root/arch/alpha/include/asm/dma.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. claim_dma_lock
  2. release_dma_lock
  3. enable_dma
  4. disable_dma
  5. clear_dma_ff
  6. set_dma_mode
  7. set_dma_ext_mode
  8. set_dma_page
  9. set_dma_addr
  10. set_dma_count
  11. get_dma_residue

   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  * include/asm-alpha/dma.h
   4  *
   5  * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
   6  * use ISA-compatible dma.  The only extension is support for high-page
   7  * registers that allow to set the top 8 bits of a 32-bit DMA address.
   8  * This register should be written last when setting up a DMA address
   9  * as this will also enable DMA across 64 KB boundaries.
  10  */
  11 
  12 /* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
  13  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
  14  * Written by Hennus Bergman, 1992.
  15  * High DMA channel support & info by Hannu Savolainen
  16  * and John Boyd, Nov. 1992.
  17  */
  18 
  19 #ifndef _ASM_DMA_H
  20 #define _ASM_DMA_H
  21 
  22 #include <linux/spinlock.h>
  23 #include <asm/io.h>
  24 
  25 #define dma_outb        outb
  26 #define dma_inb         inb
  27 
  28 /*
  29  * NOTES about DMA transfers:
  30  *
  31  *  controller 1: channels 0-3, byte operations, ports 00-1F
  32  *  controller 2: channels 4-7, word operations, ports C0-DF
  33  *
  34  *  - ALL registers are 8 bits only, regardless of transfer size
  35  *  - channel 4 is not used - cascades 1 into 2.
  36  *  - channels 0-3 are byte - addresses/counts are for physical bytes
  37  *  - channels 5-7 are word - addresses/counts are for physical words
  38  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  39  *  - transfer count loaded to registers is 1 less than actual count
  40  *  - controller 2 offsets are all even (2x offsets for controller 1)
  41  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
  42  *  - page registers for 0-3 use bit 0, represent 64K pages
  43  *
  44  * DMA transfers are limited to the lower 16MB of _physical_ memory.  
  45  * Note that addresses loaded into registers must be _physical_ addresses,
  46  * not logical addresses (which may differ if paging is active).
  47  *
  48  *  Address mapping for channels 0-3:
  49  *
  50  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
  51  *    |  ...  |   |  ... |   |  ... |
  52  *    |  ...  |   |  ... |   |  ... |
  53  *    |  ...  |   |  ... |   |  ... |
  54  *   P7  ...  P0  A7 ... A0  A7 ... A0   
  55  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
  56  *
  57  *  Address mapping for channels 5-7:
  58  *
  59  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
  60  *    |  ...  |   \   \   ... \  \  \  ... \  \
  61  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
  62  *    |  ...  |     \   \   ... \  \  \  ... \
  63  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0   
  64  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
  65  *
  66  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  67  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  68  * the hardware level, so odd-byte transfers aren't possible).
  69  *
  70  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  71  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
  72  * and up to 128K bytes may be transferred on channels 5-7 in one operation. 
  73  *
  74  */
  75 
  76 #define MAX_DMA_CHANNELS        8
  77 
  78 /*
  79   ISA DMA limitations on Alpha platforms,
  80 
  81   These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
  82   just a wiring limit.
  83 */
  84 
  85 /* The maximum address for ISA DMA transfer on Alpha XL, due to an
  86    hardware SIO limitation, is 64MB.
  87 */
  88 #define ALPHA_XL_MAX_ISA_DMA_ADDRESS            0x04000000UL
  89 
  90 /* The maximum address for ISA DMA transfer on RUFFIAN,
  91    due to an hardware SIO limitation, is 16MB.
  92 */
  93 #define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS       0x01000000UL
  94 
  95 /* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
  96    due to an hardware SIO chip limitation, is 2GB.
  97 */
  98 #define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS         0x80000000UL
  99 #define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS         0x80000000UL
 100 
 101 /*
 102   Maximum address for all the others is the complete 32-bit bus
 103   address space.
 104 */
 105 #define ALPHA_MAX_ISA_DMA_ADDRESS               0x100000000UL
 106 
 107 #ifdef CONFIG_ALPHA_GENERIC
 108 # define MAX_ISA_DMA_ADDRESS            (alpha_mv.max_isa_dma_address)
 109 #else
 110 # if defined(CONFIG_ALPHA_XL)
 111 #  define MAX_ISA_DMA_ADDRESS           ALPHA_XL_MAX_ISA_DMA_ADDRESS
 112 # elif defined(CONFIG_ALPHA_RUFFIAN)
 113 #  define MAX_ISA_DMA_ADDRESS           ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
 114 # elif defined(CONFIG_ALPHA_SABLE)
 115 #  define MAX_ISA_DMA_ADDRESS           ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
 116 # elif defined(CONFIG_ALPHA_ALCOR)
 117 #  define MAX_ISA_DMA_ADDRESS           ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
 118 # else
 119 #  define MAX_ISA_DMA_ADDRESS           ALPHA_MAX_ISA_DMA_ADDRESS
 120 # endif
 121 #endif
 122 
 123 /* If we have the iommu, we don't have any address limitations on DMA.
 124    Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
 125    like i386. */
 126 #define MAX_DMA_ADDRESS         (alpha_mv.mv_pci_tbi ?  \
 127                                  ~0UL : IDENT_ADDR + 0x01000000)
 128 
 129 /* 8237 DMA controllers */
 130 #define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
 131 #define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
 132 
 133 /* DMA controller registers */
 134 #define DMA1_CMD_REG            0x08    /* command register (w) */
 135 #define DMA1_STAT_REG           0x08    /* status register (r) */
 136 #define DMA1_REQ_REG            0x09    /* request register (w) */
 137 #define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
 138 #define DMA1_MODE_REG           0x0B    /* mode register (w) */
 139 #define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
 140 #define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
 141 #define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
 142 #define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
 143 #define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
 144 #define DMA1_EXT_MODE_REG       (0x400 | DMA1_MODE_REG)
 145 
 146 #define DMA2_CMD_REG            0xD0    /* command register (w) */
 147 #define DMA2_STAT_REG           0xD0    /* status register (r) */
 148 #define DMA2_REQ_REG            0xD2    /* request register (w) */
 149 #define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
 150 #define DMA2_MODE_REG           0xD6    /* mode register (w) */
 151 #define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
 152 #define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
 153 #define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
 154 #define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
 155 #define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
 156 #define DMA2_EXT_MODE_REG       (0x400 | DMA2_MODE_REG)
 157 
 158 #define DMA_ADDR_0              0x00    /* DMA address registers */
 159 #define DMA_ADDR_1              0x02
 160 #define DMA_ADDR_2              0x04
 161 #define DMA_ADDR_3              0x06
 162 #define DMA_ADDR_4              0xC0
 163 #define DMA_ADDR_5              0xC4
 164 #define DMA_ADDR_6              0xC8
 165 #define DMA_ADDR_7              0xCC
 166 
 167 #define DMA_CNT_0               0x01    /* DMA count registers */
 168 #define DMA_CNT_1               0x03
 169 #define DMA_CNT_2               0x05
 170 #define DMA_CNT_3               0x07
 171 #define DMA_CNT_4               0xC2
 172 #define DMA_CNT_5               0xC6
 173 #define DMA_CNT_6               0xCA
 174 #define DMA_CNT_7               0xCE
 175 
 176 #define DMA_PAGE_0              0x87    /* DMA page registers */
 177 #define DMA_PAGE_1              0x83
 178 #define DMA_PAGE_2              0x81
 179 #define DMA_PAGE_3              0x82
 180 #define DMA_PAGE_5              0x8B
 181 #define DMA_PAGE_6              0x89
 182 #define DMA_PAGE_7              0x8A
 183 
 184 #define DMA_HIPAGE_0            (0x400 | DMA_PAGE_0)
 185 #define DMA_HIPAGE_1            (0x400 | DMA_PAGE_1)
 186 #define DMA_HIPAGE_2            (0x400 | DMA_PAGE_2)
 187 #define DMA_HIPAGE_3            (0x400 | DMA_PAGE_3)
 188 #define DMA_HIPAGE_4            (0x400 | DMA_PAGE_4)
 189 #define DMA_HIPAGE_5            (0x400 | DMA_PAGE_5)
 190 #define DMA_HIPAGE_6            (0x400 | DMA_PAGE_6)
 191 #define DMA_HIPAGE_7            (0x400 | DMA_PAGE_7)
 192 
 193 #define DMA_MODE_READ   0x44    /* I/O to memory, no autoinit, increment, single mode */
 194 #define DMA_MODE_WRITE  0x48    /* memory to I/O, no autoinit, increment, single mode */
 195 #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
 196 
 197 #define DMA_AUTOINIT    0x10
 198 
 199 extern spinlock_t  dma_spin_lock;
 200 
 201 static __inline__ unsigned long claim_dma_lock(void)
 202 {
 203         unsigned long flags;
 204         spin_lock_irqsave(&dma_spin_lock, flags);
 205         return flags;
 206 }
 207 
 208 static __inline__ void release_dma_lock(unsigned long flags)
 209 {
 210         spin_unlock_irqrestore(&dma_spin_lock, flags);
 211 }
 212 
 213 /* enable/disable a specific DMA channel */
 214 static __inline__ void enable_dma(unsigned int dmanr)
 215 {
 216         if (dmanr<=3)
 217                 dma_outb(dmanr,  DMA1_MASK_REG);
 218         else
 219                 dma_outb(dmanr & 3,  DMA2_MASK_REG);
 220 }
 221 
 222 static __inline__ void disable_dma(unsigned int dmanr)
 223 {
 224         if (dmanr<=3)
 225                 dma_outb(dmanr | 4,  DMA1_MASK_REG);
 226         else
 227                 dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
 228 }
 229 
 230 /* Clear the 'DMA Pointer Flip Flop'.
 231  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
 232  * Use this once to initialize the FF to a known state.
 233  * After that, keep track of it. :-)
 234  * --- In order to do that, the DMA routines below should ---
 235  * --- only be used while interrupts are disabled! ---
 236  */
 237 static __inline__ void clear_dma_ff(unsigned int dmanr)
 238 {
 239         if (dmanr<=3)
 240                 dma_outb(0,  DMA1_CLEAR_FF_REG);
 241         else
 242                 dma_outb(0,  DMA2_CLEAR_FF_REG);
 243 }
 244 
 245 /* set mode (above) for a specific DMA channel */
 246 static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
 247 {
 248         if (dmanr<=3)
 249                 dma_outb(mode | dmanr,  DMA1_MODE_REG);
 250         else
 251                 dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
 252 }
 253 
 254 /* set extended mode for a specific DMA channel */
 255 static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
 256 {
 257         if (dmanr<=3)
 258                 dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
 259         else
 260                 dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
 261 }
 262 
 263 /* Set only the page register bits of the transfer address.
 264  * This is used for successive transfers when we know the contents of
 265  * the lower 16 bits of the DMA current address register.
 266  */
 267 static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
 268 {
 269         switch(dmanr) {
 270                 case 0:
 271                         dma_outb(pagenr, DMA_PAGE_0);
 272                         dma_outb((pagenr >> 8), DMA_HIPAGE_0);
 273                         break;
 274                 case 1:
 275                         dma_outb(pagenr, DMA_PAGE_1);
 276                         dma_outb((pagenr >> 8), DMA_HIPAGE_1);
 277                         break;
 278                 case 2:
 279                         dma_outb(pagenr, DMA_PAGE_2);
 280                         dma_outb((pagenr >> 8), DMA_HIPAGE_2);
 281                         break;
 282                 case 3:
 283                         dma_outb(pagenr, DMA_PAGE_3);
 284                         dma_outb((pagenr >> 8), DMA_HIPAGE_3);
 285                         break;
 286                 case 5:
 287                         dma_outb(pagenr & 0xfe, DMA_PAGE_5);
 288                         dma_outb((pagenr >> 8), DMA_HIPAGE_5);
 289                         break;
 290                 case 6:
 291                         dma_outb(pagenr & 0xfe, DMA_PAGE_6);
 292                         dma_outb((pagenr >> 8), DMA_HIPAGE_6);
 293                         break;
 294                 case 7:
 295                         dma_outb(pagenr & 0xfe, DMA_PAGE_7);
 296                         dma_outb((pagenr >> 8), DMA_HIPAGE_7);
 297                         break;
 298         }
 299 }
 300 
 301 
 302 /* Set transfer address & page bits for specific DMA channel.
 303  * Assumes dma flipflop is clear.
 304  */
 305 static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
 306 {
 307         if (dmanr <= 3)  {
 308             dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 309             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 310         }  else  {
 311             dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 312             dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 313         }
 314         set_dma_page(dmanr, a>>16);     /* set hipage last to enable 32-bit mode */
 315 }
 316 
 317 
 318 /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
 319  * a specific DMA channel.
 320  * You must ensure the parameters are valid.
 321  * NOTE: from a manual: "the number of transfers is one more
 322  * than the initial word count"! This is taken into account.
 323  * Assumes dma flip-flop is clear.
 324  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
 325  */
 326 static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
 327 {
 328         count--;
 329         if (dmanr <= 3)  {
 330             dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 331             dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 332         } else {
 333             dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 334             dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 335         }
 336 }
 337 
 338 
 339 /* Get DMA residue count. After a DMA transfer, this
 340  * should return zero. Reading this while a DMA transfer is
 341  * still in progress will return unpredictable results.
 342  * If called before the channel has been used, it may return 1.
 343  * Otherwise, it returns the number of _bytes_ left to transfer.
 344  *
 345  * Assumes DMA flip-flop is clear.
 346  */
 347 static __inline__ int get_dma_residue(unsigned int dmanr)
 348 {
 349         unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
 350                                          : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
 351 
 352         /* using short to get 16-bit wrap around */
 353         unsigned short count;
 354 
 355         count = 1 + dma_inb(io_port);
 356         count += dma_inb(io_port) << 8;
 357         
 358         return (dmanr<=3)? count : (count<<1);
 359 }
 360 
 361 
 362 /* These are in kernel/dma.c: */
 363 extern int request_dma(unsigned int dmanr, const char * device_id);     /* reserve a DMA channel */
 364 extern void free_dma(unsigned int dmanr);       /* release it again */
 365 #define KERNEL_HAVE_CHECK_DMA
 366 extern int check_dma(unsigned int dmanr);
 367 
 368 /* From PCI */
 369 
 370 #ifdef CONFIG_PCI
 371 extern int isa_dma_bridge_buggy;
 372 #else
 373 #define isa_dma_bridge_buggy    (0)
 374 #endif
 375 
 376 
 377 #endif /* _ASM_DMA_H */

/* [<][>][^][v][top][bottom][index][help] */