1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72 
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76 
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80 
81 /*
82  * Ordering of locks:
83  *
84  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86 
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90 
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94 
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97 
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99 
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102 
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104 			   unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107 				  unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111 
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113 
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116 
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119 
120 static bool largepages_enabled = true;
121 
kvm_is_reserved_pfn(pfn_t pfn)122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124 	if (pfn_valid(pfn))
125 		return PageReserved(pfn_to_page(pfn));
126 
127 	return true;
128 }
129 
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
vcpu_load(struct kvm_vcpu * vcpu)133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135 	int cpu;
136 
137 	if (mutex_lock_killable(&vcpu->mutex))
138 		return -EINTR;
139 	cpu = get_cpu();
140 	preempt_notifier_register(&vcpu->preempt_notifier);
141 	kvm_arch_vcpu_load(vcpu, cpu);
142 	put_cpu();
143 	return 0;
144 }
145 
vcpu_put(struct kvm_vcpu * vcpu)146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 	preempt_disable();
149 	kvm_arch_vcpu_put(vcpu);
150 	preempt_notifier_unregister(&vcpu->preempt_notifier);
151 	preempt_enable();
152 	mutex_unlock(&vcpu->mutex);
153 }
154 
ack_flush(void * _completed)155 static void ack_flush(void *_completed)
156 {
157 }
158 
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161 	int i, cpu, me;
162 	cpumask_var_t cpus;
163 	bool called = true;
164 	struct kvm_vcpu *vcpu;
165 
166 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167 
168 	me = get_cpu();
169 	kvm_for_each_vcpu(i, vcpu, kvm) {
170 		kvm_make_request(req, vcpu);
171 		cpu = vcpu->cpu;
172 
173 		/* Set ->requests bit before we read ->mode */
174 		smp_mb();
175 
176 		if (cpus != NULL && cpu != -1 && cpu != me &&
177 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178 			cpumask_set_cpu(cpu, cpus);
179 	}
180 	if (unlikely(cpus == NULL))
181 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182 	else if (!cpumask_empty(cpus))
183 		smp_call_function_many(cpus, ack_flush, NULL, 1);
184 	else
185 		called = false;
186 	put_cpu();
187 	free_cpumask_var(cpus);
188 	return called;
189 }
190 
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
kvm_flush_remote_tlbs(struct kvm * kvm)192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194 	long dirty_count = kvm->tlbs_dirty;
195 
196 	smp_mb();
197 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198 		++kvm->stat.remote_tlb_flush;
199 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203 
kvm_reload_remote_mmus(struct kvm * kvm)204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208 
kvm_make_mclock_inprogress_request(struct kvm * kvm)209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213 
kvm_make_scan_ioapic_request(struct kvm * kvm)214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218 
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221 	struct page *page;
222 	int r;
223 
224 	mutex_init(&vcpu->mutex);
225 	vcpu->cpu = -1;
226 	vcpu->kvm = kvm;
227 	vcpu->vcpu_id = id;
228 	vcpu->pid = NULL;
229 	vcpu->halt_poll_ns = 0;
230 	init_waitqueue_head(&vcpu->wq);
231 	kvm_async_pf_vcpu_init(vcpu);
232 
233 	vcpu->pre_pcpu = -1;
234 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
235 
236 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
237 	if (!page) {
238 		r = -ENOMEM;
239 		goto fail;
240 	}
241 	vcpu->run = page_address(page);
242 
243 	kvm_vcpu_set_in_spin_loop(vcpu, false);
244 	kvm_vcpu_set_dy_eligible(vcpu, false);
245 	vcpu->preempted = false;
246 
247 	r = kvm_arch_vcpu_init(vcpu);
248 	if (r < 0)
249 		goto fail_free_run;
250 	return 0;
251 
252 fail_free_run:
253 	free_page((unsigned long)vcpu->run);
254 fail:
255 	return r;
256 }
257 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
258 
kvm_vcpu_uninit(struct kvm_vcpu * vcpu)259 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
260 {
261 	put_pid(vcpu->pid);
262 	kvm_arch_vcpu_uninit(vcpu);
263 	free_page((unsigned long)vcpu->run);
264 }
265 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
266 
267 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)268 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
269 {
270 	return container_of(mn, struct kvm, mmu_notifier);
271 }
272 
kvm_mmu_notifier_invalidate_page(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)273 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
274 					     struct mm_struct *mm,
275 					     unsigned long address)
276 {
277 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
278 	int need_tlb_flush, idx;
279 
280 	/*
281 	 * When ->invalidate_page runs, the linux pte has been zapped
282 	 * already but the page is still allocated until
283 	 * ->invalidate_page returns. So if we increase the sequence
284 	 * here the kvm page fault will notice if the spte can't be
285 	 * established because the page is going to be freed. If
286 	 * instead the kvm page fault establishes the spte before
287 	 * ->invalidate_page runs, kvm_unmap_hva will release it
288 	 * before returning.
289 	 *
290 	 * The sequence increase only need to be seen at spin_unlock
291 	 * time, and not at spin_lock time.
292 	 *
293 	 * Increasing the sequence after the spin_unlock would be
294 	 * unsafe because the kvm page fault could then establish the
295 	 * pte after kvm_unmap_hva returned, without noticing the page
296 	 * is going to be freed.
297 	 */
298 	idx = srcu_read_lock(&kvm->srcu);
299 	spin_lock(&kvm->mmu_lock);
300 
301 	kvm->mmu_notifier_seq++;
302 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
303 	/* we've to flush the tlb before the pages can be freed */
304 	if (need_tlb_flush)
305 		kvm_flush_remote_tlbs(kvm);
306 
307 	spin_unlock(&kvm->mmu_lock);
308 
309 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
310 
311 	srcu_read_unlock(&kvm->srcu, idx);
312 }
313 
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)314 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
315 					struct mm_struct *mm,
316 					unsigned long address,
317 					pte_t pte)
318 {
319 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
320 	int idx;
321 
322 	idx = srcu_read_lock(&kvm->srcu);
323 	spin_lock(&kvm->mmu_lock);
324 	kvm->mmu_notifier_seq++;
325 	kvm_set_spte_hva(kvm, address, pte);
326 	spin_unlock(&kvm->mmu_lock);
327 	srcu_read_unlock(&kvm->srcu, idx);
328 }
329 
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)330 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
331 						    struct mm_struct *mm,
332 						    unsigned long start,
333 						    unsigned long end)
334 {
335 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 	int need_tlb_flush = 0, idx;
337 
338 	idx = srcu_read_lock(&kvm->srcu);
339 	spin_lock(&kvm->mmu_lock);
340 	/*
341 	 * The count increase must become visible at unlock time as no
342 	 * spte can be established without taking the mmu_lock and
343 	 * count is also read inside the mmu_lock critical section.
344 	 */
345 	kvm->mmu_notifier_count++;
346 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
347 	need_tlb_flush |= kvm->tlbs_dirty;
348 	/* we've to flush the tlb before the pages can be freed */
349 	if (need_tlb_flush)
350 		kvm_flush_remote_tlbs(kvm);
351 
352 	spin_unlock(&kvm->mmu_lock);
353 	srcu_read_unlock(&kvm->srcu, idx);
354 }
355 
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)356 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
357 						  struct mm_struct *mm,
358 						  unsigned long start,
359 						  unsigned long end)
360 {
361 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
362 
363 	spin_lock(&kvm->mmu_lock);
364 	/*
365 	 * This sequence increase will notify the kvm page fault that
366 	 * the page that is going to be mapped in the spte could have
367 	 * been freed.
368 	 */
369 	kvm->mmu_notifier_seq++;
370 	smp_wmb();
371 	/*
372 	 * The above sequence increase must be visible before the
373 	 * below count decrease, which is ensured by the smp_wmb above
374 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
375 	 */
376 	kvm->mmu_notifier_count--;
377 	spin_unlock(&kvm->mmu_lock);
378 
379 	BUG_ON(kvm->mmu_notifier_count < 0);
380 }
381 
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)382 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
383 					      struct mm_struct *mm,
384 					      unsigned long start,
385 					      unsigned long end)
386 {
387 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
388 	int young, idx;
389 
390 	idx = srcu_read_lock(&kvm->srcu);
391 	spin_lock(&kvm->mmu_lock);
392 
393 	young = kvm_age_hva(kvm, start, end);
394 	if (young)
395 		kvm_flush_remote_tlbs(kvm);
396 
397 	spin_unlock(&kvm->mmu_lock);
398 	srcu_read_unlock(&kvm->srcu, idx);
399 
400 	return young;
401 }
402 
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)403 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
404 					struct mm_struct *mm,
405 					unsigned long start,
406 					unsigned long end)
407 {
408 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
409 	int young, idx;
410 
411 	idx = srcu_read_lock(&kvm->srcu);
412 	spin_lock(&kvm->mmu_lock);
413 	/*
414 	 * Even though we do not flush TLB, this will still adversely
415 	 * affect performance on pre-Haswell Intel EPT, where there is
416 	 * no EPT Access Bit to clear so that we have to tear down EPT
417 	 * tables instead. If we find this unacceptable, we can always
418 	 * add a parameter to kvm_age_hva so that it effectively doesn't
419 	 * do anything on clear_young.
420 	 *
421 	 * Also note that currently we never issue secondary TLB flushes
422 	 * from clear_young, leaving this job up to the regular system
423 	 * cadence. If we find this inaccurate, we might come up with a
424 	 * more sophisticated heuristic later.
425 	 */
426 	young = kvm_age_hva(kvm, start, end);
427 	spin_unlock(&kvm->mmu_lock);
428 	srcu_read_unlock(&kvm->srcu, idx);
429 
430 	return young;
431 }
432 
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)433 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
434 				       struct mm_struct *mm,
435 				       unsigned long address)
436 {
437 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
438 	int young, idx;
439 
440 	idx = srcu_read_lock(&kvm->srcu);
441 	spin_lock(&kvm->mmu_lock);
442 	young = kvm_test_age_hva(kvm, address);
443 	spin_unlock(&kvm->mmu_lock);
444 	srcu_read_unlock(&kvm->srcu, idx);
445 
446 	return young;
447 }
448 
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)449 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
450 				     struct mm_struct *mm)
451 {
452 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
453 	int idx;
454 
455 	idx = srcu_read_lock(&kvm->srcu);
456 	kvm_arch_flush_shadow_all(kvm);
457 	srcu_read_unlock(&kvm->srcu, idx);
458 }
459 
460 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
461 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
462 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
463 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
464 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
465 	.clear_young		= kvm_mmu_notifier_clear_young,
466 	.test_young		= kvm_mmu_notifier_test_young,
467 	.change_pte		= kvm_mmu_notifier_change_pte,
468 	.release		= kvm_mmu_notifier_release,
469 };
470 
kvm_init_mmu_notifier(struct kvm * kvm)471 static int kvm_init_mmu_notifier(struct kvm *kvm)
472 {
473 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
474 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
475 }
476 
477 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
478 
kvm_init_mmu_notifier(struct kvm * kvm)479 static int kvm_init_mmu_notifier(struct kvm *kvm)
480 {
481 	return 0;
482 }
483 
484 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
485 
kvm_alloc_memslots(void)486 static struct kvm_memslots *kvm_alloc_memslots(void)
487 {
488 	int i;
489 	struct kvm_memslots *slots;
490 
491 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
492 	if (!slots)
493 		return NULL;
494 
495 	/*
496 	 * Init kvm generation close to the maximum to easily test the
497 	 * code of handling generation number wrap-around.
498 	 */
499 	slots->generation = -150;
500 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
501 		slots->id_to_index[i] = slots->memslots[i].id = i;
502 
503 	return slots;
504 }
505 
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)506 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
507 {
508 	if (!memslot->dirty_bitmap)
509 		return;
510 
511 	kvfree(memslot->dirty_bitmap);
512 	memslot->dirty_bitmap = NULL;
513 }
514 
515 /*
516  * Free any memory in @free but not in @dont.
517  */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)518 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
519 			      struct kvm_memory_slot *dont)
520 {
521 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
522 		kvm_destroy_dirty_bitmap(free);
523 
524 	kvm_arch_free_memslot(kvm, free, dont);
525 
526 	free->npages = 0;
527 }
528 
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)529 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
530 {
531 	struct kvm_memory_slot *memslot;
532 
533 	if (!slots)
534 		return;
535 
536 	kvm_for_each_memslot(memslot, slots)
537 		kvm_free_memslot(kvm, memslot, NULL);
538 
539 	kvfree(slots);
540 }
541 
kvm_create_vm(unsigned long type)542 static struct kvm *kvm_create_vm(unsigned long type)
543 {
544 	int r, i;
545 	struct kvm *kvm = kvm_arch_alloc_vm();
546 
547 	if (!kvm)
548 		return ERR_PTR(-ENOMEM);
549 
550 	spin_lock_init(&kvm->mmu_lock);
551 	atomic_inc(&current->mm->mm_count);
552 	kvm->mm = current->mm;
553 	kvm_eventfd_init(kvm);
554 	mutex_init(&kvm->lock);
555 	mutex_init(&kvm->irq_lock);
556 	mutex_init(&kvm->slots_lock);
557 	atomic_set(&kvm->users_count, 1);
558 	INIT_LIST_HEAD(&kvm->devices);
559 
560 	r = kvm_arch_init_vm(kvm, type);
561 	if (r)
562 		goto out_err_no_disable;
563 
564 	r = hardware_enable_all();
565 	if (r)
566 		goto out_err_no_disable;
567 
568 #ifdef CONFIG_HAVE_KVM_IRQFD
569 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
570 #endif
571 
572 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
573 
574 	r = -ENOMEM;
575 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
576 		kvm->memslots[i] = kvm_alloc_memslots();
577 		if (!kvm->memslots[i])
578 			goto out_err_no_srcu;
579 	}
580 
581 	if (init_srcu_struct(&kvm->srcu))
582 		goto out_err_no_srcu;
583 	if (init_srcu_struct(&kvm->irq_srcu))
584 		goto out_err_no_irq_srcu;
585 	for (i = 0; i < KVM_NR_BUSES; i++) {
586 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
587 					GFP_KERNEL);
588 		if (!kvm->buses[i])
589 			goto out_err;
590 	}
591 
592 	r = kvm_init_mmu_notifier(kvm);
593 	if (r)
594 		goto out_err;
595 
596 	spin_lock(&kvm_lock);
597 	list_add(&kvm->vm_list, &vm_list);
598 	spin_unlock(&kvm_lock);
599 
600 	preempt_notifier_inc();
601 
602 	return kvm;
603 
604 out_err:
605 	cleanup_srcu_struct(&kvm->irq_srcu);
606 out_err_no_irq_srcu:
607 	cleanup_srcu_struct(&kvm->srcu);
608 out_err_no_srcu:
609 	hardware_disable_all();
610 out_err_no_disable:
611 	for (i = 0; i < KVM_NR_BUSES; i++)
612 		kfree(kvm->buses[i]);
613 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
614 		kvm_free_memslots(kvm, kvm->memslots[i]);
615 	kvm_arch_free_vm(kvm);
616 	mmdrop(current->mm);
617 	return ERR_PTR(r);
618 }
619 
620 /*
621  * Avoid using vmalloc for a small buffer.
622  * Should not be used when the size is statically known.
623  */
kvm_kvzalloc(unsigned long size)624 void *kvm_kvzalloc(unsigned long size)
625 {
626 	if (size > PAGE_SIZE)
627 		return vzalloc(size);
628 	else
629 		return kzalloc(size, GFP_KERNEL);
630 }
631 
kvm_destroy_devices(struct kvm * kvm)632 static void kvm_destroy_devices(struct kvm *kvm)
633 {
634 	struct list_head *node, *tmp;
635 
636 	list_for_each_safe(node, tmp, &kvm->devices) {
637 		struct kvm_device *dev =
638 			list_entry(node, struct kvm_device, vm_node);
639 
640 		list_del(node);
641 		dev->ops->destroy(dev);
642 	}
643 }
644 
kvm_destroy_vm(struct kvm * kvm)645 static void kvm_destroy_vm(struct kvm *kvm)
646 {
647 	int i;
648 	struct mm_struct *mm = kvm->mm;
649 
650 	kvm_arch_sync_events(kvm);
651 	spin_lock(&kvm_lock);
652 	list_del(&kvm->vm_list);
653 	spin_unlock(&kvm_lock);
654 	kvm_free_irq_routing(kvm);
655 	for (i = 0; i < KVM_NR_BUSES; i++)
656 		kvm_io_bus_destroy(kvm->buses[i]);
657 	kvm_coalesced_mmio_free(kvm);
658 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
659 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
660 #else
661 	kvm_arch_flush_shadow_all(kvm);
662 #endif
663 	kvm_arch_destroy_vm(kvm);
664 	kvm_destroy_devices(kvm);
665 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
666 		kvm_free_memslots(kvm, kvm->memslots[i]);
667 	cleanup_srcu_struct(&kvm->irq_srcu);
668 	cleanup_srcu_struct(&kvm->srcu);
669 	kvm_arch_free_vm(kvm);
670 	preempt_notifier_dec();
671 	hardware_disable_all();
672 	mmdrop(mm);
673 }
674 
kvm_get_kvm(struct kvm * kvm)675 void kvm_get_kvm(struct kvm *kvm)
676 {
677 	atomic_inc(&kvm->users_count);
678 }
679 EXPORT_SYMBOL_GPL(kvm_get_kvm);
680 
kvm_put_kvm(struct kvm * kvm)681 void kvm_put_kvm(struct kvm *kvm)
682 {
683 	if (atomic_dec_and_test(&kvm->users_count))
684 		kvm_destroy_vm(kvm);
685 }
686 EXPORT_SYMBOL_GPL(kvm_put_kvm);
687 
688 
kvm_vm_release(struct inode * inode,struct file * filp)689 static int kvm_vm_release(struct inode *inode, struct file *filp)
690 {
691 	struct kvm *kvm = filp->private_data;
692 
693 	kvm_irqfd_release(kvm);
694 
695 	kvm_put_kvm(kvm);
696 	return 0;
697 }
698 
699 /*
700  * Allocation size is twice as large as the actual dirty bitmap size.
701  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
702  */
kvm_create_dirty_bitmap(struct kvm_memory_slot * memslot)703 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
704 {
705 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
706 
707 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
708 	if (!memslot->dirty_bitmap)
709 		return -ENOMEM;
710 
711 	return 0;
712 }
713 
714 /*
715  * Insert memslot and re-sort memslots based on their GFN,
716  * so binary search could be used to lookup GFN.
717  * Sorting algorithm takes advantage of having initially
718  * sorted array and known changed memslot position.
719  */
update_memslots(struct kvm_memslots * slots,struct kvm_memory_slot * new)720 static void update_memslots(struct kvm_memslots *slots,
721 			    struct kvm_memory_slot *new)
722 {
723 	int id = new->id;
724 	int i = slots->id_to_index[id];
725 	struct kvm_memory_slot *mslots = slots->memslots;
726 
727 	WARN_ON(mslots[i].id != id);
728 	if (!new->npages) {
729 		WARN_ON(!mslots[i].npages);
730 		if (mslots[i].npages)
731 			slots->used_slots--;
732 	} else {
733 		if (!mslots[i].npages)
734 			slots->used_slots++;
735 	}
736 
737 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
738 	       new->base_gfn <= mslots[i + 1].base_gfn) {
739 		if (!mslots[i + 1].npages)
740 			break;
741 		mslots[i] = mslots[i + 1];
742 		slots->id_to_index[mslots[i].id] = i;
743 		i++;
744 	}
745 
746 	/*
747 	 * The ">=" is needed when creating a slot with base_gfn == 0,
748 	 * so that it moves before all those with base_gfn == npages == 0.
749 	 *
750 	 * On the other hand, if new->npages is zero, the above loop has
751 	 * already left i pointing to the beginning of the empty part of
752 	 * mslots, and the ">=" would move the hole backwards in this
753 	 * case---which is wrong.  So skip the loop when deleting a slot.
754 	 */
755 	if (new->npages) {
756 		while (i > 0 &&
757 		       new->base_gfn >= mslots[i - 1].base_gfn) {
758 			mslots[i] = mslots[i - 1];
759 			slots->id_to_index[mslots[i].id] = i;
760 			i--;
761 		}
762 	} else
763 		WARN_ON_ONCE(i != slots->used_slots);
764 
765 	mslots[i] = *new;
766 	slots->id_to_index[mslots[i].id] = i;
767 }
768 
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)769 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
770 {
771 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
772 
773 #ifdef __KVM_HAVE_READONLY_MEM
774 	valid_flags |= KVM_MEM_READONLY;
775 #endif
776 
777 	if (mem->flags & ~valid_flags)
778 		return -EINVAL;
779 
780 	return 0;
781 }
782 
install_new_memslots(struct kvm * kvm,int as_id,struct kvm_memslots * slots)783 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
784 		int as_id, struct kvm_memslots *slots)
785 {
786 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
787 
788 	/*
789 	 * Set the low bit in the generation, which disables SPTE caching
790 	 * until the end of synchronize_srcu_expedited.
791 	 */
792 	WARN_ON(old_memslots->generation & 1);
793 	slots->generation = old_memslots->generation + 1;
794 
795 	rcu_assign_pointer(kvm->memslots[as_id], slots);
796 	synchronize_srcu_expedited(&kvm->srcu);
797 
798 	/*
799 	 * Increment the new memslot generation a second time. This prevents
800 	 * vm exits that race with memslot updates from caching a memslot
801 	 * generation that will (potentially) be valid forever.
802 	 */
803 	slots->generation++;
804 
805 	kvm_arch_memslots_updated(kvm, slots);
806 
807 	return old_memslots;
808 }
809 
810 /*
811  * Allocate some memory and give it an address in the guest physical address
812  * space.
813  *
814  * Discontiguous memory is allowed, mostly for framebuffers.
815  *
816  * Must be called holding kvm->slots_lock for write.
817  */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)818 int __kvm_set_memory_region(struct kvm *kvm,
819 			    const struct kvm_userspace_memory_region *mem)
820 {
821 	int r;
822 	gfn_t base_gfn;
823 	unsigned long npages;
824 	struct kvm_memory_slot *slot;
825 	struct kvm_memory_slot old, new;
826 	struct kvm_memslots *slots = NULL, *old_memslots;
827 	int as_id, id;
828 	enum kvm_mr_change change;
829 
830 	r = check_memory_region_flags(mem);
831 	if (r)
832 		goto out;
833 
834 	r = -EINVAL;
835 	as_id = mem->slot >> 16;
836 	id = (u16)mem->slot;
837 
838 	/* General sanity checks */
839 	if (mem->memory_size & (PAGE_SIZE - 1))
840 		goto out;
841 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
842 		goto out;
843 	/* We can read the guest memory with __xxx_user() later on. */
844 	if ((id < KVM_USER_MEM_SLOTS) &&
845 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
846 	     !access_ok(VERIFY_WRITE,
847 			(void __user *)(unsigned long)mem->userspace_addr,
848 			mem->memory_size)))
849 		goto out;
850 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
851 		goto out;
852 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
853 		goto out;
854 
855 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
856 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
857 	npages = mem->memory_size >> PAGE_SHIFT;
858 
859 	if (npages > KVM_MEM_MAX_NR_PAGES)
860 		goto out;
861 
862 	new = old = *slot;
863 
864 	new.id = id;
865 	new.base_gfn = base_gfn;
866 	new.npages = npages;
867 	new.flags = mem->flags;
868 
869 	if (npages) {
870 		if (!old.npages)
871 			change = KVM_MR_CREATE;
872 		else { /* Modify an existing slot. */
873 			if ((mem->userspace_addr != old.userspace_addr) ||
874 			    (npages != old.npages) ||
875 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
876 				goto out;
877 
878 			if (base_gfn != old.base_gfn)
879 				change = KVM_MR_MOVE;
880 			else if (new.flags != old.flags)
881 				change = KVM_MR_FLAGS_ONLY;
882 			else { /* Nothing to change. */
883 				r = 0;
884 				goto out;
885 			}
886 		}
887 	} else {
888 		if (!old.npages)
889 			goto out;
890 
891 		change = KVM_MR_DELETE;
892 		new.base_gfn = 0;
893 		new.flags = 0;
894 	}
895 
896 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
897 		/* Check for overlaps */
898 		r = -EEXIST;
899 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
900 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
901 			    (slot->id == id))
902 				continue;
903 			if (!((base_gfn + npages <= slot->base_gfn) ||
904 			      (base_gfn >= slot->base_gfn + slot->npages)))
905 				goto out;
906 		}
907 	}
908 
909 	/* Free page dirty bitmap if unneeded */
910 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
911 		new.dirty_bitmap = NULL;
912 
913 	r = -ENOMEM;
914 	if (change == KVM_MR_CREATE) {
915 		new.userspace_addr = mem->userspace_addr;
916 
917 		if (kvm_arch_create_memslot(kvm, &new, npages))
918 			goto out_free;
919 	}
920 
921 	/* Allocate page dirty bitmap if needed */
922 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
923 		if (kvm_create_dirty_bitmap(&new) < 0)
924 			goto out_free;
925 	}
926 
927 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
928 	if (!slots)
929 		goto out_free;
930 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
931 
932 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
933 		slot = id_to_memslot(slots, id);
934 		slot->flags |= KVM_MEMSLOT_INVALID;
935 
936 		old_memslots = install_new_memslots(kvm, as_id, slots);
937 
938 		/* slot was deleted or moved, clear iommu mapping */
939 		kvm_iommu_unmap_pages(kvm, &old);
940 		/* From this point no new shadow pages pointing to a deleted,
941 		 * or moved, memslot will be created.
942 		 *
943 		 * validation of sp->gfn happens in:
944 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
945 		 *	- kvm_is_visible_gfn (mmu_check_roots)
946 		 */
947 		kvm_arch_flush_shadow_memslot(kvm, slot);
948 
949 		/*
950 		 * We can re-use the old_memslots from above, the only difference
951 		 * from the currently installed memslots is the invalid flag.  This
952 		 * will get overwritten by update_memslots anyway.
953 		 */
954 		slots = old_memslots;
955 	}
956 
957 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
958 	if (r)
959 		goto out_slots;
960 
961 	/* actual memory is freed via old in kvm_free_memslot below */
962 	if (change == KVM_MR_DELETE) {
963 		new.dirty_bitmap = NULL;
964 		memset(&new.arch, 0, sizeof(new.arch));
965 	}
966 
967 	update_memslots(slots, &new);
968 	old_memslots = install_new_memslots(kvm, as_id, slots);
969 
970 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
971 
972 	kvm_free_memslot(kvm, &old, &new);
973 	kvfree(old_memslots);
974 
975 	/*
976 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
977 	 * un-mapped and re-mapped if their base changes.  Since base change
978 	 * unmapping is handled above with slot deletion, mapping alone is
979 	 * needed here.  Anything else the iommu might care about for existing
980 	 * slots (size changes, userspace addr changes and read-only flag
981 	 * changes) is disallowed above, so any other attribute changes getting
982 	 * here can be skipped.
983 	 */
984 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
985 		r = kvm_iommu_map_pages(kvm, &new);
986 		return r;
987 	}
988 
989 	return 0;
990 
991 out_slots:
992 	kvfree(slots);
993 out_free:
994 	kvm_free_memslot(kvm, &new, &old);
995 out:
996 	return r;
997 }
998 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
999 
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1000 int kvm_set_memory_region(struct kvm *kvm,
1001 			  const struct kvm_userspace_memory_region *mem)
1002 {
1003 	int r;
1004 
1005 	mutex_lock(&kvm->slots_lock);
1006 	r = __kvm_set_memory_region(kvm, mem);
1007 	mutex_unlock(&kvm->slots_lock);
1008 	return r;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1011 
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)1012 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1013 					  struct kvm_userspace_memory_region *mem)
1014 {
1015 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1016 		return -EINVAL;
1017 
1018 	return kvm_set_memory_region(kvm, mem);
1019 }
1020 
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty)1021 int kvm_get_dirty_log(struct kvm *kvm,
1022 			struct kvm_dirty_log *log, int *is_dirty)
1023 {
1024 	struct kvm_memslots *slots;
1025 	struct kvm_memory_slot *memslot;
1026 	int r, i, as_id, id;
1027 	unsigned long n;
1028 	unsigned long any = 0;
1029 
1030 	r = -EINVAL;
1031 	as_id = log->slot >> 16;
1032 	id = (u16)log->slot;
1033 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1034 		goto out;
1035 
1036 	slots = __kvm_memslots(kvm, as_id);
1037 	memslot = id_to_memslot(slots, id);
1038 	r = -ENOENT;
1039 	if (!memslot->dirty_bitmap)
1040 		goto out;
1041 
1042 	n = kvm_dirty_bitmap_bytes(memslot);
1043 
1044 	for (i = 0; !any && i < n/sizeof(long); ++i)
1045 		any = memslot->dirty_bitmap[i];
1046 
1047 	r = -EFAULT;
1048 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1049 		goto out;
1050 
1051 	if (any)
1052 		*is_dirty = 1;
1053 
1054 	r = 0;
1055 out:
1056 	return r;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1059 
1060 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1061 /**
1062  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1063  *	are dirty write protect them for next write.
1064  * @kvm:	pointer to kvm instance
1065  * @log:	slot id and address to which we copy the log
1066  * @is_dirty:	flag set if any page is dirty
1067  *
1068  * We need to keep it in mind that VCPU threads can write to the bitmap
1069  * concurrently. So, to avoid losing track of dirty pages we keep the
1070  * following order:
1071  *
1072  *    1. Take a snapshot of the bit and clear it if needed.
1073  *    2. Write protect the corresponding page.
1074  *    3. Copy the snapshot to the userspace.
1075  *    4. Upon return caller flushes TLB's if needed.
1076  *
1077  * Between 2 and 4, the guest may write to the page using the remaining TLB
1078  * entry.  This is not a problem because the page is reported dirty using
1079  * the snapshot taken before and step 4 ensures that writes done after
1080  * exiting to userspace will be logged for the next call.
1081  *
1082  */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log,bool * is_dirty)1083 int kvm_get_dirty_log_protect(struct kvm *kvm,
1084 			struct kvm_dirty_log *log, bool *is_dirty)
1085 {
1086 	struct kvm_memslots *slots;
1087 	struct kvm_memory_slot *memslot;
1088 	int r, i, as_id, id;
1089 	unsigned long n;
1090 	unsigned long *dirty_bitmap;
1091 	unsigned long *dirty_bitmap_buffer;
1092 
1093 	r = -EINVAL;
1094 	as_id = log->slot >> 16;
1095 	id = (u16)log->slot;
1096 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1097 		goto out;
1098 
1099 	slots = __kvm_memslots(kvm, as_id);
1100 	memslot = id_to_memslot(slots, id);
1101 
1102 	dirty_bitmap = memslot->dirty_bitmap;
1103 	r = -ENOENT;
1104 	if (!dirty_bitmap)
1105 		goto out;
1106 
1107 	n = kvm_dirty_bitmap_bytes(memslot);
1108 
1109 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1110 	memset(dirty_bitmap_buffer, 0, n);
1111 
1112 	spin_lock(&kvm->mmu_lock);
1113 	*is_dirty = false;
1114 	for (i = 0; i < n / sizeof(long); i++) {
1115 		unsigned long mask;
1116 		gfn_t offset;
1117 
1118 		if (!dirty_bitmap[i])
1119 			continue;
1120 
1121 		*is_dirty = true;
1122 
1123 		mask = xchg(&dirty_bitmap[i], 0);
1124 		dirty_bitmap_buffer[i] = mask;
1125 
1126 		if (mask) {
1127 			offset = i * BITS_PER_LONG;
1128 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1129 								offset, mask);
1130 		}
1131 	}
1132 
1133 	spin_unlock(&kvm->mmu_lock);
1134 
1135 	r = -EFAULT;
1136 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1137 		goto out;
1138 
1139 	r = 0;
1140 out:
1141 	return r;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1144 #endif
1145 
kvm_largepages_enabled(void)1146 bool kvm_largepages_enabled(void)
1147 {
1148 	return largepages_enabled;
1149 }
1150 
kvm_disable_largepages(void)1151 void kvm_disable_largepages(void)
1152 {
1153 	largepages_enabled = false;
1154 }
1155 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1156 
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)1157 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1158 {
1159 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1162 
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)1163 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1164 {
1165 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1166 }
1167 
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)1168 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169 {
1170 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1171 
1172 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1173 	      memslot->flags & KVM_MEMSLOT_INVALID)
1174 		return 0;
1175 
1176 	return 1;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1179 
kvm_host_page_size(struct kvm * kvm,gfn_t gfn)1180 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1181 {
1182 	struct vm_area_struct *vma;
1183 	unsigned long addr, size;
1184 
1185 	size = PAGE_SIZE;
1186 
1187 	addr = gfn_to_hva(kvm, gfn);
1188 	if (kvm_is_error_hva(addr))
1189 		return PAGE_SIZE;
1190 
1191 	down_read(&current->mm->mmap_sem);
1192 	vma = find_vma(current->mm, addr);
1193 	if (!vma)
1194 		goto out;
1195 
1196 	size = vma_kernel_pagesize(vma);
1197 
1198 out:
1199 	up_read(&current->mm->mmap_sem);
1200 
1201 	return size;
1202 }
1203 
memslot_is_readonly(struct kvm_memory_slot * slot)1204 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1205 {
1206 	return slot->flags & KVM_MEM_READONLY;
1207 }
1208 
__gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)1209 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210 				       gfn_t *nr_pages, bool write)
1211 {
1212 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1213 		return KVM_HVA_ERR_BAD;
1214 
1215 	if (memslot_is_readonly(slot) && write)
1216 		return KVM_HVA_ERR_RO_BAD;
1217 
1218 	if (nr_pages)
1219 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1220 
1221 	return __gfn_to_hva_memslot(slot, gfn);
1222 }
1223 
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)1224 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1225 				     gfn_t *nr_pages)
1226 {
1227 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1228 }
1229 
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1230 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1231 					gfn_t gfn)
1232 {
1233 	return gfn_to_hva_many(slot, gfn, NULL);
1234 }
1235 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1236 
gfn_to_hva(struct kvm * kvm,gfn_t gfn)1237 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1238 {
1239 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1240 }
1241 EXPORT_SYMBOL_GPL(gfn_to_hva);
1242 
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)1243 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1244 {
1245 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1248 
1249 /*
1250  * If writable is set to false, the hva returned by this function is only
1251  * allowed to be read.
1252  */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)1253 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1254 				      gfn_t gfn, bool *writable)
1255 {
1256 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1257 
1258 	if (!kvm_is_error_hva(hva) && writable)
1259 		*writable = !memslot_is_readonly(slot);
1260 
1261 	return hva;
1262 }
1263 
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)1264 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1265 {
1266 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1267 
1268 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1269 }
1270 
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)1271 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1272 {
1273 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1274 
1275 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1276 }
1277 
get_user_page_nowait(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int write,struct page ** page)1278 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1279 	unsigned long start, int write, struct page **page)
1280 {
1281 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1282 
1283 	if (write)
1284 		flags |= FOLL_WRITE;
1285 
1286 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1287 }
1288 
check_user_page_hwpoison(unsigned long addr)1289 static inline int check_user_page_hwpoison(unsigned long addr)
1290 {
1291 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1292 
1293 	rc = __get_user_pages(current, current->mm, addr, 1,
1294 			      flags, NULL, NULL, NULL);
1295 	return rc == -EHWPOISON;
1296 }
1297 
1298 /*
1299  * The atomic path to get the writable pfn which will be stored in @pfn,
1300  * true indicates success, otherwise false is returned.
1301  */
hva_to_pfn_fast(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable,pfn_t * pfn)1302 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1303 			    bool write_fault, bool *writable, pfn_t *pfn)
1304 {
1305 	struct page *page[1];
1306 	int npages;
1307 
1308 	if (!(async || atomic))
1309 		return false;
1310 
1311 	/*
1312 	 * Fast pin a writable pfn only if it is a write fault request
1313 	 * or the caller allows to map a writable pfn for a read fault
1314 	 * request.
1315 	 */
1316 	if (!(write_fault || writable))
1317 		return false;
1318 
1319 	npages = __get_user_pages_fast(addr, 1, 1, page);
1320 	if (npages == 1) {
1321 		*pfn = page_to_pfn(page[0]);
1322 
1323 		if (writable)
1324 			*writable = true;
1325 		return true;
1326 	}
1327 
1328 	return false;
1329 }
1330 
1331 /*
1332  * The slow path to get the pfn of the specified host virtual address,
1333  * 1 indicates success, -errno is returned if error is detected.
1334  */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool * writable,pfn_t * pfn)1335 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1336 			   bool *writable, pfn_t *pfn)
1337 {
1338 	struct page *page[1];
1339 	int npages = 0;
1340 
1341 	might_sleep();
1342 
1343 	if (writable)
1344 		*writable = write_fault;
1345 
1346 	if (async) {
1347 		down_read(&current->mm->mmap_sem);
1348 		npages = get_user_page_nowait(current, current->mm,
1349 					      addr, write_fault, page);
1350 		up_read(&current->mm->mmap_sem);
1351 	} else
1352 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1353 						   write_fault, 0, page,
1354 						   FOLL_TOUCH|FOLL_HWPOISON);
1355 	if (npages != 1)
1356 		return npages;
1357 
1358 	/* map read fault as writable if possible */
1359 	if (unlikely(!write_fault) && writable) {
1360 		struct page *wpage[1];
1361 
1362 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1363 		if (npages == 1) {
1364 			*writable = true;
1365 			put_page(page[0]);
1366 			page[0] = wpage[0];
1367 		}
1368 
1369 		npages = 1;
1370 	}
1371 	*pfn = page_to_pfn(page[0]);
1372 	return npages;
1373 }
1374 
vma_is_valid(struct vm_area_struct * vma,bool write_fault)1375 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1376 {
1377 	if (unlikely(!(vma->vm_flags & VM_READ)))
1378 		return false;
1379 
1380 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1381 		return false;
1382 
1383 	return true;
1384 }
1385 
1386 /*
1387  * Pin guest page in memory and return its pfn.
1388  * @addr: host virtual address which maps memory to the guest
1389  * @atomic: whether this function can sleep
1390  * @async: whether this function need to wait IO complete if the
1391  *         host page is not in the memory
1392  * @write_fault: whether we should get a writable host page
1393  * @writable: whether it allows to map a writable host page for !@write_fault
1394  *
1395  * The function will map a writable host page for these two cases:
1396  * 1): @write_fault = true
1397  * 2): @write_fault = false && @writable, @writable will tell the caller
1398  *     whether the mapping is writable.
1399  */
hva_to_pfn(unsigned long addr,bool atomic,bool * async,bool write_fault,bool * writable)1400 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1401 			bool write_fault, bool *writable)
1402 {
1403 	struct vm_area_struct *vma;
1404 	pfn_t pfn = 0;
1405 	int npages;
1406 
1407 	/* we can do it either atomically or asynchronously, not both */
1408 	BUG_ON(atomic && async);
1409 
1410 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1411 		return pfn;
1412 
1413 	if (atomic)
1414 		return KVM_PFN_ERR_FAULT;
1415 
1416 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1417 	if (npages == 1)
1418 		return pfn;
1419 
1420 	down_read(&current->mm->mmap_sem);
1421 	if (npages == -EHWPOISON ||
1422 	      (!async && check_user_page_hwpoison(addr))) {
1423 		pfn = KVM_PFN_ERR_HWPOISON;
1424 		goto exit;
1425 	}
1426 
1427 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1428 
1429 	if (vma == NULL)
1430 		pfn = KVM_PFN_ERR_FAULT;
1431 	else if ((vma->vm_flags & VM_PFNMAP)) {
1432 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1433 			vma->vm_pgoff;
1434 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1435 	} else {
1436 		if (async && vma_is_valid(vma, write_fault))
1437 			*async = true;
1438 		pfn = KVM_PFN_ERR_FAULT;
1439 	}
1440 exit:
1441 	up_read(&current->mm->mmap_sem);
1442 	return pfn;
1443 }
1444 
__gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool * async,bool write_fault,bool * writable)1445 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1446 			   bool *async, bool write_fault, bool *writable)
1447 {
1448 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1449 
1450 	if (addr == KVM_HVA_ERR_RO_BAD)
1451 		return KVM_PFN_ERR_RO_FAULT;
1452 
1453 	if (kvm_is_error_hva(addr))
1454 		return KVM_PFN_NOSLOT;
1455 
1456 	/* Do not map writable pfn in the readonly memslot. */
1457 	if (writable && memslot_is_readonly(slot)) {
1458 		*writable = false;
1459 		writable = NULL;
1460 	}
1461 
1462 	return hva_to_pfn(addr, atomic, async, write_fault,
1463 			  writable);
1464 }
1465 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1466 
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)1467 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1468 		      bool *writable)
1469 {
1470 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1471 				    write_fault, writable);
1472 }
1473 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1474 
gfn_to_pfn_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1475 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1476 {
1477 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1478 }
1479 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1480 
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot * slot,gfn_t gfn)1481 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1482 {
1483 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1484 }
1485 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1486 
gfn_to_pfn_atomic(struct kvm * kvm,gfn_t gfn)1487 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1488 {
1489 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1490 }
1491 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1492 
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)1493 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1494 {
1495 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1498 
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)1499 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1500 {
1501 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1502 }
1503 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1504 
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)1505 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1506 {
1507 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1510 
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)1511 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1512 			    struct page **pages, int nr_pages)
1513 {
1514 	unsigned long addr;
1515 	gfn_t entry;
1516 
1517 	addr = gfn_to_hva_many(slot, gfn, &entry);
1518 	if (kvm_is_error_hva(addr))
1519 		return -1;
1520 
1521 	if (entry < nr_pages)
1522 		return 0;
1523 
1524 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1525 }
1526 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1527 
kvm_pfn_to_page(pfn_t pfn)1528 static struct page *kvm_pfn_to_page(pfn_t pfn)
1529 {
1530 	if (is_error_noslot_pfn(pfn))
1531 		return KVM_ERR_PTR_BAD_PAGE;
1532 
1533 	if (kvm_is_reserved_pfn(pfn)) {
1534 		WARN_ON(1);
1535 		return KVM_ERR_PTR_BAD_PAGE;
1536 	}
1537 
1538 	return pfn_to_page(pfn);
1539 }
1540 
gfn_to_page(struct kvm * kvm,gfn_t gfn)1541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1542 {
1543 	pfn_t pfn;
1544 
1545 	pfn = gfn_to_pfn(kvm, gfn);
1546 
1547 	return kvm_pfn_to_page(pfn);
1548 }
1549 EXPORT_SYMBOL_GPL(gfn_to_page);
1550 
kvm_vcpu_gfn_to_page(struct kvm_vcpu * vcpu,gfn_t gfn)1551 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1552 {
1553 	pfn_t pfn;
1554 
1555 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1556 
1557 	return kvm_pfn_to_page(pfn);
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1560 
kvm_release_page_clean(struct page * page)1561 void kvm_release_page_clean(struct page *page)
1562 {
1563 	WARN_ON(is_error_page(page));
1564 
1565 	kvm_release_pfn_clean(page_to_pfn(page));
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1568 
kvm_release_pfn_clean(pfn_t pfn)1569 void kvm_release_pfn_clean(pfn_t pfn)
1570 {
1571 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1572 		put_page(pfn_to_page(pfn));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1575 
kvm_release_page_dirty(struct page * page)1576 void kvm_release_page_dirty(struct page *page)
1577 {
1578 	WARN_ON(is_error_page(page));
1579 
1580 	kvm_release_pfn_dirty(page_to_pfn(page));
1581 }
1582 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1583 
kvm_release_pfn_dirty(pfn_t pfn)1584 static void kvm_release_pfn_dirty(pfn_t pfn)
1585 {
1586 	kvm_set_pfn_dirty(pfn);
1587 	kvm_release_pfn_clean(pfn);
1588 }
1589 
kvm_set_pfn_dirty(pfn_t pfn)1590 void kvm_set_pfn_dirty(pfn_t pfn)
1591 {
1592 	if (!kvm_is_reserved_pfn(pfn)) {
1593 		struct page *page = pfn_to_page(pfn);
1594 
1595 		if (!PageReserved(page))
1596 			SetPageDirty(page);
1597 	}
1598 }
1599 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1600 
kvm_set_pfn_accessed(pfn_t pfn)1601 void kvm_set_pfn_accessed(pfn_t pfn)
1602 {
1603 	if (!kvm_is_reserved_pfn(pfn))
1604 		mark_page_accessed(pfn_to_page(pfn));
1605 }
1606 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1607 
kvm_get_pfn(pfn_t pfn)1608 void kvm_get_pfn(pfn_t pfn)
1609 {
1610 	if (!kvm_is_reserved_pfn(pfn))
1611 		get_page(pfn_to_page(pfn));
1612 }
1613 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1614 
next_segment(unsigned long len,int offset)1615 static int next_segment(unsigned long len, int offset)
1616 {
1617 	if (len > PAGE_SIZE - offset)
1618 		return PAGE_SIZE - offset;
1619 	else
1620 		return len;
1621 }
1622 
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)1623 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1624 				 void *data, int offset, int len)
1625 {
1626 	int r;
1627 	unsigned long addr;
1628 
1629 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1630 	if (kvm_is_error_hva(addr))
1631 		return -EFAULT;
1632 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1633 	if (r)
1634 		return -EFAULT;
1635 	return 0;
1636 }
1637 
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)1638 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1639 			int len)
1640 {
1641 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1642 
1643 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1644 }
1645 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1646 
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)1647 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1648 			     int offset, int len)
1649 {
1650 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1651 
1652 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1655 
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1656 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1657 {
1658 	gfn_t gfn = gpa >> PAGE_SHIFT;
1659 	int seg;
1660 	int offset = offset_in_page(gpa);
1661 	int ret;
1662 
1663 	while ((seg = next_segment(len, offset)) != 0) {
1664 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1665 		if (ret < 0)
1666 			return ret;
1667 		offset = 0;
1668 		len -= seg;
1669 		data += seg;
1670 		++gfn;
1671 	}
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_read_guest);
1675 
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1676 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1677 {
1678 	gfn_t gfn = gpa >> PAGE_SHIFT;
1679 	int seg;
1680 	int offset = offset_in_page(gpa);
1681 	int ret;
1682 
1683 	while ((seg = next_segment(len, offset)) != 0) {
1684 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1685 		if (ret < 0)
1686 			return ret;
1687 		offset = 0;
1688 		len -= seg;
1689 		data += seg;
1690 		++gfn;
1691 	}
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1695 
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)1696 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1697 			           void *data, int offset, unsigned long len)
1698 {
1699 	int r;
1700 	unsigned long addr;
1701 
1702 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1703 	if (kvm_is_error_hva(addr))
1704 		return -EFAULT;
1705 	pagefault_disable();
1706 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1707 	pagefault_enable();
1708 	if (r)
1709 		return -EFAULT;
1710 	return 0;
1711 }
1712 
kvm_read_guest_atomic(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)1713 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1714 			  unsigned long len)
1715 {
1716 	gfn_t gfn = gpa >> PAGE_SHIFT;
1717 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1718 	int offset = offset_in_page(gpa);
1719 
1720 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1723 
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)1724 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1725 			       void *data, unsigned long len)
1726 {
1727 	gfn_t gfn = gpa >> PAGE_SHIFT;
1728 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1729 	int offset = offset_in_page(gpa);
1730 
1731 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1732 }
1733 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1734 
__kvm_write_guest_page(struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)1735 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1736 			          const void *data, int offset, int len)
1737 {
1738 	int r;
1739 	unsigned long addr;
1740 
1741 	addr = gfn_to_hva_memslot(memslot, gfn);
1742 	if (kvm_is_error_hva(addr))
1743 		return -EFAULT;
1744 	r = __copy_to_user((void __user *)addr + offset, data, len);
1745 	if (r)
1746 		return -EFAULT;
1747 	mark_page_dirty_in_slot(memslot, gfn);
1748 	return 0;
1749 }
1750 
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)1751 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1752 			 const void *data, int offset, int len)
1753 {
1754 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1755 
1756 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1757 }
1758 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1759 
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)1760 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1761 			      const void *data, int offset, int len)
1762 {
1763 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1764 
1765 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1768 
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)1769 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1770 		    unsigned long len)
1771 {
1772 	gfn_t gfn = gpa >> PAGE_SHIFT;
1773 	int seg;
1774 	int offset = offset_in_page(gpa);
1775 	int ret;
1776 
1777 	while ((seg = next_segment(len, offset)) != 0) {
1778 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1779 		if (ret < 0)
1780 			return ret;
1781 		offset = 0;
1782 		len -= seg;
1783 		data += seg;
1784 		++gfn;
1785 	}
1786 	return 0;
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_write_guest);
1789 
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)1790 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1791 		         unsigned long len)
1792 {
1793 	gfn_t gfn = gpa >> PAGE_SHIFT;
1794 	int seg;
1795 	int offset = offset_in_page(gpa);
1796 	int ret;
1797 
1798 	while ((seg = next_segment(len, offset)) != 0) {
1799 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1800 		if (ret < 0)
1801 			return ret;
1802 		offset = 0;
1803 		len -= seg;
1804 		data += seg;
1805 		++gfn;
1806 	}
1807 	return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1810 
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)1811 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1812 			      gpa_t gpa, unsigned long len)
1813 {
1814 	struct kvm_memslots *slots = kvm_memslots(kvm);
1815 	int offset = offset_in_page(gpa);
1816 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1817 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1818 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1819 	gfn_t nr_pages_avail;
1820 
1821 	ghc->gpa = gpa;
1822 	ghc->generation = slots->generation;
1823 	ghc->len = len;
1824 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1825 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1826 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1827 		ghc->hva += offset;
1828 	} else {
1829 		/*
1830 		 * If the requested region crosses two memslots, we still
1831 		 * verify that the entire region is valid here.
1832 		 */
1833 		while (start_gfn <= end_gfn) {
1834 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1835 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1836 						   &nr_pages_avail);
1837 			if (kvm_is_error_hva(ghc->hva))
1838 				return -EFAULT;
1839 			start_gfn += nr_pages_avail;
1840 		}
1841 		/* Use the slow path for cross page reads and writes. */
1842 		ghc->memslot = NULL;
1843 	}
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1847 
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1848 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1849 			   void *data, unsigned long len)
1850 {
1851 	struct kvm_memslots *slots = kvm_memslots(kvm);
1852 	int r;
1853 
1854 	BUG_ON(len > ghc->len);
1855 
1856 	if (slots->generation != ghc->generation)
1857 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1858 
1859 	if (unlikely(!ghc->memslot))
1860 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1861 
1862 	if (kvm_is_error_hva(ghc->hva))
1863 		return -EFAULT;
1864 
1865 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1866 	if (r)
1867 		return -EFAULT;
1868 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1869 
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1873 
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)1874 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1875 			   void *data, unsigned long len)
1876 {
1877 	struct kvm_memslots *slots = kvm_memslots(kvm);
1878 	int r;
1879 
1880 	BUG_ON(len > ghc->len);
1881 
1882 	if (slots->generation != ghc->generation)
1883 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1884 
1885 	if (unlikely(!ghc->memslot))
1886 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1887 
1888 	if (kvm_is_error_hva(ghc->hva))
1889 		return -EFAULT;
1890 
1891 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1892 	if (r)
1893 		return -EFAULT;
1894 
1895 	return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1898 
kvm_clear_guest_page(struct kvm * kvm,gfn_t gfn,int offset,int len)1899 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1900 {
1901 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1902 
1903 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1906 
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)1907 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1908 {
1909 	gfn_t gfn = gpa >> PAGE_SHIFT;
1910 	int seg;
1911 	int offset = offset_in_page(gpa);
1912 	int ret;
1913 
1914 	while ((seg = next_segment(len, offset)) != 0) {
1915 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1916 		if (ret < 0)
1917 			return ret;
1918 		offset = 0;
1919 		len -= seg;
1920 		++gfn;
1921 	}
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1925 
mark_page_dirty_in_slot(struct kvm_memory_slot * memslot,gfn_t gfn)1926 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1927 				    gfn_t gfn)
1928 {
1929 	if (memslot && memslot->dirty_bitmap) {
1930 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1931 
1932 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1933 	}
1934 }
1935 
mark_page_dirty(struct kvm * kvm,gfn_t gfn)1936 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1937 {
1938 	struct kvm_memory_slot *memslot;
1939 
1940 	memslot = gfn_to_memslot(kvm, gfn);
1941 	mark_page_dirty_in_slot(memslot, gfn);
1942 }
1943 EXPORT_SYMBOL_GPL(mark_page_dirty);
1944 
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)1945 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1946 {
1947 	struct kvm_memory_slot *memslot;
1948 
1949 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1950 	mark_page_dirty_in_slot(memslot, gfn);
1951 }
1952 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1953 
grow_halt_poll_ns(struct kvm_vcpu * vcpu)1954 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1955 {
1956 	int old, val;
1957 
1958 	old = val = vcpu->halt_poll_ns;
1959 	/* 10us base */
1960 	if (val == 0 && halt_poll_ns_grow)
1961 		val = 10000;
1962 	else
1963 		val *= halt_poll_ns_grow;
1964 
1965 	if (val > halt_poll_ns)
1966 		val = halt_poll_ns;
1967 
1968 	vcpu->halt_poll_ns = val;
1969 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1970 }
1971 
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)1972 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1973 {
1974 	int old, val;
1975 
1976 	old = val = vcpu->halt_poll_ns;
1977 	if (halt_poll_ns_shrink == 0)
1978 		val = 0;
1979 	else
1980 		val /= halt_poll_ns_shrink;
1981 
1982 	vcpu->halt_poll_ns = val;
1983 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1984 }
1985 
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)1986 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1987 {
1988 	if (kvm_arch_vcpu_runnable(vcpu)) {
1989 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1990 		return -EINTR;
1991 	}
1992 	if (kvm_cpu_has_pending_timer(vcpu))
1993 		return -EINTR;
1994 	if (signal_pending(current))
1995 		return -EINTR;
1996 
1997 	return 0;
1998 }
1999 
2000 /*
2001  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2002  */
kvm_vcpu_block(struct kvm_vcpu * vcpu)2003 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2004 {
2005 	ktime_t start, cur;
2006 	DEFINE_WAIT(wait);
2007 	bool waited = false;
2008 	u64 block_ns;
2009 
2010 	start = cur = ktime_get();
2011 	if (vcpu->halt_poll_ns) {
2012 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2013 
2014 		++vcpu->stat.halt_attempted_poll;
2015 		do {
2016 			/*
2017 			 * This sets KVM_REQ_UNHALT if an interrupt
2018 			 * arrives.
2019 			 */
2020 			if (kvm_vcpu_check_block(vcpu) < 0) {
2021 				++vcpu->stat.halt_successful_poll;
2022 				goto out;
2023 			}
2024 			cur = ktime_get();
2025 		} while (single_task_running() && ktime_before(cur, stop));
2026 	}
2027 
2028 	kvm_arch_vcpu_blocking(vcpu);
2029 
2030 	for (;;) {
2031 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2032 
2033 		if (kvm_vcpu_check_block(vcpu) < 0)
2034 			break;
2035 
2036 		waited = true;
2037 		schedule();
2038 	}
2039 
2040 	finish_wait(&vcpu->wq, &wait);
2041 	cur = ktime_get();
2042 
2043 	kvm_arch_vcpu_unblocking(vcpu);
2044 out:
2045 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2046 
2047 	if (halt_poll_ns) {
2048 		if (block_ns <= vcpu->halt_poll_ns)
2049 			;
2050 		/* we had a long block, shrink polling */
2051 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2052 			shrink_halt_poll_ns(vcpu);
2053 		/* we had a short halt and our poll time is too small */
2054 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2055 			block_ns < halt_poll_ns)
2056 			grow_halt_poll_ns(vcpu);
2057 	} else
2058 		vcpu->halt_poll_ns = 0;
2059 
2060 	trace_kvm_vcpu_wakeup(block_ns, waited);
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2063 
2064 #ifndef CONFIG_S390
2065 /*
2066  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2067  */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)2068 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2069 {
2070 	int me;
2071 	int cpu = vcpu->cpu;
2072 	wait_queue_head_t *wqp;
2073 
2074 	wqp = kvm_arch_vcpu_wq(vcpu);
2075 	if (waitqueue_active(wqp)) {
2076 		wake_up_interruptible(wqp);
2077 		++vcpu->stat.halt_wakeup;
2078 	}
2079 
2080 	me = get_cpu();
2081 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2082 		if (kvm_arch_vcpu_should_kick(vcpu))
2083 			smp_send_reschedule(cpu);
2084 	put_cpu();
2085 }
2086 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2087 #endif /* !CONFIG_S390 */
2088 
kvm_vcpu_yield_to(struct kvm_vcpu * target)2089 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2090 {
2091 	struct pid *pid;
2092 	struct task_struct *task = NULL;
2093 	int ret = 0;
2094 
2095 	rcu_read_lock();
2096 	pid = rcu_dereference(target->pid);
2097 	if (pid)
2098 		task = get_pid_task(pid, PIDTYPE_PID);
2099 	rcu_read_unlock();
2100 	if (!task)
2101 		return ret;
2102 	ret = yield_to(task, 1);
2103 	put_task_struct(task);
2104 
2105 	return ret;
2106 }
2107 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2108 
2109 /*
2110  * Helper that checks whether a VCPU is eligible for directed yield.
2111  * Most eligible candidate to yield is decided by following heuristics:
2112  *
2113  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2114  *  (preempted lock holder), indicated by @in_spin_loop.
2115  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2116  *
2117  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2118  *  chance last time (mostly it has become eligible now since we have probably
2119  *  yielded to lockholder in last iteration. This is done by toggling
2120  *  @dy_eligible each time a VCPU checked for eligibility.)
2121  *
2122  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2123  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2124  *  burning. Giving priority for a potential lock-holder increases lock
2125  *  progress.
2126  *
2127  *  Since algorithm is based on heuristics, accessing another VCPU data without
2128  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2129  *  and continue with next VCPU and so on.
2130  */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)2131 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2132 {
2133 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2134 	bool eligible;
2135 
2136 	eligible = !vcpu->spin_loop.in_spin_loop ||
2137 		    vcpu->spin_loop.dy_eligible;
2138 
2139 	if (vcpu->spin_loop.in_spin_loop)
2140 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2141 
2142 	return eligible;
2143 #else
2144 	return true;
2145 #endif
2146 }
2147 
kvm_vcpu_on_spin(struct kvm_vcpu * me)2148 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2149 {
2150 	struct kvm *kvm = me->kvm;
2151 	struct kvm_vcpu *vcpu;
2152 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2153 	int yielded = 0;
2154 	int try = 3;
2155 	int pass;
2156 	int i;
2157 
2158 	kvm_vcpu_set_in_spin_loop(me, true);
2159 	/*
2160 	 * We boost the priority of a VCPU that is runnable but not
2161 	 * currently running, because it got preempted by something
2162 	 * else and called schedule in __vcpu_run.  Hopefully that
2163 	 * VCPU is holding the lock that we need and will release it.
2164 	 * We approximate round-robin by starting at the last boosted VCPU.
2165 	 */
2166 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2167 		kvm_for_each_vcpu(i, vcpu, kvm) {
2168 			if (!pass && i <= last_boosted_vcpu) {
2169 				i = last_boosted_vcpu;
2170 				continue;
2171 			} else if (pass && i > last_boosted_vcpu)
2172 				break;
2173 			if (!ACCESS_ONCE(vcpu->preempted))
2174 				continue;
2175 			if (vcpu == me)
2176 				continue;
2177 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2178 				continue;
2179 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2180 				continue;
2181 
2182 			yielded = kvm_vcpu_yield_to(vcpu);
2183 			if (yielded > 0) {
2184 				kvm->last_boosted_vcpu = i;
2185 				break;
2186 			} else if (yielded < 0) {
2187 				try--;
2188 				if (!try)
2189 					break;
2190 			}
2191 		}
2192 	}
2193 	kvm_vcpu_set_in_spin_loop(me, false);
2194 
2195 	/* Ensure vcpu is not eligible during next spinloop */
2196 	kvm_vcpu_set_dy_eligible(me, false);
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2199 
kvm_vcpu_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2200 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2201 {
2202 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2203 	struct page *page;
2204 
2205 	if (vmf->pgoff == 0)
2206 		page = virt_to_page(vcpu->run);
2207 #ifdef CONFIG_X86
2208 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2209 		page = virt_to_page(vcpu->arch.pio_data);
2210 #endif
2211 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2212 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2213 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2214 #endif
2215 	else
2216 		return kvm_arch_vcpu_fault(vcpu, vmf);
2217 	get_page(page);
2218 	vmf->page = page;
2219 	return 0;
2220 }
2221 
2222 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2223 	.fault = kvm_vcpu_fault,
2224 };
2225 
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)2226 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2227 {
2228 	vma->vm_ops = &kvm_vcpu_vm_ops;
2229 	return 0;
2230 }
2231 
kvm_vcpu_release(struct inode * inode,struct file * filp)2232 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2233 {
2234 	struct kvm_vcpu *vcpu = filp->private_data;
2235 
2236 	kvm_put_kvm(vcpu->kvm);
2237 	return 0;
2238 }
2239 
2240 static struct file_operations kvm_vcpu_fops = {
2241 	.release        = kvm_vcpu_release,
2242 	.unlocked_ioctl = kvm_vcpu_ioctl,
2243 #ifdef CONFIG_KVM_COMPAT
2244 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2245 #endif
2246 	.mmap           = kvm_vcpu_mmap,
2247 	.llseek		= noop_llseek,
2248 };
2249 
2250 /*
2251  * Allocates an inode for the vcpu.
2252  */
create_vcpu_fd(struct kvm_vcpu * vcpu)2253 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2254 {
2255 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2256 }
2257 
2258 /*
2259  * Creates some virtual cpus.  Good luck creating more than one.
2260  */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)2261 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2262 {
2263 	int r;
2264 	struct kvm_vcpu *vcpu, *v;
2265 
2266 	if (id >= KVM_MAX_VCPUS)
2267 		return -EINVAL;
2268 
2269 	vcpu = kvm_arch_vcpu_create(kvm, id);
2270 	if (IS_ERR(vcpu))
2271 		return PTR_ERR(vcpu);
2272 
2273 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2274 
2275 	r = kvm_arch_vcpu_setup(vcpu);
2276 	if (r)
2277 		goto vcpu_destroy;
2278 
2279 	mutex_lock(&kvm->lock);
2280 	if (!kvm_vcpu_compatible(vcpu)) {
2281 		r = -EINVAL;
2282 		goto unlock_vcpu_destroy;
2283 	}
2284 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2285 		r = -EINVAL;
2286 		goto unlock_vcpu_destroy;
2287 	}
2288 
2289 	kvm_for_each_vcpu(r, v, kvm)
2290 		if (v->vcpu_id == id) {
2291 			r = -EEXIST;
2292 			goto unlock_vcpu_destroy;
2293 		}
2294 
2295 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2296 
2297 	/* Now it's all set up, let userspace reach it */
2298 	kvm_get_kvm(kvm);
2299 	r = create_vcpu_fd(vcpu);
2300 	if (r < 0) {
2301 		kvm_put_kvm(kvm);
2302 		goto unlock_vcpu_destroy;
2303 	}
2304 
2305 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2306 
2307 	/*
2308 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2309 	 * before kvm->online_vcpu's incremented value.
2310 	 */
2311 	smp_wmb();
2312 	atomic_inc(&kvm->online_vcpus);
2313 
2314 	mutex_unlock(&kvm->lock);
2315 	kvm_arch_vcpu_postcreate(vcpu);
2316 	return r;
2317 
2318 unlock_vcpu_destroy:
2319 	mutex_unlock(&kvm->lock);
2320 vcpu_destroy:
2321 	kvm_arch_vcpu_destroy(vcpu);
2322 	return r;
2323 }
2324 
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)2325 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2326 {
2327 	if (sigset) {
2328 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2329 		vcpu->sigset_active = 1;
2330 		vcpu->sigset = *sigset;
2331 	} else
2332 		vcpu->sigset_active = 0;
2333 	return 0;
2334 }
2335 
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2336 static long kvm_vcpu_ioctl(struct file *filp,
2337 			   unsigned int ioctl, unsigned long arg)
2338 {
2339 	struct kvm_vcpu *vcpu = filp->private_data;
2340 	void __user *argp = (void __user *)arg;
2341 	int r;
2342 	struct kvm_fpu *fpu = NULL;
2343 	struct kvm_sregs *kvm_sregs = NULL;
2344 
2345 	if (vcpu->kvm->mm != current->mm)
2346 		return -EIO;
2347 
2348 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2349 		return -EINVAL;
2350 
2351 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2352 	/*
2353 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2354 	 * so vcpu_load() would break it.
2355 	 */
2356 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2357 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2358 #endif
2359 
2360 
2361 	r = vcpu_load(vcpu);
2362 	if (r)
2363 		return r;
2364 	switch (ioctl) {
2365 	case KVM_RUN:
2366 		r = -EINVAL;
2367 		if (arg)
2368 			goto out;
2369 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2370 			/* The thread running this VCPU changed. */
2371 			struct pid *oldpid = vcpu->pid;
2372 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2373 
2374 			rcu_assign_pointer(vcpu->pid, newpid);
2375 			if (oldpid)
2376 				synchronize_rcu();
2377 			put_pid(oldpid);
2378 		}
2379 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2380 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2381 		break;
2382 	case KVM_GET_REGS: {
2383 		struct kvm_regs *kvm_regs;
2384 
2385 		r = -ENOMEM;
2386 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2387 		if (!kvm_regs)
2388 			goto out;
2389 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2390 		if (r)
2391 			goto out_free1;
2392 		r = -EFAULT;
2393 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2394 			goto out_free1;
2395 		r = 0;
2396 out_free1:
2397 		kfree(kvm_regs);
2398 		break;
2399 	}
2400 	case KVM_SET_REGS: {
2401 		struct kvm_regs *kvm_regs;
2402 
2403 		r = -ENOMEM;
2404 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2405 		if (IS_ERR(kvm_regs)) {
2406 			r = PTR_ERR(kvm_regs);
2407 			goto out;
2408 		}
2409 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2410 		kfree(kvm_regs);
2411 		break;
2412 	}
2413 	case KVM_GET_SREGS: {
2414 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2415 		r = -ENOMEM;
2416 		if (!kvm_sregs)
2417 			goto out;
2418 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2419 		if (r)
2420 			goto out;
2421 		r = -EFAULT;
2422 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2423 			goto out;
2424 		r = 0;
2425 		break;
2426 	}
2427 	case KVM_SET_SREGS: {
2428 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2429 		if (IS_ERR(kvm_sregs)) {
2430 			r = PTR_ERR(kvm_sregs);
2431 			kvm_sregs = NULL;
2432 			goto out;
2433 		}
2434 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2435 		break;
2436 	}
2437 	case KVM_GET_MP_STATE: {
2438 		struct kvm_mp_state mp_state;
2439 
2440 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2441 		if (r)
2442 			goto out;
2443 		r = -EFAULT;
2444 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2445 			goto out;
2446 		r = 0;
2447 		break;
2448 	}
2449 	case KVM_SET_MP_STATE: {
2450 		struct kvm_mp_state mp_state;
2451 
2452 		r = -EFAULT;
2453 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2454 			goto out;
2455 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2456 		break;
2457 	}
2458 	case KVM_TRANSLATE: {
2459 		struct kvm_translation tr;
2460 
2461 		r = -EFAULT;
2462 		if (copy_from_user(&tr, argp, sizeof(tr)))
2463 			goto out;
2464 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2465 		if (r)
2466 			goto out;
2467 		r = -EFAULT;
2468 		if (copy_to_user(argp, &tr, sizeof(tr)))
2469 			goto out;
2470 		r = 0;
2471 		break;
2472 	}
2473 	case KVM_SET_GUEST_DEBUG: {
2474 		struct kvm_guest_debug dbg;
2475 
2476 		r = -EFAULT;
2477 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2478 			goto out;
2479 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2480 		break;
2481 	}
2482 	case KVM_SET_SIGNAL_MASK: {
2483 		struct kvm_signal_mask __user *sigmask_arg = argp;
2484 		struct kvm_signal_mask kvm_sigmask;
2485 		sigset_t sigset, *p;
2486 
2487 		p = NULL;
2488 		if (argp) {
2489 			r = -EFAULT;
2490 			if (copy_from_user(&kvm_sigmask, argp,
2491 					   sizeof(kvm_sigmask)))
2492 				goto out;
2493 			r = -EINVAL;
2494 			if (kvm_sigmask.len != sizeof(sigset))
2495 				goto out;
2496 			r = -EFAULT;
2497 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2498 					   sizeof(sigset)))
2499 				goto out;
2500 			p = &sigset;
2501 		}
2502 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2503 		break;
2504 	}
2505 	case KVM_GET_FPU: {
2506 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2507 		r = -ENOMEM;
2508 		if (!fpu)
2509 			goto out;
2510 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2511 		if (r)
2512 			goto out;
2513 		r = -EFAULT;
2514 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2515 			goto out;
2516 		r = 0;
2517 		break;
2518 	}
2519 	case KVM_SET_FPU: {
2520 		fpu = memdup_user(argp, sizeof(*fpu));
2521 		if (IS_ERR(fpu)) {
2522 			r = PTR_ERR(fpu);
2523 			fpu = NULL;
2524 			goto out;
2525 		}
2526 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2527 		break;
2528 	}
2529 	default:
2530 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2531 	}
2532 out:
2533 	vcpu_put(vcpu);
2534 	kfree(fpu);
2535 	kfree(kvm_sregs);
2536 	return r;
2537 }
2538 
2539 #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2540 static long kvm_vcpu_compat_ioctl(struct file *filp,
2541 				  unsigned int ioctl, unsigned long arg)
2542 {
2543 	struct kvm_vcpu *vcpu = filp->private_data;
2544 	void __user *argp = compat_ptr(arg);
2545 	int r;
2546 
2547 	if (vcpu->kvm->mm != current->mm)
2548 		return -EIO;
2549 
2550 	switch (ioctl) {
2551 	case KVM_SET_SIGNAL_MASK: {
2552 		struct kvm_signal_mask __user *sigmask_arg = argp;
2553 		struct kvm_signal_mask kvm_sigmask;
2554 		compat_sigset_t csigset;
2555 		sigset_t sigset;
2556 
2557 		if (argp) {
2558 			r = -EFAULT;
2559 			if (copy_from_user(&kvm_sigmask, argp,
2560 					   sizeof(kvm_sigmask)))
2561 				goto out;
2562 			r = -EINVAL;
2563 			if (kvm_sigmask.len != sizeof(csigset))
2564 				goto out;
2565 			r = -EFAULT;
2566 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2567 					   sizeof(csigset)))
2568 				goto out;
2569 			sigset_from_compat(&sigset, &csigset);
2570 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2571 		} else
2572 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2573 		break;
2574 	}
2575 	default:
2576 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2577 	}
2578 
2579 out:
2580 	return r;
2581 }
2582 #endif
2583 
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)2584 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2585 				 int (*accessor)(struct kvm_device *dev,
2586 						 struct kvm_device_attr *attr),
2587 				 unsigned long arg)
2588 {
2589 	struct kvm_device_attr attr;
2590 
2591 	if (!accessor)
2592 		return -EPERM;
2593 
2594 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2595 		return -EFAULT;
2596 
2597 	return accessor(dev, &attr);
2598 }
2599 
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2600 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2601 			     unsigned long arg)
2602 {
2603 	struct kvm_device *dev = filp->private_data;
2604 
2605 	switch (ioctl) {
2606 	case KVM_SET_DEVICE_ATTR:
2607 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2608 	case KVM_GET_DEVICE_ATTR:
2609 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2610 	case KVM_HAS_DEVICE_ATTR:
2611 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2612 	default:
2613 		if (dev->ops->ioctl)
2614 			return dev->ops->ioctl(dev, ioctl, arg);
2615 
2616 		return -ENOTTY;
2617 	}
2618 }
2619 
kvm_device_release(struct inode * inode,struct file * filp)2620 static int kvm_device_release(struct inode *inode, struct file *filp)
2621 {
2622 	struct kvm_device *dev = filp->private_data;
2623 	struct kvm *kvm = dev->kvm;
2624 
2625 	kvm_put_kvm(kvm);
2626 	return 0;
2627 }
2628 
2629 static const struct file_operations kvm_device_fops = {
2630 	.unlocked_ioctl = kvm_device_ioctl,
2631 #ifdef CONFIG_KVM_COMPAT
2632 	.compat_ioctl = kvm_device_ioctl,
2633 #endif
2634 	.release = kvm_device_release,
2635 };
2636 
kvm_device_from_filp(struct file * filp)2637 struct kvm_device *kvm_device_from_filp(struct file *filp)
2638 {
2639 	if (filp->f_op != &kvm_device_fops)
2640 		return NULL;
2641 
2642 	return filp->private_data;
2643 }
2644 
2645 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2646 #ifdef CONFIG_KVM_MPIC
2647 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2648 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2649 #endif
2650 
2651 #ifdef CONFIG_KVM_XICS
2652 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2653 #endif
2654 };
2655 
kvm_register_device_ops(struct kvm_device_ops * ops,u32 type)2656 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2657 {
2658 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2659 		return -ENOSPC;
2660 
2661 	if (kvm_device_ops_table[type] != NULL)
2662 		return -EEXIST;
2663 
2664 	kvm_device_ops_table[type] = ops;
2665 	return 0;
2666 }
2667 
kvm_unregister_device_ops(u32 type)2668 void kvm_unregister_device_ops(u32 type)
2669 {
2670 	if (kvm_device_ops_table[type] != NULL)
2671 		kvm_device_ops_table[type] = NULL;
2672 }
2673 
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)2674 static int kvm_ioctl_create_device(struct kvm *kvm,
2675 				   struct kvm_create_device *cd)
2676 {
2677 	struct kvm_device_ops *ops = NULL;
2678 	struct kvm_device *dev;
2679 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2680 	int ret;
2681 
2682 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2683 		return -ENODEV;
2684 
2685 	ops = kvm_device_ops_table[cd->type];
2686 	if (ops == NULL)
2687 		return -ENODEV;
2688 
2689 	if (test)
2690 		return 0;
2691 
2692 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2693 	if (!dev)
2694 		return -ENOMEM;
2695 
2696 	dev->ops = ops;
2697 	dev->kvm = kvm;
2698 
2699 	ret = ops->create(dev, cd->type);
2700 	if (ret < 0) {
2701 		kfree(dev);
2702 		return ret;
2703 	}
2704 
2705 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2706 	if (ret < 0) {
2707 		ops->destroy(dev);
2708 		return ret;
2709 	}
2710 
2711 	list_add(&dev->vm_node, &kvm->devices);
2712 	kvm_get_kvm(kvm);
2713 	cd->fd = ret;
2714 	return 0;
2715 }
2716 
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)2717 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2718 {
2719 	switch (arg) {
2720 	case KVM_CAP_USER_MEMORY:
2721 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2722 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2723 	case KVM_CAP_INTERNAL_ERROR_DATA:
2724 #ifdef CONFIG_HAVE_KVM_MSI
2725 	case KVM_CAP_SIGNAL_MSI:
2726 #endif
2727 #ifdef CONFIG_HAVE_KVM_IRQFD
2728 	case KVM_CAP_IRQFD:
2729 	case KVM_CAP_IRQFD_RESAMPLE:
2730 #endif
2731 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2732 	case KVM_CAP_CHECK_EXTENSION_VM:
2733 		return 1;
2734 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2735 	case KVM_CAP_IRQ_ROUTING:
2736 		return KVM_MAX_IRQ_ROUTES;
2737 #endif
2738 #if KVM_ADDRESS_SPACE_NUM > 1
2739 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2740 		return KVM_ADDRESS_SPACE_NUM;
2741 #endif
2742 	default:
2743 		break;
2744 	}
2745 	return kvm_vm_ioctl_check_extension(kvm, arg);
2746 }
2747 
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2748 static long kvm_vm_ioctl(struct file *filp,
2749 			   unsigned int ioctl, unsigned long arg)
2750 {
2751 	struct kvm *kvm = filp->private_data;
2752 	void __user *argp = (void __user *)arg;
2753 	int r;
2754 
2755 	if (kvm->mm != current->mm)
2756 		return -EIO;
2757 	switch (ioctl) {
2758 	case KVM_CREATE_VCPU:
2759 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2760 		break;
2761 	case KVM_SET_USER_MEMORY_REGION: {
2762 		struct kvm_userspace_memory_region kvm_userspace_mem;
2763 
2764 		r = -EFAULT;
2765 		if (copy_from_user(&kvm_userspace_mem, argp,
2766 						sizeof(kvm_userspace_mem)))
2767 			goto out;
2768 
2769 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2770 		break;
2771 	}
2772 	case KVM_GET_DIRTY_LOG: {
2773 		struct kvm_dirty_log log;
2774 
2775 		r = -EFAULT;
2776 		if (copy_from_user(&log, argp, sizeof(log)))
2777 			goto out;
2778 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2779 		break;
2780 	}
2781 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2782 	case KVM_REGISTER_COALESCED_MMIO: {
2783 		struct kvm_coalesced_mmio_zone zone;
2784 
2785 		r = -EFAULT;
2786 		if (copy_from_user(&zone, argp, sizeof(zone)))
2787 			goto out;
2788 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2789 		break;
2790 	}
2791 	case KVM_UNREGISTER_COALESCED_MMIO: {
2792 		struct kvm_coalesced_mmio_zone zone;
2793 
2794 		r = -EFAULT;
2795 		if (copy_from_user(&zone, argp, sizeof(zone)))
2796 			goto out;
2797 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2798 		break;
2799 	}
2800 #endif
2801 	case KVM_IRQFD: {
2802 		struct kvm_irqfd data;
2803 
2804 		r = -EFAULT;
2805 		if (copy_from_user(&data, argp, sizeof(data)))
2806 			goto out;
2807 		r = kvm_irqfd(kvm, &data);
2808 		break;
2809 	}
2810 	case KVM_IOEVENTFD: {
2811 		struct kvm_ioeventfd data;
2812 
2813 		r = -EFAULT;
2814 		if (copy_from_user(&data, argp, sizeof(data)))
2815 			goto out;
2816 		r = kvm_ioeventfd(kvm, &data);
2817 		break;
2818 	}
2819 #ifdef CONFIG_HAVE_KVM_MSI
2820 	case KVM_SIGNAL_MSI: {
2821 		struct kvm_msi msi;
2822 
2823 		r = -EFAULT;
2824 		if (copy_from_user(&msi, argp, sizeof(msi)))
2825 			goto out;
2826 		r = kvm_send_userspace_msi(kvm, &msi);
2827 		break;
2828 	}
2829 #endif
2830 #ifdef __KVM_HAVE_IRQ_LINE
2831 	case KVM_IRQ_LINE_STATUS:
2832 	case KVM_IRQ_LINE: {
2833 		struct kvm_irq_level irq_event;
2834 
2835 		r = -EFAULT;
2836 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2837 			goto out;
2838 
2839 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2840 					ioctl == KVM_IRQ_LINE_STATUS);
2841 		if (r)
2842 			goto out;
2843 
2844 		r = -EFAULT;
2845 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2846 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2847 				goto out;
2848 		}
2849 
2850 		r = 0;
2851 		break;
2852 	}
2853 #endif
2854 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2855 	case KVM_SET_GSI_ROUTING: {
2856 		struct kvm_irq_routing routing;
2857 		struct kvm_irq_routing __user *urouting;
2858 		struct kvm_irq_routing_entry *entries;
2859 
2860 		r = -EFAULT;
2861 		if (copy_from_user(&routing, argp, sizeof(routing)))
2862 			goto out;
2863 		r = -EINVAL;
2864 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2865 			goto out;
2866 		if (routing.flags)
2867 			goto out;
2868 		r = -ENOMEM;
2869 		entries = vmalloc(routing.nr * sizeof(*entries));
2870 		if (!entries)
2871 			goto out;
2872 		r = -EFAULT;
2873 		urouting = argp;
2874 		if (copy_from_user(entries, urouting->entries,
2875 				   routing.nr * sizeof(*entries)))
2876 			goto out_free_irq_routing;
2877 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2878 					routing.flags);
2879 out_free_irq_routing:
2880 		vfree(entries);
2881 		break;
2882 	}
2883 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2884 	case KVM_CREATE_DEVICE: {
2885 		struct kvm_create_device cd;
2886 
2887 		r = -EFAULT;
2888 		if (copy_from_user(&cd, argp, sizeof(cd)))
2889 			goto out;
2890 
2891 		r = kvm_ioctl_create_device(kvm, &cd);
2892 		if (r)
2893 			goto out;
2894 
2895 		r = -EFAULT;
2896 		if (copy_to_user(argp, &cd, sizeof(cd)))
2897 			goto out;
2898 
2899 		r = 0;
2900 		break;
2901 	}
2902 	case KVM_CHECK_EXTENSION:
2903 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2904 		break;
2905 	default:
2906 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2907 	}
2908 out:
2909 	return r;
2910 }
2911 
2912 #ifdef CONFIG_KVM_COMPAT
2913 struct compat_kvm_dirty_log {
2914 	__u32 slot;
2915 	__u32 padding1;
2916 	union {
2917 		compat_uptr_t dirty_bitmap; /* one bit per page */
2918 		__u64 padding2;
2919 	};
2920 };
2921 
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2922 static long kvm_vm_compat_ioctl(struct file *filp,
2923 			   unsigned int ioctl, unsigned long arg)
2924 {
2925 	struct kvm *kvm = filp->private_data;
2926 	int r;
2927 
2928 	if (kvm->mm != current->mm)
2929 		return -EIO;
2930 	switch (ioctl) {
2931 	case KVM_GET_DIRTY_LOG: {
2932 		struct compat_kvm_dirty_log compat_log;
2933 		struct kvm_dirty_log log;
2934 
2935 		r = -EFAULT;
2936 		if (copy_from_user(&compat_log, (void __user *)arg,
2937 				   sizeof(compat_log)))
2938 			goto out;
2939 		log.slot	 = compat_log.slot;
2940 		log.padding1	 = compat_log.padding1;
2941 		log.padding2	 = compat_log.padding2;
2942 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2943 
2944 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2945 		break;
2946 	}
2947 	default:
2948 		r = kvm_vm_ioctl(filp, ioctl, arg);
2949 	}
2950 
2951 out:
2952 	return r;
2953 }
2954 #endif
2955 
2956 static struct file_operations kvm_vm_fops = {
2957 	.release        = kvm_vm_release,
2958 	.unlocked_ioctl = kvm_vm_ioctl,
2959 #ifdef CONFIG_KVM_COMPAT
2960 	.compat_ioctl   = kvm_vm_compat_ioctl,
2961 #endif
2962 	.llseek		= noop_llseek,
2963 };
2964 
kvm_dev_ioctl_create_vm(unsigned long type)2965 static int kvm_dev_ioctl_create_vm(unsigned long type)
2966 {
2967 	int r;
2968 	struct kvm *kvm;
2969 
2970 	kvm = kvm_create_vm(type);
2971 	if (IS_ERR(kvm))
2972 		return PTR_ERR(kvm);
2973 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2974 	r = kvm_coalesced_mmio_init(kvm);
2975 	if (r < 0) {
2976 		kvm_put_kvm(kvm);
2977 		return r;
2978 	}
2979 #endif
2980 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2981 	if (r < 0)
2982 		kvm_put_kvm(kvm);
2983 
2984 	return r;
2985 }
2986 
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2987 static long kvm_dev_ioctl(struct file *filp,
2988 			  unsigned int ioctl, unsigned long arg)
2989 {
2990 	long r = -EINVAL;
2991 
2992 	switch (ioctl) {
2993 	case KVM_GET_API_VERSION:
2994 		if (arg)
2995 			goto out;
2996 		r = KVM_API_VERSION;
2997 		break;
2998 	case KVM_CREATE_VM:
2999 		r = kvm_dev_ioctl_create_vm(arg);
3000 		break;
3001 	case KVM_CHECK_EXTENSION:
3002 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3003 		break;
3004 	case KVM_GET_VCPU_MMAP_SIZE:
3005 		if (arg)
3006 			goto out;
3007 		r = PAGE_SIZE;     /* struct kvm_run */
3008 #ifdef CONFIG_X86
3009 		r += PAGE_SIZE;    /* pio data page */
3010 #endif
3011 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3012 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3013 #endif
3014 		break;
3015 	case KVM_TRACE_ENABLE:
3016 	case KVM_TRACE_PAUSE:
3017 	case KVM_TRACE_DISABLE:
3018 		r = -EOPNOTSUPP;
3019 		break;
3020 	default:
3021 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3022 	}
3023 out:
3024 	return r;
3025 }
3026 
3027 static struct file_operations kvm_chardev_ops = {
3028 	.unlocked_ioctl = kvm_dev_ioctl,
3029 	.compat_ioctl   = kvm_dev_ioctl,
3030 	.llseek		= noop_llseek,
3031 };
3032 
3033 static struct miscdevice kvm_dev = {
3034 	KVM_MINOR,
3035 	"kvm",
3036 	&kvm_chardev_ops,
3037 };
3038 
hardware_enable_nolock(void * junk)3039 static void hardware_enable_nolock(void *junk)
3040 {
3041 	int cpu = raw_smp_processor_id();
3042 	int r;
3043 
3044 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3045 		return;
3046 
3047 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3048 
3049 	r = kvm_arch_hardware_enable();
3050 
3051 	if (r) {
3052 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3053 		atomic_inc(&hardware_enable_failed);
3054 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3055 	}
3056 }
3057 
hardware_enable(void)3058 static void hardware_enable(void)
3059 {
3060 	raw_spin_lock(&kvm_count_lock);
3061 	if (kvm_usage_count)
3062 		hardware_enable_nolock(NULL);
3063 	raw_spin_unlock(&kvm_count_lock);
3064 }
3065 
hardware_disable_nolock(void * junk)3066 static void hardware_disable_nolock(void *junk)
3067 {
3068 	int cpu = raw_smp_processor_id();
3069 
3070 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3071 		return;
3072 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3073 	kvm_arch_hardware_disable();
3074 }
3075 
hardware_disable(void)3076 static void hardware_disable(void)
3077 {
3078 	raw_spin_lock(&kvm_count_lock);
3079 	if (kvm_usage_count)
3080 		hardware_disable_nolock(NULL);
3081 	raw_spin_unlock(&kvm_count_lock);
3082 }
3083 
hardware_disable_all_nolock(void)3084 static void hardware_disable_all_nolock(void)
3085 {
3086 	BUG_ON(!kvm_usage_count);
3087 
3088 	kvm_usage_count--;
3089 	if (!kvm_usage_count)
3090 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3091 }
3092 
hardware_disable_all(void)3093 static void hardware_disable_all(void)
3094 {
3095 	raw_spin_lock(&kvm_count_lock);
3096 	hardware_disable_all_nolock();
3097 	raw_spin_unlock(&kvm_count_lock);
3098 }
3099 
hardware_enable_all(void)3100 static int hardware_enable_all(void)
3101 {
3102 	int r = 0;
3103 
3104 	raw_spin_lock(&kvm_count_lock);
3105 
3106 	kvm_usage_count++;
3107 	if (kvm_usage_count == 1) {
3108 		atomic_set(&hardware_enable_failed, 0);
3109 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3110 
3111 		if (atomic_read(&hardware_enable_failed)) {
3112 			hardware_disable_all_nolock();
3113 			r = -EBUSY;
3114 		}
3115 	}
3116 
3117 	raw_spin_unlock(&kvm_count_lock);
3118 
3119 	return r;
3120 }
3121 
kvm_cpu_hotplug(struct notifier_block * notifier,unsigned long val,void * v)3122 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3123 			   void *v)
3124 {
3125 	val &= ~CPU_TASKS_FROZEN;
3126 	switch (val) {
3127 	case CPU_DYING:
3128 		hardware_disable();
3129 		break;
3130 	case CPU_STARTING:
3131 		hardware_enable();
3132 		break;
3133 	}
3134 	return NOTIFY_OK;
3135 }
3136 
kvm_reboot(struct notifier_block * notifier,unsigned long val,void * v)3137 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3138 		      void *v)
3139 {
3140 	/*
3141 	 * Some (well, at least mine) BIOSes hang on reboot if
3142 	 * in vmx root mode.
3143 	 *
3144 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3145 	 */
3146 	pr_info("kvm: exiting hardware virtualization\n");
3147 	kvm_rebooting = true;
3148 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3149 	return NOTIFY_OK;
3150 }
3151 
3152 static struct notifier_block kvm_reboot_notifier = {
3153 	.notifier_call = kvm_reboot,
3154 	.priority = 0,
3155 };
3156 
kvm_io_bus_destroy(struct kvm_io_bus * bus)3157 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3158 {
3159 	int i;
3160 
3161 	for (i = 0; i < bus->dev_count; i++) {
3162 		struct kvm_io_device *pos = bus->range[i].dev;
3163 
3164 		kvm_iodevice_destructor(pos);
3165 	}
3166 	kfree(bus);
3167 }
3168 
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)3169 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3170 				 const struct kvm_io_range *r2)
3171 {
3172 	gpa_t addr1 = r1->addr;
3173 	gpa_t addr2 = r2->addr;
3174 
3175 	if (addr1 < addr2)
3176 		return -1;
3177 
3178 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3179 	 * accept any overlapping write.  Any order is acceptable for
3180 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3181 	 * we process all of them.
3182 	 */
3183 	if (r2->len) {
3184 		addr1 += r1->len;
3185 		addr2 += r2->len;
3186 	}
3187 
3188 	if (addr1 > addr2)
3189 		return 1;
3190 
3191 	return 0;
3192 }
3193 
kvm_io_bus_sort_cmp(const void * p1,const void * p2)3194 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3195 {
3196 	return kvm_io_bus_cmp(p1, p2);
3197 }
3198 
kvm_io_bus_insert_dev(struct kvm_io_bus * bus,struct kvm_io_device * dev,gpa_t addr,int len)3199 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3200 			  gpa_t addr, int len)
3201 {
3202 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3203 		.addr = addr,
3204 		.len = len,
3205 		.dev = dev,
3206 	};
3207 
3208 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3209 		kvm_io_bus_sort_cmp, NULL);
3210 
3211 	return 0;
3212 }
3213 
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)3214 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3215 			     gpa_t addr, int len)
3216 {
3217 	struct kvm_io_range *range, key;
3218 	int off;
3219 
3220 	key = (struct kvm_io_range) {
3221 		.addr = addr,
3222 		.len = len,
3223 	};
3224 
3225 	range = bsearch(&key, bus->range, bus->dev_count,
3226 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3227 	if (range == NULL)
3228 		return -ENOENT;
3229 
3230 	off = range - bus->range;
3231 
3232 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3233 		off--;
3234 
3235 	return off;
3236 }
3237 
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)3238 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3239 			      struct kvm_io_range *range, const void *val)
3240 {
3241 	int idx;
3242 
3243 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3244 	if (idx < 0)
3245 		return -EOPNOTSUPP;
3246 
3247 	while (idx < bus->dev_count &&
3248 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3249 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3250 					range->len, val))
3251 			return idx;
3252 		idx++;
3253 	}
3254 
3255 	return -EOPNOTSUPP;
3256 }
3257 
3258 /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)3259 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3260 		     int len, const void *val)
3261 {
3262 	struct kvm_io_bus *bus;
3263 	struct kvm_io_range range;
3264 	int r;
3265 
3266 	range = (struct kvm_io_range) {
3267 		.addr = addr,
3268 		.len = len,
3269 	};
3270 
3271 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3272 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3273 	return r < 0 ? r : 0;
3274 }
3275 
3276 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)3277 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3278 			    gpa_t addr, int len, const void *val, long cookie)
3279 {
3280 	struct kvm_io_bus *bus;
3281 	struct kvm_io_range range;
3282 
3283 	range = (struct kvm_io_range) {
3284 		.addr = addr,
3285 		.len = len,
3286 	};
3287 
3288 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3289 
3290 	/* First try the device referenced by cookie. */
3291 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3292 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3293 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3294 					val))
3295 			return cookie;
3296 
3297 	/*
3298 	 * cookie contained garbage; fall back to search and return the
3299 	 * correct cookie value.
3300 	 */
3301 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3302 }
3303 
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)3304 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3305 			     struct kvm_io_range *range, void *val)
3306 {
3307 	int idx;
3308 
3309 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3310 	if (idx < 0)
3311 		return -EOPNOTSUPP;
3312 
3313 	while (idx < bus->dev_count &&
3314 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3315 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3316 				       range->len, val))
3317 			return idx;
3318 		idx++;
3319 	}
3320 
3321 	return -EOPNOTSUPP;
3322 }
3323 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3324 
3325 /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)3326 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3327 		    int len, void *val)
3328 {
3329 	struct kvm_io_bus *bus;
3330 	struct kvm_io_range range;
3331 	int r;
3332 
3333 	range = (struct kvm_io_range) {
3334 		.addr = addr,
3335 		.len = len,
3336 	};
3337 
3338 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3339 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3340 	return r < 0 ? r : 0;
3341 }
3342 
3343 
3344 /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)3345 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3346 			    int len, struct kvm_io_device *dev)
3347 {
3348 	struct kvm_io_bus *new_bus, *bus;
3349 
3350 	bus = kvm->buses[bus_idx];
3351 	/* exclude ioeventfd which is limited by maximum fd */
3352 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3353 		return -ENOSPC;
3354 
3355 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3356 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3357 	if (!new_bus)
3358 		return -ENOMEM;
3359 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3360 	       sizeof(struct kvm_io_range)));
3361 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3362 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3363 	synchronize_srcu_expedited(&kvm->srcu);
3364 	kfree(bus);
3365 
3366 	return 0;
3367 }
3368 
3369 /* Caller must hold slots_lock. */
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)3370 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3371 			      struct kvm_io_device *dev)
3372 {
3373 	int i, r;
3374 	struct kvm_io_bus *new_bus, *bus;
3375 
3376 	bus = kvm->buses[bus_idx];
3377 	r = -ENOENT;
3378 	for (i = 0; i < bus->dev_count; i++)
3379 		if (bus->range[i].dev == dev) {
3380 			r = 0;
3381 			break;
3382 		}
3383 
3384 	if (r)
3385 		return r;
3386 
3387 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3388 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3389 	if (!new_bus)
3390 		return -ENOMEM;
3391 
3392 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3393 	new_bus->dev_count--;
3394 	memcpy(new_bus->range + i, bus->range + i + 1,
3395 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3396 
3397 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3398 	synchronize_srcu_expedited(&kvm->srcu);
3399 	kfree(bus);
3400 	return r;
3401 }
3402 
3403 static struct notifier_block kvm_cpu_notifier = {
3404 	.notifier_call = kvm_cpu_hotplug,
3405 };
3406 
vm_stat_get(void * _offset,u64 * val)3407 static int vm_stat_get(void *_offset, u64 *val)
3408 {
3409 	unsigned offset = (long)_offset;
3410 	struct kvm *kvm;
3411 
3412 	*val = 0;
3413 	spin_lock(&kvm_lock);
3414 	list_for_each_entry(kvm, &vm_list, vm_list)
3415 		*val += *(u32 *)((void *)kvm + offset);
3416 	spin_unlock(&kvm_lock);
3417 	return 0;
3418 }
3419 
3420 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3421 
vcpu_stat_get(void * _offset,u64 * val)3422 static int vcpu_stat_get(void *_offset, u64 *val)
3423 {
3424 	unsigned offset = (long)_offset;
3425 	struct kvm *kvm;
3426 	struct kvm_vcpu *vcpu;
3427 	int i;
3428 
3429 	*val = 0;
3430 	spin_lock(&kvm_lock);
3431 	list_for_each_entry(kvm, &vm_list, vm_list)
3432 		kvm_for_each_vcpu(i, vcpu, kvm)
3433 			*val += *(u32 *)((void *)vcpu + offset);
3434 
3435 	spin_unlock(&kvm_lock);
3436 	return 0;
3437 }
3438 
3439 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3440 
3441 static const struct file_operations *stat_fops[] = {
3442 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3443 	[KVM_STAT_VM]   = &vm_stat_fops,
3444 };
3445 
kvm_init_debug(void)3446 static int kvm_init_debug(void)
3447 {
3448 	int r = -EEXIST;
3449 	struct kvm_stats_debugfs_item *p;
3450 
3451 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3452 	if (kvm_debugfs_dir == NULL)
3453 		goto out;
3454 
3455 	for (p = debugfs_entries; p->name; ++p) {
3456 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3457 						(void *)(long)p->offset,
3458 						stat_fops[p->kind]);
3459 		if (p->dentry == NULL)
3460 			goto out_dir;
3461 	}
3462 
3463 	return 0;
3464 
3465 out_dir:
3466 	debugfs_remove_recursive(kvm_debugfs_dir);
3467 out:
3468 	return r;
3469 }
3470 
kvm_exit_debug(void)3471 static void kvm_exit_debug(void)
3472 {
3473 	struct kvm_stats_debugfs_item *p;
3474 
3475 	for (p = debugfs_entries; p->name; ++p)
3476 		debugfs_remove(p->dentry);
3477 	debugfs_remove(kvm_debugfs_dir);
3478 }
3479 
kvm_suspend(void)3480 static int kvm_suspend(void)
3481 {
3482 	if (kvm_usage_count)
3483 		hardware_disable_nolock(NULL);
3484 	return 0;
3485 }
3486 
kvm_resume(void)3487 static void kvm_resume(void)
3488 {
3489 	if (kvm_usage_count) {
3490 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3491 		hardware_enable_nolock(NULL);
3492 	}
3493 }
3494 
3495 static struct syscore_ops kvm_syscore_ops = {
3496 	.suspend = kvm_suspend,
3497 	.resume = kvm_resume,
3498 };
3499 
3500 static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)3501 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3502 {
3503 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3504 }
3505 
kvm_sched_in(struct preempt_notifier * pn,int cpu)3506 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3507 {
3508 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3509 
3510 	if (vcpu->preempted)
3511 		vcpu->preempted = false;
3512 
3513 	kvm_arch_sched_in(vcpu, cpu);
3514 
3515 	kvm_arch_vcpu_load(vcpu, cpu);
3516 }
3517 
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)3518 static void kvm_sched_out(struct preempt_notifier *pn,
3519 			  struct task_struct *next)
3520 {
3521 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3522 
3523 	if (current->state == TASK_RUNNING)
3524 		vcpu->preempted = true;
3525 	kvm_arch_vcpu_put(vcpu);
3526 }
3527 
kvm_init(void * opaque,unsigned vcpu_size,unsigned vcpu_align,struct module * module)3528 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3529 		  struct module *module)
3530 {
3531 	int r;
3532 	int cpu;
3533 
3534 	r = kvm_arch_init(opaque);
3535 	if (r)
3536 		goto out_fail;
3537 
3538 	/*
3539 	 * kvm_arch_init makes sure there's at most one caller
3540 	 * for architectures that support multiple implementations,
3541 	 * like intel and amd on x86.
3542 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3543 	 * conflicts in case kvm is already setup for another implementation.
3544 	 */
3545 	r = kvm_irqfd_init();
3546 	if (r)
3547 		goto out_irqfd;
3548 
3549 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3550 		r = -ENOMEM;
3551 		goto out_free_0;
3552 	}
3553 
3554 	r = kvm_arch_hardware_setup();
3555 	if (r < 0)
3556 		goto out_free_0a;
3557 
3558 	for_each_online_cpu(cpu) {
3559 		smp_call_function_single(cpu,
3560 				kvm_arch_check_processor_compat,
3561 				&r, 1);
3562 		if (r < 0)
3563 			goto out_free_1;
3564 	}
3565 
3566 	r = register_cpu_notifier(&kvm_cpu_notifier);
3567 	if (r)
3568 		goto out_free_2;
3569 	register_reboot_notifier(&kvm_reboot_notifier);
3570 
3571 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3572 	if (!vcpu_align)
3573 		vcpu_align = __alignof__(struct kvm_vcpu);
3574 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3575 					   0, NULL);
3576 	if (!kvm_vcpu_cache) {
3577 		r = -ENOMEM;
3578 		goto out_free_3;
3579 	}
3580 
3581 	r = kvm_async_pf_init();
3582 	if (r)
3583 		goto out_free;
3584 
3585 	kvm_chardev_ops.owner = module;
3586 	kvm_vm_fops.owner = module;
3587 	kvm_vcpu_fops.owner = module;
3588 
3589 	r = misc_register(&kvm_dev);
3590 	if (r) {
3591 		pr_err("kvm: misc device register failed\n");
3592 		goto out_unreg;
3593 	}
3594 
3595 	register_syscore_ops(&kvm_syscore_ops);
3596 
3597 	kvm_preempt_ops.sched_in = kvm_sched_in;
3598 	kvm_preempt_ops.sched_out = kvm_sched_out;
3599 
3600 	r = kvm_init_debug();
3601 	if (r) {
3602 		pr_err("kvm: create debugfs files failed\n");
3603 		goto out_undebugfs;
3604 	}
3605 
3606 	r = kvm_vfio_ops_init();
3607 	WARN_ON(r);
3608 
3609 	return 0;
3610 
3611 out_undebugfs:
3612 	unregister_syscore_ops(&kvm_syscore_ops);
3613 	misc_deregister(&kvm_dev);
3614 out_unreg:
3615 	kvm_async_pf_deinit();
3616 out_free:
3617 	kmem_cache_destroy(kvm_vcpu_cache);
3618 out_free_3:
3619 	unregister_reboot_notifier(&kvm_reboot_notifier);
3620 	unregister_cpu_notifier(&kvm_cpu_notifier);
3621 out_free_2:
3622 out_free_1:
3623 	kvm_arch_hardware_unsetup();
3624 out_free_0a:
3625 	free_cpumask_var(cpus_hardware_enabled);
3626 out_free_0:
3627 	kvm_irqfd_exit();
3628 out_irqfd:
3629 	kvm_arch_exit();
3630 out_fail:
3631 	return r;
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_init);
3634 
kvm_exit(void)3635 void kvm_exit(void)
3636 {
3637 	kvm_exit_debug();
3638 	misc_deregister(&kvm_dev);
3639 	kmem_cache_destroy(kvm_vcpu_cache);
3640 	kvm_async_pf_deinit();
3641 	unregister_syscore_ops(&kvm_syscore_ops);
3642 	unregister_reboot_notifier(&kvm_reboot_notifier);
3643 	unregister_cpu_notifier(&kvm_cpu_notifier);
3644 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3645 	kvm_arch_hardware_unsetup();
3646 	kvm_arch_exit();
3647 	kvm_irqfd_exit();
3648 	free_cpumask_var(cpus_hardware_enabled);
3649 	kvm_vfio_ops_exit();
3650 }
3651 EXPORT_SYMBOL_GPL(kvm_exit);
3652