
  18 
  19 #define KMSG_COMPONENT "numa_emu"
  20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21 
  22 #include <linux/kernel.h>
  23 #include <linux/cpumask.h>
  24 #include <linux/memblock.h>
  25 #include <linux/node.h>
  26 #include <linux/memory.h>
  27 #include <linux/slab.h>
  28 #include <asm/smp.h>
  29 #include <asm/topology.h>
  30 #include "numa_mode.h"
  31 #include "toptree.h"
  32 
  33 /* Distances between the different system components */
  34 #define DIST_EMPTY      0
  35 #define DIST_CORE       1
  36 #define DIST_MC         2
  37 #define DIST_BOOK       3
  38 #define DIST_DRAWER     4
  39 #define DIST_MAX        5
  40 
  41 /* Node distance reported to common code */
  42 #define EMU_NODE_DIST   10
  43 
  44 /* Node ID for free (not yet pinned) cores */
  45 #define NODE_ID_FREE    -1
  46 
  47 /* Different levels of toptree */
  48 enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
  49 
  50 /* The two toptree IDs */
  51 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
  52 
  53 /* Number of NUMA nodes */
  54 static int emu_nodes = 1;
  55 /* NUMA stripe size */
  56 static unsigned long emu_size;
  57 
  58 /*
  59  * Node to core pinning information updates are protected by
  60  * "sched_domains_mutex".
  61  */
  62 static struct {
  63         s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */
  64         int total;                      /* Total number of pinned cores */
  65         int per_node_target;            /* Cores per node without extra cores */
  66         int per_node[MAX_NUMNODES];     /* Number of cores pinned to node */
  67 } *emu_cores;
  68 
  69 /*
  70  * Pin a core to a node
  71  */
  72 static void pin_core_to_node(int core_id, int node_id)
  73 {
  74         if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
  75                 emu_cores->per_node[node_id]++;
  76                 emu_cores->to_node_id[core_id] = node_id;
  77                 emu_cores->total++;
  78         } else {
  79                 WARN_ON(emu_cores->to_node_id[core_id] != node_id);
  80         }
  81 }
  82 
  83 /*
  84  * Number of pinned cores of a node
  85  */
  86 static int cores_pinned(struct toptree *node)
  87 {
  88         return emu_cores->per_node[node->id];
  89 }
  90 
  91 /*
  92  * ID of the node where the core is pinned (or NODE_ID_FREE)
  93  */
  94 static int core_pinned_to_node_id(struct toptree *core)
  95 {
  96         return emu_cores->to_node_id[core->id];
  97 }
  98 
  99 /*
 100  * Number of cores in the tree that are not yet pinned
 101  */
 102 static int cores_free(struct toptree *tree)
 103 {
 104         struct toptree *core;
 105         int count = 0;
 106 
 107         toptree_for_each(core, tree, CORE) {
 108                 if (core_pinned_to_node_id(core) == NODE_ID_FREE)
 109                         count++;
 110         }
 111         return count;
 112 }
 113 
 114 /*
 115  * Return node of core
 116  */
 117 static struct toptree *core_node(struct toptree *core)
 118 {
 119         return core->parent->parent->parent->parent;
 120 }
 121 
 122 /*
 123  * Return drawer of core
 124  */
 125 static struct toptree *core_drawer(struct toptree *core)
 126 {
 127         return core->parent->parent->parent;
 128 }
 129 
 130 /*
 131  * Return book of core
 132  */
 133 static struct toptree *core_book(struct toptree *core)
 134 {
 135         return core->parent->parent;
 136 }
 137 
 138 /*
 139  * Return mc of core
 140  */
 141 static struct toptree *core_mc(struct toptree *core)
 142 {
 143         return core->parent;
 144 }
 145 
 146 /*
 147  * Distance between two cores
 148  */
 149 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
 150 {
 151         if (core_drawer(core1)->id != core_drawer(core2)->id)
 152                 return DIST_DRAWER;
 153         if (core_book(core1)->id != core_book(core2)->id)
 154                 return DIST_BOOK;
 155         if (core_mc(core1)->id != core_mc(core2)->id)
 156                 return DIST_MC;
 157         /* Same core or sibling on same MC */
 158         return DIST_CORE;
 159 }
 160 
 161 /*
 162  * Distance of a node to a core
 163  */
 164 static int dist_node_to_core(struct toptree *node, struct toptree *core)
 165 {
 166         struct toptree *core_node;
 167         int dist_min = DIST_MAX;
 168 
 169         toptree_for_each(core_node, node, CORE)
 170                 dist_min = min(dist_min, dist_core_to_core(core_node, core));
 171         return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
 172 }
 173 
 174 /*
 175  * Unify will delete empty nodes, therefore recreate nodes.
 176  */
 177 static void toptree_unify_tree(struct toptree *tree)
 178 {
 179         int nid;
 180 
 181         toptree_unify(tree);
 182         for (nid = 0; nid < emu_nodes; nid++)
 183                 toptree_get_child(tree, nid);
 184 }
 185 
 186 /*
 187  * Find the best/nearest node for a given core and ensure that no node
 188  * gets more than "emu_cores->per_node_target + extra" cores.
 189  */
 190 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
 191                                      int extra)
 192 {
 193         struct toptree *node, *node_best = NULL;
 194         int dist_cur, dist_best, cores_target;
 195 
 196         cores_target = emu_cores->per_node_target + extra;
 197         dist_best = DIST_MAX;
 198         node_best = NULL;
 199         toptree_for_each(node, numa, NODE) {
 200                 /* Already pinned cores must use their nodes */
 201                 if (core_pinned_to_node_id(core) == node->id) {
 202                         node_best = node;
 203                         break;
 204                 }
 205                 /* Skip nodes that already have enough cores */
 206                 if (cores_pinned(node) >= cores_target)
 207                         continue;
 208                 dist_cur = dist_node_to_core(node, core);
 209                 if (dist_cur < dist_best) {
 210                         dist_best = dist_cur;
 211                         node_best = node;
 212                 }
 213         }
 214         return node_best;
 215 }
 216 
 217 /*
 218  * Find the best node for each core with respect to "extra" core count
 219  */
 220 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
 221                                    int extra)
 222 {
 223         struct toptree *node, *core, *tmp;
 224 
 225         toptree_for_each_safe(core, tmp, phys, CORE) {
 226                 node = node_for_core(numa, core, extra);
 227                 if (!node)
 228                         return;
 229                 toptree_move(core, node);
 230                 pin_core_to_node(core->id, node->id);
 231         }
 232 }
 233 
 234 /*
 235  * Move structures of given level to specified NUMA node
 236  */
 237 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
 238                                     enum toptree_level level, bool perfect)
 239 {
 240         int cores_free, cores_target = emu_cores->per_node_target;
 241         struct toptree *cur, *tmp;
 242 
 243         toptree_for_each_safe(cur, tmp, phys, level) {
 244                 cores_free = cores_target - toptree_count(node, CORE);
 245                 if (perfect) {
 246                         if (cores_free == toptree_count(cur, CORE))
 247                                 toptree_move(cur, node);
 248                 } else {
 249                         if (cores_free >= toptree_count(cur, CORE))
 250                                 toptree_move(cur, node);
 251                 }
 252         }
 253 }
 254 
 255 /*
 256  * Move structures of a given level to NUMA nodes. If "perfect" is specified
 257  * move only perfectly fitting structures. Otherwise move also smaller
 258  * than needed structures.
 259  */
 260 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
 261                                enum toptree_level level, bool perfect)
 262 {
 263         struct toptree *node;
 264 
 265         toptree_for_each(node, numa, NODE)
 266                 move_level_to_numa_node(node, phys, level, perfect);
 267 }
 268 
 269 /*
 270  * For the first run try to move the big structures
 271  */
 272 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
 273 {
 274         struct toptree *core;
 275 
 276         /* Always try to move perfectly fitting structures first */
 277         move_level_to_numa(numa, phys, DRAWER, true);
 278         move_level_to_numa(numa, phys, DRAWER, false);
 279         move_level_to_numa(numa, phys, BOOK, true);
 280         move_level_to_numa(numa, phys, BOOK, false);
 281         move_level_to_numa(numa, phys, MC, true);
 282         move_level_to_numa(numa, phys, MC, false);
 283         /* Now pin all the moved cores */
 284         toptree_for_each(core, numa, CORE)
 285                 pin_core_to_node(core->id, core_node(core)->id);
 286 }
 287 
 288 /*
 289  * Allocate new topology and create required nodes
 290  */
 291 static struct toptree *toptree_new(int id, int nodes)
 292 {
 293         struct toptree *tree;
 294         int nid;
 295 
 296         tree = toptree_alloc(TOPOLOGY, id);
 297         if (!tree)
 298                 goto fail;
 299         for (nid = 0; nid < nodes; nid++) {
 300                 if (!toptree_get_child(tree, nid))
 301                         goto fail;
 302         }
 303         return tree;
 304 fail:
 305         panic("NUMA emulation could not allocate topology");
 306 }
 307 
 308 /*
 309  * Allocate and initialize core to node mapping
 310  */
 311 static void __ref create_core_to_node_map(void)
 312 {
 313         int i;
 314 
 315         emu_cores = memblock_alloc(sizeof(*emu_cores), 8);
 316         if (!emu_cores)
 317                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 318                       __func__, sizeof(*emu_cores), 8);
 319         for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
 320                 emu_cores->to_node_id[i] = NODE_ID_FREE;
 321 }
 322 
 323 /*
 324  * Move cores from physical topology into NUMA target topology
 325  * and try to keep as much of the physical topology as possible.
 326  */
 327 static struct toptree *toptree_to_numa(struct toptree *phys)
 328 {
 329         static int first = 1;
 330         struct toptree *numa;
 331         int cores_total;
 332 
 333         cores_total = emu_cores->total + cores_free(phys);
 334         emu_cores->per_node_target = cores_total / emu_nodes;
 335         numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
 336         if (first) {
 337                 toptree_to_numa_first(numa, phys);
 338                 first = 0;
 339         }
 340         toptree_to_numa_single(numa, phys, 0);
 341         toptree_to_numa_single(numa, phys, 1);
 342         toptree_unify_tree(numa);
 343 
 344         WARN_ON(cpumask_weight(&phys->mask));
 345         return numa;
 346 }
 347 
 348 /*
 349  * Create a toptree out of the physical topology that we got from the hypervisor
 350  */
 351 static struct toptree *toptree_from_topology(void)
 352 {
 353         struct toptree *phys, *node, *drawer, *book, *mc, *core;
 354         struct cpu_topology_s390 *top;
 355         int cpu;
 356 
 357         phys = toptree_new(TOPTREE_ID_PHYS, 1);
 358 
 359         for_each_cpu(cpu, &cpus_with_topology) {
 360                 top = &cpu_topology[cpu];
 361                 node = toptree_get_child(phys, 0);
 362                 drawer = toptree_get_child(node, top->drawer_id);
 363                 book = toptree_get_child(drawer, top->book_id);
 364                 mc = toptree_get_child(book, top->socket_id);
 365                 core = toptree_get_child(mc, smp_get_base_cpu(cpu));
 366                 if (!drawer || !book || !mc || !core)
 367                         panic("NUMA emulation could not allocate memory");
 368                 cpumask_set_cpu(cpu, &core->mask);
 369                 toptree_update_mask(mc);
 370         }
 371         return phys;
 372 }
 373 
 374 /*
 375  * Add toptree core to topology and create correct CPU masks
 376  */
 377 static void topology_add_core(struct toptree *core)
 378 {
 379         struct cpu_topology_s390 *top;
 380         int cpu;
 381 
 382         for_each_cpu(cpu, &core->mask) {
 383                 top = &cpu_topology[cpu];
 384                 cpumask_copy(&top->thread_mask, &core->mask);
 385                 cpumask_copy(&top->core_mask, &core_mc(core)->mask);
 386                 cpumask_copy(&top->book_mask, &core_book(core)->mask);
 387                 cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
 388                 cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
 389                 top->node_id = core_node(core)->id;
 390         }
 391 }
 392 
 393 /*
 394  * Apply toptree to topology and create CPU masks
 395  */
 396 static void toptree_to_topology(struct toptree *numa)
 397 {
 398         struct toptree *core;
 399         int i;
 400 
 401         /* Clear all node masks */
 402         for (i = 0; i < MAX_NUMNODES; i++)
 403                 cpumask_clear(&node_to_cpumask_map[i]);
 404 
 405         /* Rebuild all masks */
 406         toptree_for_each(core, numa, CORE)
 407                 topology_add_core(core);
 408 }
 409 
 410 /*
 411  * Show the node to core mapping
 412  */
 413 static void print_node_to_core_map(void)
 414 {
 415         int nid, cid;
 416 
 417         if (!numa_debug_enabled)
 418                 return;
 419         printk(KERN_DEBUG "NUMA node to core mapping\n");
 420         for (nid = 0; nid < emu_nodes; nid++) {
 421                 printk(KERN_DEBUG "  node %3d: ", nid);
 422                 for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
 423                         if (emu_cores->to_node_id[cid] == nid)
 424                                 printk(KERN_CONT "%d ", cid);
 425                 }
 426                 printk(KERN_CONT "\n");
 427         }
 428 }
 429 
 430 static void pin_all_possible_cpus(void)
 431 {
 432         int core_id, node_id, cpu;
 433         static int initialized;
 434 
 435         if (initialized)
 436                 return;
 437         print_node_to_core_map();
 438         node_id = 0;
 439         for_each_possible_cpu(cpu) {
 440                 core_id = smp_get_base_cpu(cpu);
 441                 if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
 442                         continue;
 443                 pin_core_to_node(core_id, node_id);
 444                 cpu_topology[cpu].node_id = node_id;
 445                 node_id = (node_id + 1) % emu_nodes;
 446         }
 447         print_node_to_core_map();
 448         initialized = 1;
 449 }
 450 
 451 /*
 452  * Transfer physical topology into a NUMA topology and modify CPU masks
 453  * according to the NUMA topology.
 454  *
 455  * Must be called with "sched_domains_mutex" lock held.
 456  */
 457 static void emu_update_cpu_topology(void)
 458 {
 459         struct toptree *phys, *numa;
 460 
 461         if (emu_cores == NULL)
 462                 create_core_to_node_map();
 463         phys = toptree_from_topology();
 464         numa = toptree_to_numa(phys);
 465         toptree_free(phys);
 466         toptree_to_topology(numa);
 467         toptree_free(numa);
 468         pin_all_possible_cpus();
 469 }
 470 
 471 /*
 472  * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
 473  * alignment (needed for memory hotplug).
 474  */
 475 static unsigned long emu_setup_size_adjust(unsigned long size)
 476 {
 477         unsigned long size_new;
 478 
 479         size = size ? : CONFIG_EMU_SIZE;
 480         size_new = roundup(size, memory_block_size_bytes());
 481         if (size_new == size)
 482                 return size;
 483         pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
 484                 size >> 20, size_new >> 20);
 485         return size_new;
 486 }
 487 
 488 /*
 489  * If we have not enough memory for the specified nodes, reduce the node count.
 490  */
 491 static int emu_setup_nodes_adjust(int nodes)
 492 {
 493         int nodes_max;
 494 
 495         nodes_max = memblock.memory.total_size / emu_size;
 496         nodes_max = max(nodes_max, 1);
 497         if (nodes_max >= nodes)
 498                 return nodes;
 499         pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
 500         return nodes_max;
 501 }
 502 
 503 /*
 504  * Early emu setup
 505  */
 506 static void emu_setup(void)
 507 {
 508         int nid;
 509 
 510         emu_size = emu_setup_size_adjust(emu_size);
 511         emu_nodes = emu_setup_nodes_adjust(emu_nodes);
 512         for (nid = 0; nid < emu_nodes; nid++)
 513                 node_set(nid, node_possible_map);
 514         pr_info("Creating %d nodes with memory stripe size %ld MB\n",
 515                 emu_nodes, emu_size >> 20);
 516 }
 517 
 518 /*
 519  * Return node id for given page number
 520  */
 521 static int emu_pfn_to_nid(unsigned long pfn)
 522 {
 523         return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
 524 }
 525 
 526 /*
 527  * Return stripe size
 528  */
 529 static unsigned long emu_align(void)
 530 {
 531         return emu_size;
 532 }
 533 
 534 /*
 535  * Return distance between two nodes
 536  */
 537 static int emu_distance(int node1, int node2)
 538 {
 539         return (node1 != node2) * EMU_NODE_DIST;
 540 }
 541 
 542 /*
 543  * Define callbacks for generic s390 NUMA infrastructure
 544  */
 545 const struct numa_mode numa_mode_emu = {
 546         .name = "emu",
 547         .setup = emu_setup,
 548         .update_cpu_topology = emu_update_cpu_topology,
 549         .__pfn_to_nid = emu_pfn_to_nid,
 550         .align = emu_align,
 551         .distance = emu_distance,
 552 };
 553 
 554 /*
 555  * Kernel parameter: emu_nodes=<n>
 556  */
 557 static int __init early_parse_emu_nodes(char *p)
 558 {
 559         int count;
 560 
 561         if (!p || kstrtoint(p, 0, &count) != 0 || count <= 0)
 562                 return 0;
 563         emu_nodes = min(count, MAX_NUMNODES);
 564         return 0;
 565 }
 566 early_param("emu_nodes", early_parse_emu_nodes);
 567 
 568 /*
 569  * Kernel parameter: emu_size=[<n>[k|M|G|T]]
 570  */
 571 static int __init early_parse_emu_size(char *p)
 572 {
 573         if (p)
 574                 emu_size = memparse(p, NULL);
 575         return 0;
 576 }
 577 early_param("emu_size", early_parse_emu_size);

/* [<][>][^][v][top][bottom][index][help] */