root/arch/alpha/lib/ev6-csum_ipv6_magic.S

/* [<][>][^][v][top][bottom][index][help] */
   1 /* SPDX-License-Identifier: GPL-2.0 */
   2 /*
   3  * arch/alpha/lib/ev6-csum_ipv6_magic.S
   4  * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
   5  *
   6  * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
   7  *                                struct in6_addr *daddr,
   8  *                                __u32 len,
   9  *                                unsigned short proto,
  10  *                                unsigned int csum);
  11  *
  12  * Much of the information about 21264 scheduling/coding comes from:
  13  *      Compiler Writer's Guide for the Alpha 21264
  14  *      abbreviated as 'CWG' in other comments here
  15  *      ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
  16  * Scheduling notation:
  17  *      E       - either cluster
  18  *      U       - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
  19  *      L       - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
  20  * Try not to change the actual algorithm if possible for consistency.
  21  * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
  22  *
  23  * unsigned short csum_ipv6_magic(struct in6_addr *saddr,
  24  *                                struct in6_addr *daddr,
  25  *                                __u32 len,
  26  *                                unsigned short proto,
  27  *                                unsigned int csum);
  28  *
  29  * Swap <proto> (takes form 0xaabb)
  30  * Then shift it left by 48, so result is:
  31  *      0xbbaa0000 00000000
  32  * Then turn it back into a sign extended 32-bit item
  33  *      0xbbaa0000
  34  *
  35  * Swap <len> (an unsigned int) using Mike Burrows' 7-instruction sequence
  36  * (we can't hide the 3-cycle latency of the unpkbw in the 6-instruction sequence)
  37  * Assume input takes form 0xAABBCCDD
  38  *
  39  * Finally, original 'folding' approach is to split the long into 4 unsigned shorts
  40  * add 4 ushorts, resulting in ushort/carry
  41  * add carry bits + ushort --> ushort
  42  * add carry bits + ushort --> ushort (in case the carry results in an overflow)
  43  * Truncate to a ushort.  (took 13 instructions)
  44  * From doing some testing, using the approach in checksum.c:from64to16()
  45  * results in the same outcome:
  46  * split into 2 uints, add those, generating a ulong
  47  * add the 3 low ushorts together, generating a uint
  48  * a final add of the 2 lower ushorts
  49  * truncating the result.
  50  *
  51  * Misalignment handling added by Ivan Kokshaysky <ink@jurassic.park.msu.ru>
  52  * The cost is 16 instructions (~8 cycles), including two extra loads which
  53  * may cause additional delay in rare cases (load-load replay traps).
  54  */
  55 
  56 #include <asm/export.h>
  57         .globl csum_ipv6_magic
  58         .align 4
  59         .ent csum_ipv6_magic
  60         .frame $30,0,$26,0
  61 csum_ipv6_magic:
  62         .prologue 0
  63 
  64         ldq_u   $0,0($16)       # L : Latency: 3
  65         inslh   $18,7,$4        # U : 0000000000AABBCC
  66         ldq_u   $1,8($16)       # L : Latency: 3
  67         sll     $19,8,$7        # U : U L U L : 0x00000000 00aabb00
  68 
  69         and     $16,7,$6        # E : src misalignment
  70         ldq_u   $5,15($16)      # L : Latency: 3
  71         zapnot  $20,15,$20      # U : zero extend incoming csum
  72         ldq_u   $2,0($17)       # L : U L U L : Latency: 3
  73 
  74         extql   $0,$6,$0        # U :
  75         extqh   $1,$6,$22       # U :
  76         ldq_u   $3,8($17)       # L : Latency: 3
  77         sll     $19,24,$19      # U : U U L U : 0x000000aa bb000000
  78 
  79         cmoveq  $6,$31,$22      # E : src aligned?
  80         ldq_u   $23,15($17)     # L : Latency: 3
  81         inswl   $18,3,$18       # U : 000000CCDD000000
  82         addl    $19,$7,$19      # E : U L U L : <sign bits>bbaabb00
  83 
  84         or      $0,$22,$0       # E : 1st src word complete
  85         extql   $1,$6,$1        # U :
  86         or      $18,$4,$18      # E : 000000CCDDAABBCC
  87         extqh   $5,$6,$5        # U : L U L U
  88 
  89         and     $17,7,$6        # E : dst misalignment
  90         extql   $2,$6,$2        # U :
  91         or      $1,$5,$1        # E : 2nd src word complete
  92         extqh   $3,$6,$22       # U : L U L U :
  93 
  94         cmoveq  $6,$31,$22      # E : dst aligned?
  95         extql   $3,$6,$3        # U :
  96         addq    $20,$0,$20      # E : begin summing the words
  97         extqh   $23,$6,$23      # U : L U L U :
  98 
  99         srl     $18,16,$4       # U : 0000000000CCDDAA
 100         or      $2,$22,$2       # E : 1st dst word complete
 101         zap     $19,0x3,$19     # U : <sign bits>bbaa0000
 102         or      $3,$23,$3       # E : U L U L : 2nd dst word complete
 103 
 104         cmpult  $20,$0,$0       # E :
 105         addq    $20,$1,$20      # E :
 106         zapnot  $18,0xa,$18     # U : 00000000DD00BB00
 107         zap     $4,0xa,$4       # U : U U L L : 0000000000CC00AA
 108 
 109         or      $18,$4,$18      # E : 00000000DDCCBBAA
 110         nop                     # E :
 111         cmpult  $20,$1,$1       # E :
 112         addq    $20,$2,$20      # E : U L U L
 113 
 114         cmpult  $20,$2,$2       # E :
 115         addq    $20,$3,$20      # E :
 116         cmpult  $20,$3,$3       # E : (1 cycle stall on $20)
 117         addq    $20,$18,$20     # E : U L U L (1 cycle stall on $20)
 118 
 119         cmpult  $20,$18,$18     # E :
 120         addq    $20,$19,$20     # E : (1 cycle stall on $20)
 121         addq    $0,$1,$0        # E : merge the carries back into the csum
 122         addq    $2,$3,$2        # E :
 123 
 124         cmpult  $20,$19,$19     # E :
 125         addq    $18,$19,$18     # E : (1 cycle stall on $19)
 126         addq    $0,$2,$0        # E :
 127         addq    $20,$18,$20     # E : U L U L :
 128                 /* (1 cycle stall on $18, 2 cycles on $20) */
 129 
 130         addq    $0,$20,$0       # E :
 131         zapnot  $0,15,$1        # U : Start folding output (1 cycle stall on $0)
 132         nop                     # E :
 133         srl     $0,32,$0        # U : U L U L : (1 cycle stall on $0)
 134 
 135         addq    $1,$0,$1        # E : Finished generating ulong
 136         extwl   $1,2,$2         # U : ushort[1] (1 cycle stall on $1)
 137         zapnot  $1,3,$0         # U : ushort[0] (1 cycle stall on $1)
 138         extwl   $1,4,$1         # U : ushort[2] (1 cycle stall on $1)
 139 
 140         addq    $0,$2,$0        # E
 141         addq    $0,$1,$3        # E : Finished generating uint
 142                 /* (1 cycle stall on $0) */
 143         extwl   $3,2,$1         # U : ushort[1] (1 cycle stall on $3)
 144         nop                     # E : L U L U
 145 
 146         addq    $1,$3,$0        # E : Final carry
 147         not     $0,$4           # E : complement (1 cycle stall on $0)
 148         zapnot  $4,3,$0         # U : clear upper garbage bits
 149                 /* (1 cycle stall on $4) */
 150         ret                     # L0 : L U L U
 151 
 152         .end csum_ipv6_magic
 153         EXPORT_SYMBOL(csum_ipv6_magic)

/* [<][>][^][v][top][bottom][index][help] */