root/arch/alpha/lib/ev6-clear_user.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  * arch/alpha/lib/ev6-clear_user.S
   4  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
   5  *
   6  * Zero user space, handling exceptions as we go.
   7  *
   8  * We have to make sure that $0 is always up-to-date and contains the
   9  * right "bytes left to zero" value (and that it is updated only _after_
  10  * a successful copy).  There is also some rather minor exception setup
  11  * stuff.
  12  *
  13  * Much of the information about 21264 scheduling/coding comes from:
  14  *      Compiler Writer's Guide for the Alpha 21264
  15  *      abbreviated as 'CWG' in other comments here
  16  *      ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
  17  * Scheduling notation:
  18  *      E       - either cluster
  19  *      U       - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
  20  *      L       - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
  21  * Try not to change the actual algorithm if possible for consistency.
  22  * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
  23  * From perusing the source code context where this routine is called, it is
  24  * a fair assumption that significant fractions of entire pages are zeroed, so
  25  * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
  26  * ASSUMPTION:
  27  *      The believed purpose of only updating $0 after a store is that a signal
  28  *      may come along during the execution of this chunk of code, and we don't
  29  *      want to leave a hole (and we also want to avoid repeating lots of work)
  30  */
  31 
  32 #include <asm/export.h>
  33 /* Allow an exception for an insn; exit if we get one.  */
  34 #define EX(x,y...)                      \
  35         99: x,##y;                      \
  36         .section __ex_table,"a";        \
  37         .long 99b - .;                  \
  38         lda $31, $exception-99b($31);   \
  39         .previous
  40 
  41         .set noat
  42         .set noreorder
  43         .align 4
  44 
  45         .globl __clear_user
  46         .ent __clear_user
  47         .frame  $30, 0, $26
  48         .prologue 0
  49 
  50                                 # Pipeline info : Slotting & Comments
  51 __clear_user:
  52         and     $17, $17, $0
  53         and     $16, 7, $4      # .. E  .. ..   : find dest head misalignment
  54         beq     $0, $zerolength # U  .. .. ..   :  U L U L
  55 
  56         addq    $0, $4, $1      # .. .. .. E    : bias counter
  57         and     $1, 7, $2       # .. .. E  ..   : number of misaligned bytes in tail
  58 # Note - we never actually use $2, so this is a moot computation
  59 # and we can rewrite this later...
  60         srl     $1, 3, $1       # .. E  .. ..   : number of quadwords to clear
  61         beq     $4, $headalign  # U  .. .. ..   : U L U L
  62 
  63 /*
  64  * Head is not aligned.  Write (8 - $4) bytes to head of destination
  65  * This means $16 is known to be misaligned
  66  */
  67         EX( ldq_u $5, 0($16) )  # .. .. .. L    : load dst word to mask back in
  68         beq     $1, $onebyte    # .. .. U  ..   : sub-word store?
  69         mskql   $5, $16, $5     # .. U  .. ..   : take care of misaligned head
  70         addq    $16, 8, $16     # E  .. .. ..   : L U U L
  71 
  72         EX( stq_u $5, -8($16) ) # .. .. .. L    :
  73         subq    $1, 1, $1       # .. .. E  ..   :
  74         addq    $0, $4, $0      # .. E  .. ..   : bytes left -= 8 - misalignment
  75         subq    $0, 8, $0       # E  .. .. ..   : U L U L
  76 
  77         .align  4
  78 /*
  79  * (The .align directive ought to be a moot point)
  80  * values upon initial entry to the loop
  81  * $1 is number of quadwords to clear (zero is a valid value)
  82  * $2 is number of trailing bytes (0..7) ($2 never used...)
  83  * $16 is known to be aligned 0mod8
  84  */
  85 $headalign:
  86         subq    $1, 16, $4      # .. .. .. E    : If < 16, we can not use the huge loop
  87         and     $16, 0x3f, $2   # .. .. E  ..   : Forward work for huge loop
  88         subq    $2, 0x40, $3    # .. E  .. ..   : bias counter (huge loop)
  89         blt     $4, $trailquad  # U  .. .. ..   : U L U L
  90 
  91 /*
  92  * We know that we're going to do at least 16 quads, which means we are
  93  * going to be able to use the large block clear loop at least once.
  94  * Figure out how many quads we need to clear before we are 0mod64 aligned
  95  * so we can use the wh64 instruction.
  96  */
  97 
  98         nop                     # .. .. .. E
  99         nop                     # .. .. E  ..
 100         nop                     # .. E  .. ..
 101         beq     $3, $bigalign   # U  .. .. ..   : U L U L : Aligned 0mod64
 102 
 103 $alignmod64:
 104         EX( stq_u $31, 0($16) ) # .. .. .. L
 105         addq    $3, 8, $3       # .. .. E  ..
 106         subq    $0, 8, $0       # .. E  .. ..
 107         nop                     # E  .. .. ..   : U L U L
 108 
 109         nop                     # .. .. .. E
 110         subq    $1, 1, $1       # .. .. E  ..
 111         addq    $16, 8, $16     # .. E  .. ..
 112         blt     $3, $alignmod64 # U  .. .. ..   : U L U L
 113 
 114 $bigalign:
 115 /*
 116  * $0 is the number of bytes left
 117  * $1 is the number of quads left
 118  * $16 is aligned 0mod64
 119  * we know that we'll be taking a minimum of one trip through
 120  * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
 121  * We are _not_ going to update $0 after every single store.  That
 122  * would be silly, because there will be cross-cluster dependencies
 123  * no matter how the code is scheduled.  By doing it in slightly
 124  * staggered fashion, we can still do this loop in 5 fetches
 125  * The worse case will be doing two extra quads in some future execution,
 126  * in the event of an interrupted clear.
 127  * Assumes the wh64 needs to be for 2 trips through the loop in the future
 128  * The wh64 is issued on for the starting destination address for trip +2
 129  * through the loop, and if there are less than two trips left, the target
 130  * address will be for the current trip.
 131  */
 132         nop                     # E :
 133         nop                     # E :
 134         nop                     # E :
 135         bis     $16,$16,$3      # E : U L U L : Initial wh64 address is dest
 136         /* This might actually help for the current trip... */
 137 
 138 $do_wh64:
 139         wh64    ($3)            # .. .. .. L1   : memory subsystem hint
 140         subq    $1, 16, $4      # .. .. E  ..   : Forward calculation - repeat the loop?
 141         EX( stq_u $31, 0($16) ) # .. L  .. ..
 142         subq    $0, 8, $0       # E  .. .. ..   : U L U L
 143 
 144         addq    $16, 128, $3    # E : Target address of wh64
 145         EX( stq_u $31, 8($16) ) # L :
 146         EX( stq_u $31, 16($16) )        # L :
 147         subq    $0, 16, $0      # E : U L L U
 148 
 149         nop                     # E :
 150         EX( stq_u $31, 24($16) )        # L :
 151         EX( stq_u $31, 32($16) )        # L :
 152         subq    $0, 168, $5     # E : U L L U : two trips through the loop left?
 153         /* 168 = 192 - 24, since we've already completed some stores */
 154 
 155         subq    $0, 16, $0      # E :
 156         EX( stq_u $31, 40($16) )        # L :
 157         EX( stq_u $31, 48($16) )        # L :
 158         cmovlt  $5, $16, $3     # E : U L L U : Latency 2, extra mapping cycle
 159 
 160         subq    $1, 8, $1       # E :
 161         subq    $0, 16, $0      # E :
 162         EX( stq_u $31, 56($16) )        # L :
 163         nop                     # E : U L U L
 164 
 165         nop                     # E :
 166         subq    $0, 8, $0       # E :
 167         addq    $16, 64, $16    # E :
 168         bge     $4, $do_wh64    # U : U L U L
 169 
 170 $trailquad:
 171         # zero to 16 quadwords left to store, plus any trailing bytes
 172         # $1 is the number of quadwords left to go.
 173         # 
 174         nop                     # .. .. .. E
 175         nop                     # .. .. E  ..
 176         nop                     # .. E  .. ..
 177         beq     $1, $trailbytes # U  .. .. ..   : U L U L : Only 0..7 bytes to go
 178 
 179 $onequad:
 180         EX( stq_u $31, 0($16) ) # .. .. .. L
 181         subq    $1, 1, $1       # .. .. E  ..
 182         subq    $0, 8, $0       # .. E  .. ..
 183         nop                     # E  .. .. ..   : U L U L
 184 
 185         nop                     # .. .. .. E
 186         nop                     # .. .. E  ..
 187         addq    $16, 8, $16     # .. E  .. ..
 188         bgt     $1, $onequad    # U  .. .. ..   : U L U L
 189 
 190         # We have an unknown number of bytes left to go.
 191 $trailbytes:
 192         nop                     # .. .. .. E
 193         nop                     # .. .. E  ..
 194         nop                     # .. E  .. ..
 195         beq     $0, $zerolength # U  .. .. ..   : U L U L
 196 
 197         # $0 contains the number of bytes left to copy (0..31)
 198         # so we will use $0 as the loop counter
 199         # We know for a fact that $0 > 0 zero due to previous context
 200 $onebyte:
 201         EX( stb $31, 0($16) )   # .. .. .. L
 202         subq    $0, 1, $0       # .. .. E  ..   :
 203         addq    $16, 1, $16     # .. E  .. ..   :
 204         bgt     $0, $onebyte    # U  .. .. ..   : U L U L
 205 
 206 $zerolength:
 207 $exception:                     # Destination for exception recovery(?)
 208         nop                     # .. .. .. E    :
 209         nop                     # .. .. E  ..   :
 210         nop                     # .. E  .. ..   :
 211         ret     $31, ($26), 1   # L0 .. .. ..   : L U L U
 212         .end __clear_user
 213         EXPORT_SYMBOL(__clear_user)

/* [<][>][^][v][top][bottom][index][help] */